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Abstract The epidemic of obesity has contributed to the
rapid rise in comorbid conditions such as cardiovascular dis-
ease, type 2 diabetes, sleep apnea, and hypertension among
others. Therefore, there is a critical need to develop therapeu-
tic strategies to reduce the prevalence of the disease. Skeletal
muscle cells secrete signaling cytokines/peptides (referred to
as myokines) that act in autocrine, paracrine, and endocrine
fashion. Myokines have been hypothesized to contribute to
the immediate and chronic benefits of exercise and may thus
serve as attractive therapeutic agents for the treatment of
obesity. The recent discovery of the irisin, a proposed
myokine, has gained much attention over the last two years
as a potential therapeutic agent. Preliminary studies demon-
strated that irisin has the potential to induce “browning” of
white adipocytes in mice. If these findings in mice could be
translated to humans, irisin could be a potential therapeutic
agent for the treatment of obesity. Limitations with the avail-
able antibodies, however, have raised concerns regarding the
detectability of irisin in circulation. Moreover, the gene
encoding irisin, FNDCS3, is expressed robustly not only in
muscle but also in various white adipose tissues (WAT) in
humans, raising the possibility for increased thermogenesis
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through autocrine mechanisms. Here we will discuss the
browning of WAT, the discovery of irisin, and its potential
role in improving metabolic health in humans.
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Introduction

Obesity has rapidly become a worldwide epidemic. In parallel,
the prevalence of obesity-related comorbid conditions has also
escalated, including insulin resistance, metabolic syndrome,
type 2 diabetes, hypertension, chronic kidney disease, cardio-
vascular disease, heart failure, cancer, and dementia [1-3]. As
expected, a recent meta-analysis from the US Centers for
Disease Control and Prevention confirms that obesity is asso-
ciated with increased all-cause mortality [4]. The rapid in-
crease in obesity and obesity-related comorbid conditions has
coincided with the rapidly changing landscape of our
obesogenic environment [5]. In particular, it has coincided
with the systemic reductions in total daily physical activity
as well as reductions in vigorous physical activity [5, 6].
Exercise has long been recognized for its pluripotent effects
on body composition [7, 8], metabolic health [9], cardiovas-
cular disease [10, 11] and mental health [12]. The underlying
mechanism(s) for the clinical benefits of exercise remains to
be fully elucidated. Over the past decade, it has become
increasingly recognized that skeletal muscle cells secrete sig-
naling cytokines/peptides that act in autocrine, paracrine, and
endocrine fashion in response to skeletal muscle contraction
(e.g., exercise) [13]. The secreted cytokines/peptides, referred
to as myokines, have been hypothesized to contribute to the
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immediate and chronic benefits of exercise [13]. The recent
discovery of irisin by Bostrom et al. [14+¢], a putative exercise
induced myokine, that is credited for improving metabolic
health by its ability to brown white adipose tissue (WAT) in
mice has received considerable attention over the last two
years. Although it remains to be determined whether irisin
has the ability to brown WAT and improve metabolic health in
humans, it represents a potentially attractive therapeutic agent
for treating obesity and metabolic disease in humans. Here we
will briefly discuss the browning of WAT, the discovery of
irisin, and the potential role that irisin may play in browning
WAT and improving metabolic health in humans.

Browning of White Adipocytes

Classically, adipose tissue is characterized as either WAT or
brown adipose tissue (BAT). Adipocytes from WAT serve as
the primary site for lipid storage; whereas adipocytes from
BAT are highly specialized cells designed to produce heat
through uncoupled respiration that leads to concomitant dis-
sipation of energy [15]. The physical, metabolic, and regula-
tory characteristics of WAT and BAT have been extensively
reviewed elsewhere [16-21]. In brief, adipocytes from WAT
have a unilocular lipid droplet, few mitochondria, and a rela-
tively low metabolic rate [21]. In contrast, adipocytes from
BAT have multilocular lipid droplets, many mitochondria, and
a relatively high metabolic rate [21]. The relatively high
metabolic rate observed in BAT compared to WAT is due to
the presence of uncoupling protein 1 (UCP1), which is negli-
gibly expressed in WAT [21].

The presence of brown adipocytes in WAT has been known
for many years. Young et al. [22] were the first to report the
presence of brown adipocytes in WAT of female BALB/c mice
following cold acclimatization. Subsequently, brown adipo-
cytes were identified in multiple WAT fat pads in rats [23].
Enrichment and activation of BAT represents an attractive
therapeutic strategy to combat obesity and metabolic disease.
The presence of UCP1 positive cells in WAT can also be
pharmacologically enriched by {3-adrenergic stimuli [23-25]
as well as PPARy agonist [26-28]. Recent evidence has
demonstrated that the brown adipocytes (i.e., UCP1 positive
cells) found in WAT are actually a distinct sub-population of
white adipocytes (referred to as brown-in-white (brite) or
beige adipocytes) [15, 26]. Co-culture experiments demon-
strated that beige/brite adipocytes treated with rosiglitazone (a
PPARY agonist) can be induced to differentiate into adipo-
cytes with thermogenic potential in the absence of classical
brown adipocyte-specific markers (e.g., Zic2, Lhx8, Meox3,
and PRDM16) [26]. In addition, these beige/brite adipocytes
are also characterized as having the white adipocyte-specific
marker Hoxc9 while lacking the white adipocyte-specific
marker tcf21 [26]. Taken together, these results indicate that
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the beige/brite adipocytes are truly a distinct subtype of white
adipocytes with potentially hidden capacity for higher meta-
bolic rate [26]. In 2012, Wu et al. [15] confirmed that the
beige/brite adipocytes found in WAT depots in mice and
humans are in fact distinct from classical brown adipocytes
that are more abundant in mice as a specialized depot [19, 29].
Specifically, for the first time they demonstrated that the
beige/brite adipocytes emerge from non-myf-5 progenitor
cells, in contrast to brown adipocytes, which are derived from
myf-5 positive progenitor cells [15]. The exquisite regulation
of the “browning” of white adipocytes in response to environ-
mental, hormonal, and metabolic stimuli is quite remarkable.
Excellent reviews of the development and regulatory control
of beige/brite adipocytes have recently been published [19,
29]. Similar to BAT, enrichment and activation of beige/brite
adipocytes represents an attractive therapeutic strategy to
combat obesity and metabolic disease. The recent discovery
of irisin and its potential to induce “browning” of white
adipocytes has gained much attention over the last two years
[14ee], which will be discussed in detail below.

Discovery of Irisin

It is well accepted that exercise is the corner stone of a healthy
lifestyle and the frontline defense for primary and secondary
prevention of many metabolic and cardiovascular diseases.
Chronic endurance training has also been shown to induce
skeletal muscle mitochondrial biogenesis [30, 31], which is
regulated by the expression and activity of PPAR-y co-
activator-1lac PGC1-« [31-33]. Indeed, the canonical
PGCl-« (i.e., PGC1-al [34]) has been shown to be the master
regulator of mitochondrial biogenesis in multiple tissues [32,
33]. Likewise, skeletal muscle over-expression of PGC1-xl
mimics many of the protective effects of exercise on multiple
tissues [35, 36]. Interestingly, the newly identified splice
variant of PGC1-&, PGC1-04, has also been shown to induce
skeletal muscle hypertrophy when transgenically
overexpressed in mice consistent with a resistance-trained
phenotype [34]. As such, efforts were made to identify the
mechanism by which the expression and activity of PGC1-«
in skeletal muscle affects other tissues. These studies were
conducted under the backdrop of recent interest in skeletal
muscle secreted signaling peptides referred to as myokines
[37]. Could the increased expression of PGC1-« in skeletal
muscle result in the secretion of some known or unknown set
of myokines that affect the function of other tissues?
Bostrom et al. [14e] first examined the WAT depots of
muscle specific PGC1-« transgenic mice to determine if there
were molecular and/or metabolic differences in WAT com-
pared to their wild-type littermates. They demonstrated that
the inguinal WAT (subcutaneous WAT) consisted of a popu-
lation of beige/brite adipocytes that had increased levels of
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UCP1 and Cidea [14¢] in muscle specific PGC1-«x transgenic
mice compared to their wild-type littermates. Next, they dem-
onstrated that wheel running and swimming substantially
induced the expression of UCP1 in inguinal WAT (~25 fold,
~65-fold, respectively) [14e¢]. Taken together, these findings
indicate that increased expression of PGC1-« in murine skel-
etal muscle induces browning of inguinal WAT, similar to
what is observed through traditional exercise regimens. To
address whether this browning of the subcutaneous WAT was
due directly to muscle-fat cell signaling (e.g., myokine stim-
ulated browning of WAT) they next cultured primary murine
subcutaneous adipocytes with conditioned media from
PGCl1-a over expressing murine myocytes. Again, they found
that the conditioned media treated murine subcutaneous adi-
pocytes had increased expression brown-fat-specific genes
(e.g., UCP1 and Cidea) [37]. These findings suggest that
PGCIl-x overexpressing murine myocytes secrete one or
more myokines capable of inducing a thermogenic program
in murine subcutaneous adipocytes.

Bostrom et al. [14+¢] used a combination of gene array
technology and advanced bioinformatic algorithms to predict
potential proteins that could be secreted by skeletal muscle
and induce browning of WAT. Fibronectin type III domain-
containing 5 (FNDC5) was one of five target genes of
PGC1-a which could be secreted [ 14+¢]. Importantly, FNDC5
expression was increased in muscle from exercise trained
mice as well as humans [14e]. Next, they demonstrated that
the treatment of primary subcutaneous adipocytes during dif-
ferentiation with recombinant-FNDCS5 increased the expres-
sion of BAT genes (UCP1, Elovl3, Cox7a, and Otop1) [14e].
Moreover, recombinant-FNDCS treated UCP1-positive cells
also developed multilocular lipid droplets and increased mi-
tochondrial content [14e¢]. Importantly, high-resolution respi-
rometry experiments revealed that the recombinant-FNDC5
treated UCP1-positive cells had increased oxygen consump-
tion, particularly with respect to uncoupled respiration [14ee].
Taken together, the authors concluded that these findings
indicate that FNDCS induces UCP1-positive cells to develop
the beige/brite phenotype in mice [14+<]. However, it should
be noted that the recombinant-FNDCS5 protein used in these
experiments had a truncated sequence [14e¢, 38¢¢]. One po-
tential mechanism by which FNDCS5 induces browning of
subcutaneous adipocytes is through increasing the expression
of PPAR-« [14+¢]. Indeed, treatment of primary subcutaneous
adipocytes with a PPAR-o antagonist attenuated the browning
effect of the recombinant-FNDCS5 [14e¢].

Before the protein product of FNDCS5 was termed “irisin”
[14ee], it had already been discovered by two independent
groups and assigned the gene aliases “PeP” [39] and “frcp2”
[40]. PeP and frcp2 were both found to be expressed in
skeletal muscle, heart, and brain of adult mice [39, 40]. It
should be noted, however, that PeP and frcp2 expression in
adipose tissue was not assessed [39, 40]. Bostrom et al. [14e¢]

were the first to recognize and suggest that although the full-
length FNDCS is a trans-membrane protein, its extracellular
N-terminal portion of FNDCS5 could potentially be cleaved by
a yet to be identified protease. Identification of the FNDCS5
fragment was initially determined by antibody binding, which
was confirmed by mass spectrometry [14ee]. Their analysis
also revealed that the secreted form of FNDCS5 was highly
homologous between mouse and humans [14e¢]. They named
this newly identified signaling peptide (myokine) irisin after
the messenger goddess of ancient Hellenic mythology, Iris
[14ee]. Another potential mechanism that has been suggested
for observing N-terminal (extracellular) fragments of FNDCS5
(e.g., irisin) in cell culture media and/or plasma in vivo is
through shedding of the extracellular fraction [38ee].

Using an antibody against FNDC5 Bostrom et al. [14e¢]
were able to reduce the browning effect of media conditioned
by skeletal muscle PGC1-« overexpressing murine myocytes
on primary subcutaneous fat. Of note, the antibody used in
these experiments was targeted at the c-terminus of FNDCS,
which should not be present in irisin. They also indicated that
irisin was present in both mouse and human plasma [14e¢].
Moreover, they demonstrate that plasma irisin concentrations
were elevated in mice and older humans after short-term
exercise training [14e¢]. Using adenoviral delivery of FNDCS5
to the liver they were also able to increase plasma concentra-
tion of irisin which led to the browning of subcutaneous WAT
while protecting against diet induced obesity and insulin-
resistance [14e¢]. The increased circulating levels of irisin
were also associated with increased expression of mitochon-
drial genes in the subcutancous WAT and a concomitant
increase in oxygen consumption. Taken together these data
indicate that irisin, which is secreted from active (murine)
skeletal muscle has the potential to protect against obesity
and insulin resistance. However, it remains to be demonstrated
that irisin is secreted from human skeletal muscle, and if not so
to determine whether the potential action of FNDCS5 and/or
irisin is derived from non-skeletal muscle tissue.

Does Irisin affect Human White Adipocytes

Several manuscripts have demonstrated that irisin enhances
the “browning” of white adipocytes in mice [ 14+, 15], partic-
ularly in white adipocytes that highly express CD137 [15].
However, recent evidence has begun to question the physio-
logical relevance of irisin in humans [41ee, 42¢¢]. Can the
results obtained in mice be readily translated to humans?
Specifically, is irisin synthesized and secreted from active
human skeletal muscle? Is skeletal muscle the primary source
of irisin and/or FNDCS5? Can irisin induce browning of white
adipocytes in humans?

As previously discussed, Bostrom et al. [14+] reported that
10 weeks of combined endurance plus resistance exercise
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training increases circulating levels of irisin in older adults
approximately two-fold, which was proportional to the in-
crease in skeletal muscle mRNA expression of FNDCS5. How-
ever, Timmons et al. [42+¢] demonstrated that neither endur-
ance training nor resistance training increases skeletal muscle
FNDC5 mRNA expression in healthy adults. Nevertheless,
they did report that FNDCS5 expression was elevated in a
subset of exercise trained older adults but not younger adults
compared to their sedentary counterparts, which is an inter-
esting finding [42¢¢]. Raschke et al. [41e°] also failed to
demonstrate an increase in FNDCS5 expression using an in vitro
model of endurance training (electrical pulse stimulation) in
human myotubes as well as in response to aerobic interval
training and strength training in sedentary males. Results of a
recently published randomized clinical trial of (»=102) mid-
dle aged (30-60 years old) participants demonstrated that
neither endurance training nor resistance training increase
circulating irisin concentrations after 26 weeks of training
compared to controls [43¢]. An important observation from

this study was that irisin is prone to storage-related degrada-
tion [43¢]. Therefore, time related changes in circulating irisin
concentrations in the absence of timed-matched controls
should be interpreted with caution. In another study, it was
demonstrated that an acute bout of endurance exercise, chron-
ic endurance exercise, and chronic endurance combined with
resistance exercise provide conflicting results with respect to
skeletal muscle PGC1-« expression, FNDC5 expression, and
circulating irisin [44+]. Twelve weeks of exercise training has
also been reported to have little to no effect on genes expres-
sion in subcutancous WAT for genes associated with brow-
ning of WAT (e.g., UCP1, PRDMI16, TBX1, TMEM26, or
CD137), despite significant increases in skeletal muscle
FNDCS5 [45¢¢]. Taken together, the results of Timmons
et al. [42¢], Raschke et al. [41e], Hacksteden et al.
[43<], Pekkela et al. [44¢], and Norheim et al. [45e°]
raise significant concerns regarding the muscle-specific
effects of exercise training on the stimulation of irisin in
humans.

Putative Effects of FNDC5/Irisin on Browning of White Adipocytes

Exercise
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or Irisin

FNDC5
or Irisin
CD137-
CD137+
D137+ S
FNDC5 :
=7 or Irisin .

)

FNDC5
or Irisin

Recombinant-FNDC5
Recombinant-Irisin

TBX1

cdea 4 FNDCS
4 .
s, orlrisin |
" “'
. “t‘

Mice

> L3

IEnergy Expenditure
%Obesity

Metabolic Health
?

Humans

# Endocrine

===s: Autocrine

White Adipocyte

O Beige/Brite Adipocyte

Fig. 1 Putative effects of FNDC5/irisin on browning of white adipocytes and improvements in energy expenditure, obesity, and metabolic health in mice

and humans
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The human gene sequence of FNDCS is also raising con-
cerns regarding the translated product [46]. Although the
FNDCS5 gene sequence is highly conserved across species
[14ee], the human FNDCS5 gene has a variation in its start
codon that could essentially affect its translation [46]. Specif-
ically, the translational initiation “ATG” codon is mutated to
“ATA” resulting in substantial reduction in the translational
efficiency of FNDCS5 and leading to the translation of only
1 % of full-length FNDCS5 as reported [41e¢]. Furthermore,
there is a truncated isoform of FNDCS5 that is translated by a
downstream “ATG” start codon that is lacking the signaling
peptide [41e¢]. Consistent with this later finding, on Septem-
ber 5th 2012, the UniProt database was annotated to include a
second, truncated, protein sequence for FNDCS5 [41ee].
Raschke et al. [41+¢] further demonstrated that neither
recombinant-irisin nor recombinant-FNDC5 induces “brow-
ning” of human pre-adipocytes. In contrast, they demonstrated
that BMP7 (i.e., the positive control) resulted in an activation
of the genes regulating the “browning” of human pre-
adipocytes characterized by elevations in PPARy, UCPI1,
PGC-1p3, as well as an elevation in mitochondrial protein
content [41e¢]. Taken together, these findings indicate that
the ability of endogenous irisin to stimulate “browning” of
white adipocytes in humans remains to be proven.

Surprisingly, little information is known about the expres-
sion and potential secretion of FNDC5/irisin from adipose
tissue itself. A few recent papers, however, highlight the
presence of FNDCS in rat and human WAT [47, 48ee, 49].
Using gene-array technology our research team recently dem-
onstrated that FNDCS is highly expressed in visceral adipose
tissue, epigastric adipose tissue, and to a lesser extent subcu-
taneous adipose tissue of severely obese patients undergoing
bariatric surgery [48e]. Likewise, PGCl-x was also abun-
dantly expressed in these adipose tissue depots [48e¢]. Taken
together, it appears that human WAT has some of the key
components necessary for FNDCS5-induced browning WAT in
an autocrine fashion in humans. In another study, it was
demonstrated by real-time PCR that FNDCS gene expression
was reduced in obese as well as patients with type 2 diabetes
[49]. Moreover, FNDCS5 gene expression in visceral and sub-
cutaneous WAT was positively associated with brown adipose
tissue markers (PRDM16 and UCP1) in humans [49]. Future
investigations are warranted to examine the potential role of
FNDCS to induce browning of WAT in humans via autocrine
mechanisms. However, it has been reported that the expres-
sion of FNDCS5 in WAT is less than five percent of that
observed in skeletal muscle in humans [49, 50]. Roca-
Rivada et al. [47] recently reported that WAT explants secrete
FNDCS5/irisin, which is increased after 1 week of exercise in
rats [47]. Interestingly, however, the secretion of FNDC5/
irisin from the WAT explants was reduced after 3 weeks of
exercise training [47]. The secretion of FNDC5/irisin was
based on quantification of the 25 kDa band (predicted MW

of'irisin ~12 kDa), which was detected both by the Abcam and
the Phoenix antibodies [47]. Moreover, the Abcam FNDC5
antibody recognizes the C-terminus of FNDCS5 that is not
supposed to be part of irisin [38e¢]. It should also be noted,
the Abcam and the Phoenix antibodies do not share any
sequence overlap [38¢¢]. In summary, it appears that human
WAT has some of the key components necessary for FNDC5
to act in an autocrine fashion to brown WAT in humans.
However, future studies are needed using validated antibodies
to determine whether human WAT secretes full-length
FNDCS5 and/or irisin. Likewise, experimental evidence dem-
onstrating the ability of FNDC5/irisin to brown human WAT
resulting in increased UCP1 expression and thermogenesis
regardless of its source is currently lacking.

Conclusion

The recent discovery of irisin has garnered much attention as a
potential therapeutic agent for the treatment of obesity and its
comorbid conditions. Figure 1 presents the putative effects of
irisin on the browning of murine and human white adipocytes.
Preliminary studies have indicated that recombinant FNDC5
and/or irisin can induce browning of murine WAT. However,
there remains a dearth of evidence to indicate that recombinant
FNDCS5 and/or irisin can induce browning of human WAT.
Moreover, recent studies in humans also indicate that neither
acute nor chronic exercise consistently results in increased
expression of endogenous FNDCS5 and/or increased circulat-
ing concentrations of FNDC5/irisin in humans. These later
findings may be due in part to the lack of available antibodies
that are validated to detect FNDC5/irisin. In addition, care
should be taken when extrapolating data derived from mouse
studies to human physiology given the significant differences
in the abundance of brown fat between humans and mice.
Finally, the expression of FNDCS5 in human WAT opens the
door to the possibility that FNDCS acts in an autocrine fashion
to brown WAT in humans.
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