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Abstract

Segmentation of interstitial catheters from MRI needs to be addressed in order for MRI-based

brachytherapy treatment planning to become part of the clinical practice of gynecologic cancer

radiotherapy. This paper presents a validation study of a novel image-processing method for

catheter segmentation. The method extends the distal catheter tip, interactively provided by the

physician, to its proximal end, using knowledge of catheter geometry and appearance in MRI

sequences. The validation study consisted of comparison of the algorithm results to expert manual

segmentations, first on images of a phantom, and then on patient MRI images obtained during

MRI-guided insertion of brachytherapy catheters for the treatment of gynecologic cancer. In the

phantom experiment, the maximum disagreement between automatic and manual segmentation of

the same MRI image, as computed using the Hausdorf distance, was 1.5 mm, which is of the same

order as the MR image spatial resolution, while the disagreement between automatic segmentation

of MR images and “ground truth”, manual segmentation of CT images, was 3.5 mm. The

segmentation method was applied to an IRB-approved retrospective database of 10 interstitial

brachytherapy patients which included a total of 101 catheters. Compared with manual expert

segmentations, the automatic method correctly segmented 93 out of 101 catheters, at an average

rate of 0.3 seconds per catheter using a 3GHz Intel Core i7 computer with 16 GB RAM and

running Mac OS X 10.7. These results suggest that the proposed catheter segmentation is both

technically and clinically feasible.
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1 Introduction

Gynecologic malignancies, which include cervical, endometrial, ovarian, vaginal and vulvar

cancers, cause significant mortality in women worldwide. In the United States, the number

of gynecologic cancers has been increasing in recent years, while the death rate has
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remained relatively steady at about 35% of incidence [1]. The standard-of-care treatment for

many primary and recurrent gynecologic cancers consists of chemoradiation (concurrent

chemotherapy and external-beam radiation) followed by brachytherapy. In contrast to

external-beam radiation treatment, in which a linear accelerator aims radiation beams at the

pelvis from outside the body, in high dose rate (HDR) brachytherapy, sources that deliver

high doses of radiation are placed directly inside the cancerous tissue using intracavitary

applicators or interstitial applicators with catheters.

MRI is used routinely in the diagnosis of cervical cancer due to its increased tumor-to-

normal-tissue contrast, scaled by noise (CNR) relative to CT. There is an increasing interest

in expanding the role of MRI beyond diagnosis and into HDR treatment planning because of

early results indicating it may lead to more precise treatment of the tumor and a reduction in

the radiation dose to healthy tissue [2]. However, the deployment of MRI based gynecologic

cancer brachytherapy treatment planning is not without challenges. In addition to the

expense involved with running an MR-based clinical practice compared to the current

standard-of-care, CT, there are companion technical, and specifically image analysis

challenges, that have been acknowledged by international radiotherapy societies.

Specifically, the GYN GEC ESTRO guidelines note that due to the steep brachytherapy

dose gradients, catheter identification errors can lead to major dose deviations in both the

target tumor, as well as neighboring tissues. While the source channels are well visualized in

CT images, the task is more challenging and error prone when using MR images [3]. In a

typical treatment, the radiation oncologist places several catheters using a transperineal

approach, spaced about a centimeter apart, and these catheters can bend as they perforate

stiff tissues along the insertion path. The “gold-standard” CT catheter visualization method

involves placing copper wires, which have large CT absorption cross-sections, into the

catheters at the end of the insertion process, with the resulting CT images segmented in

brachytherapy treatment planning clinics. In contrast, distinguishing catheters from other

signal voids in MRI is challenging, and requires dedicated MRI sequences that provide

magnetic susceptibility artifacts that are controlled in their dimensions and directions

integrated with sequence-specific image analysis. This paper presents a catheter

segmentation method and validates its results in phantoms and clinical cases.

1.1 Related Work

Catheter artifact segmentation from MRI has primarily been pursued in the context of MR-

guided interventions such as biopsy or radio-frequency ablation. In contrast to x-ray based

imaging, where the material of the catheter is the main factor that influences its visibility,

the success of this segmentation task when using MRI is heavily dependent on the MR

imaging parameters, the sensitivity of the imaging sequence to magnetic susceptibility

effects, and the direction of the catheter relative to the static magnetic field [5, 6].

Quantifying these differences in the catheter tip locations from MR sequences optimized for

susceptibility imaging, based on the shaft orientation, demonstrated a 4–5 mm difference

when the direction of the catheter was parallel vs. perpendicular to the direction of the static

magnetic field [7]. Once satisfactory imaging sequences and parameters are selected, the

segmentation of these catheters is typically performed using a Hough transform, and it is

frequently suggested in the literature that this step could use improvement because catheters
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tend to bend as they are inserted into the body. Methods that enhance vessel-like structures

using eigenvalues of the Hessian matrix have been successful for pre-processing contrast-

enhanced images (MRA, CTA) [8, 9] but the results were not very useful for our MR

images, which were acquired without contrast. While not developed for MRI (or 3D

imagery), a method for catheter detection that is closest in approach to ours was reported in

[10] for segmentation of catheters from 2D B-mode ultrasound images. It relies on the use of

a Hough Transform to provide a set of points along the catheter path, and then polynomial

regression to fit a curve to the catheter data, thus adequately capturing the bending of the

catheter.

2 Methods and Materials

MR Imaging Sequence and Catheter Appearance

Three MRI sequences – Two-dimensional (2D) T2-weighted Fast Spin Echo (FSE), Three-

dimensional (3D) FSE (Siemens SPACE), and 3D balanced steady state free precession (3D

bSSFP) - were used to acquire the patient data in a 3 Tesla MRI (Siemens Healthcare,

Erlangen, Germany). The tungsten-alloy filled, MRI-safe plastic catheters appear as signal

voids of differing size, with the 2D FSE and 3D SPACE providing smaller artifact

dimensions. The 2D T2-weighted FSE parameters were TR/TE = 3000/120 msec,

0.2×0.3×2.0 mm3. The SPACE parameters were TR/TE = 3000/160 msec, 0.4×0.4×1.0

mm3. 3D b-SSFP MRI sequence with TR/TE = 5.8/2.9 msec, 0.6×0.6×1.6 mm3 resolution,

was used for rapid imaging (1.5 min/volume).

Phantom Construction

To validate the geometry of the extracted catheters, a phantom as shown in Figure 1, was

constructed using commercially available transparent gel wax. An obturator, the long

cylindrical component of an interstitial applicator assembly that holds the catheters in place,

was placed at the center of a transparent plastic container, and gel wax was melted and

poured around it. A Syed-Neblett template was then affixed orthogonal to the obturator at

the edge of the plastic container. Catheters were inserted to mimic clinical scenarios, with

some inserted straight, others bent, and some touching each other.

Image-based Catheter Segmentation

The goal of the algorithm is to segment catheters of diameter 1.6 mm, length upto 240 mm,

that may be straight or bent in configuration. In essence, starting with a manually provided

catheter tip, the segmentation algorithm iteratively searches the image for a direction that

maximizes the likelihood of 1.6 mm-diameter signal voids in a conic region, and fits Bézier

curves to the end points of these segments. Implementation of the algorithm is described

next.

Segmentation Algorithm Implementation

1. As illustrated in Figure 2, each catheter is represented as a curve with 6 control

points. ci denotes the ith control point on the catheter; c0 is the distal end of the

cather or the catheter tip, as provided by the user, and c5 lies on the proximal

template plane, P, defined by the user

Pernelle et al. Page 3

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 April 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



2. d is the length of the segment from tip c0 to the proximal plane P.

3. λi is the height of the search cone for each successive control point. λi values were

chosen to be increasing in magnitude, and the increases related to the Fibonnaci

sequence4 as follows:

(1)

4. bi is the center of the base of the search cone for the ith point. These centers are

computed as follows:

(2)

5. ri is the radius of the ith search cone and is defined as an increasing series similar to

λi.

6. ci is computed by a search; it is the end point of the line segment that starts at ci−1

and has the minimal value for the intensity line integral along its length, among all

choices in the search cone defined by bi, ri, and ci−1. After the control points are

obtained, a 5th degree Bézier curve is computed as a linear combination of the

Bernstein basis polynomial, in which the first and last control points define the

extremity of the curve while the interior points pull the curve toward them:

(3)

3 Validation Experiments, Metric, and Results

The segmentation method was validated in three steps. The first two steps utilized the

phantom, and the third used patient images. In the phantom experiments, first the

disagreement between automatic and manual segmentation of the 12 catheters from the same

MR image was computed. Second, this disagreement computation was repeated between

automatic segmentation of catheters in MR images and “gold-standard” obtained from

manual segmentation in CT. In the third experiment, the disagreement between manual and

automatic segmentations on MR images of patients was computed.

The metric used to quantify the accuracy of the catheter segmentation in each case was the

symmetric Hausdorff distance (HD) [11]. If X, Y are two non-empty subsets of a metric

space (E, δ) the HD is defined by

4This particular method of choosing λ values delivered the computational efficiency required by the problem but other choices for the
series would be valid as well.
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(4)

It should be noted that the Hausdorff distance between two catheters is high even when they

disagree only along a short fraction of their lengths. This is an important criterion for this

particular clinical application.

MR-MR Phantom Result

The maximum HD between automatic and manual segmentation across all 12 catheters in

the same MR images was 1.5 mm. This was close to the resolution of the MR scan.

MR-CT Phantom Result

The maximum HD between automatic segmentation of MR images and “ground truth”, as

determined from manual segmentation of CT images for the 12 catheters was 3.5 mm. The

mean HD was 2.3 mm and σ was 0.5 mm. A visual illustration is provided in Figure 3. The

RMS error of catheter tip locations from the registration of MR and CT images was 1 mm.

Rigid registration was performed using markers embedded in the phantom. We assume that

the remainder 1 mm error was due to the geometry differences between MR and CT.

Patient MRI Results

The HD between manual and automatic segmentations was computed on 101 catheters from

10 patients. The catheter tips provided in manual segmentations were used to initialize the

automatic segmentation, and an axial plane was defined to mark the proximal end of the

catheters. A catheter segmentation was classified as correct if this HD was less than 2 mm. 2

mm was chosen as the classification target by rounding up the 1.6 mm catheter diameter; in

the absence of apriori knowledge of the orientation of the device relative to the magnetic

field or the imaging planes, the susceptibility artifact is always somewhat greater than the

physical device dimensions. The method correctly localized 93 out of 101 catheters in an

average time of 0.3 seconds per catheter on a 3GHz Intel Core i7 computer with 16 GB

RAM and running Mac OS X 10.7. Figures 4 and 5 illustrate two cases in which all catheters

were correctly identified. Table 1 summarizes validation statistics for each of the 10 cases.

4 Conclusions

This study validated the segmentation of interstitial catheters from MRI images based on a

novel method, and demonstrated that this method was able to properly identify most of the

catheter positions in clinically reasonable processing times.

5 Discussion and Future Work

Dependence on Tip Initialization

A common failure mode was observed in patient segmentations, especially when a large

number of catheters were used. When the user provided a tip position, which was not located

sufficiently close to the shaft of the desired catheter, the results varied based on the

configuration of neighbouring catheters. Figure 6 illustrates a case where the user-provided
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tip resulted in a segmentation (red) that terminated in a neighbouring valley of the objective

function (i.e. it mistakenly followed the path of a neighboring catheter), while the correct

manual segmentation of the catheter is shown in green. In Figure 7, the catheter tip was

initialized correctly, and the segmentation (red) closely matched the (green) manual

segmentation. To address this weakness in the method, randomly perturbed restarts will be

investigated. In addition, we believe that we can explicitly model the relation between the

geometry of the catheter tip artifact and its orientation in the static magnetic field, and plan

to investigate this for automatic tip detection.

From Segmentation to Patient Impact

It should be noted that the correlation of segmentation error with radiation dose for our

patient cohort is at this time unknown, and will be analyzed in the future. Given the

uncertainties associated with dose metrics in brachytherapy, it is unlikely that dose

difference due to segmentation errors lower than 2 mm will have a clinical impact.

However, neither the dosimetry literature nor published guidelines currently provide

tolerances for catheter segmentation error. In order to gauge the benefits of this study to

clinical practice, a comparison is needed between radiation plan dose to tumor and organs at

risk using the automated catheter segmentation from MR and the standard-of-care catheter

segmentation created from CT images. If these two doses turn out to be within the dose

uncertainty margins routinely employed in treatment planning, then a contribution will have

been made to clinical care; the need of a treatment planning CT will be obviated for cases

where appropriate MR imagery is available at the conclusion of the catheter placement

procedure. If the MR-based dose turns out to be a significant improvement over CT, then a

case will have been made for performing MR based treatment planning instead of CT.
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Fig. 1.
Gel Wax Phantom
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Fig. 2.
Segmenting the catheter, one line-segment at a time. The user-defined catheter tip c0, and the plane, P, of the template where all

catheters enter the body. The algorithm first finds points along the catheter by searching in conic regions of increasing height

and radius, and then fits a Bézier curve to these.
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Fig. 3.
Phantom MRI/CT. HD differences between manual MRI (green) & automatic CT segmentation (red): 3.5 mm (max), 2.3 mm(μ),

0.25 mm2(σ2).
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Fig. 4.
Patient MRI. HD differences between manual (green) and automatic (red) segmentation: 1.23 mm (max), 1.01 mm(μ), 0.01

mm2(σ2).
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Fig. 5.
Another patient MRI. HD differences between manual (green) and automatic (red) segmentation: 1.36 mm (max), 1.01 mm(μ),

0.01 mm2(σ2).
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Fig. 6.
Failure Mode
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Fig. 7.
Reinitialized Tip
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