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Abstract

Significance: Half a century of research provided unambiguous proof that superoxide and species derived from
it—reactive oxygen species (ROS)—play a central role in many diseases and degenerative processes. This stim-
ulated the search for pharmaceutical agents that are capable of preventing oxidative damage, and methods of
assessing their therapeutic potential. Recent Advances: The limitations of superoxide dismutase (SOD) as a
therapeutic tool directed attention to small molecules, SOD mimics, that are capable of catalytically scavenging
superoxide. Several groups of compounds, based on either metal complexes, including metalloporphyrins, me-
tallocorroles, Mn(II) cyclic polyamines, and Mn(III) salen derivatives, or non-metal based compounds, such as
fullerenes, nitrones, and nitroxides, have been developed and studied in vitro and in vivo. Very few entered
clinical trials. Critical Issues and Future Directions: Development of SOD mimics requires in-depth under-
standing of their mechanisms of biological action. Elucidation of both molecular features, essential for efficient
ROS-scavenging in vivo, and factors limiting the potential side effects requires biologically relevant and, at the
same time, relatively simple testing systems. This review discuses the advantages and limitations of genetically
engineered SOD-deficient unicellular organisms, Escherichia coli and Saccharomyces cerevisiae as tools for investi-
gating the efficacy and mechanisms of biological actions of SOD mimics. These simple systems allow the scrutiny
of the minimal requirements for a functional SOD mimic: the association of a high catalytic activity for superoxide
dismutation, low toxicity, and an efficient cellular uptake/biodistribution. Antioxid. Redox Signal. 20, 2416–2436.

Introduction

Excessive production of reactive species derived from
oxygen is implicated in various pathological processes.

Promising results with superoxide dismutase (SOD) prepa-
rations (9,47,81) stimulated an intense search for pharmaco-
logical agents that combine highly efficient detoxification of
superoxide radical (O2

� - ) with minimal side effects. Ad-
vancement in understanding of the mechanisms of the SOD-
catalyzed O2

� - dismutation, and the fact that certain transi-
tion metal complexes are capable of substituting for the SODs,
directed the efforts toward creation of functional, artificial
SOD catalysts—SOD mimics. In a relatively short period, a
variety of SOD mimics, often based on low-molecular-weight
transition-metal complexes, were produced. Clinical trials,
however, are limited mainly due to a lack of information

about bioavailability, absorption, pharmacokinetics, toxicity,
and biotransformation of such antioxidants. For many of
them, it is not known whether they retain in vivo the activities
assigned based on in vitro assays. The need to study in vivo the
mechanisms of action of SOD mimics, and to predict which
compounds might have potential medical applications, posed
a strong demand for appropriate biological testing systems.
Since all aerobic organisms inevitably generate superoxide,
finding a suitable biosystem may appear easier than it actu-
ally is. Numerous articles report beneficial effects of SOD
mimics in animal models of diseases and pathological con-
ditions having oxidative stress as a common mechanism [for
recent reviews, see (11,16,86,120)]. However, higher eu-
karyotic organism-based models are too complex, and bio-
logical activity of any studied agent depends on complicated
pharmacokinetics, tissue gradient distribution, and others. In
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addition, the compound can be modified or degraded, ob-
scuring the benefits that could arise from the superoxide dis-
muting ability of the potential SOD mimic itself. Since most
SOD mimics display a variety of activities and do not selectively
react with O2

�- , reported beneficial effects can be attributed to
actions other than superoxide scavenging (54). Similar short-
comings apply to cell culture systems in which O2

�- , along with
other reactive oxygen species (ROS), are generated by the ad-
dition of chemical agents (84,101), enzymatically (xanthine plus
xanthine oxidase) (84), by radiation exposure (110); by activa-
tion of macrophages (33), and so on. The lack of a clear un-
derstanding of both the nature of the ROS responsible for
damage and the mechanisms of action of the tested compounds
can be listed among the reasons for failures in clinical trials
(8,23,38,44,52,76,109). The use of so-called ‘‘SOD mimics’’ with
low superoxide-scavenging activity casts doubt on mechanistic
studies in which such compounds are applied ‘‘to prove’’ O2

� -

involvement.
At least some of the limitations of the more complicated

systems listed earlier can be eliminated by simple, unicellular
prokaryotic and eukaryotic organisms in which a high steady-
state intracellular O2

� - concentration can be maintained by
aerobic metabolism, and where the effects of superoxide can be
relatively easily quantified. The advantages of such microbial
systems for studying the consequences of oxidative stress, el-
egantly summarized in a recent review (62), apply equally to
the study of SOD mimics. Among such advantages are the
selection of medium components to manipulate metabolic
pathways, ability to grow under anaerobic as well as aerobic
conditions, sufficient knowledge about pathways that are
sensitive to O2

� - , and, most importantly, genetic manipulations
producing mutants lacking specific ROS-scavenging enzymes.

Irrespective of their relative simplicity, even such unicel-
lular organisms possess subcellular structures and metabolic
activities that can noticeably modulate the bioefficacy and the
mode of action of the tested SOD mimics. Similar to the
multicellular eukaryotes, these simple organisms are well
protected by SOD enzymes, which catalyze O2

�- dismutation
with a diffusion limited rate and, thus, overwhelm the action
of any externally added SOD scavenger. This problem was
solved by the use of mutants lacking SOD enzymes. The first
such organism to be isolated was the unicellular eukaryote,
Saccharomyces cerevisiae (34) followed by a prokaryote, Es-
cherichia coli (35).

The SOD-Deficient Mutants

The SOD-deficient E. coli

The facultative anaerobe E. coli has three SOD isozymes.
MnSOD and FeSOD are cytoplasmic and are encoded by the
sodA and sodB genes, respectively (62,119). The third isozyme, a
CuZnSOD, encoded by sodC, is periplasmic and is induced
when bacteria enter a non-growing state, called stationary
phase (25,32). In 1986, Carlioz and Touati (35) reported the
construction of a sodA sodB mutant lacking the cytosolic
MnSOD and FeSOD. The mutant is indistinguishable from its
SOD-replete parent if grown in the absence of oxygen, but it
aerobically exhibits defects directly resulting from the lack of
cytoplasmic SODs. The defects include slow aerobic growth
even in media containing all the required nutrients (1,35) and an
inability to grow on non-fermentable carbon sources or in the
absence of sulfur-containing (31), branched-chain (35), and ar-

omatic (30) amino acids. Absence of cytoplasmic SODs was also
associated with leaky membranes (64), sensitivity to mild heat
shock (28), hypersensitivity to hydrogen peroxide (H2O2) and
redox-cycling agents (35), and a high rate of spontaneous mu-
tagenesis (29,49). All these defects can be eliminated by the ex-
pression of active SOD (87,118), which implies that a compound
acting as an artificial SOD enzyme should have a similar effect.
In addition, the auxotrophy (inability to synthesize a particular
organic compound required for growth) for branched-chain,
sulfur-containing, and aromatic amino acids can be suppressed
by spontaneous mutations producing pseudorevertants that are
capable of growing in aerobic minimal medium without ex-
pressing cytoplasmic SODs (63,64) or by supplementation of the
growth medium with manganese salts (1).

The SOD-deficient S. cerevisiae

The unicellular eukaryote, S. cerevisiae, is commonly used
as a single-cell model for higher eukaryotic organisms. As in
the majority of eukaryotes, the most abundant SOD in S.
cerevisiae is a cytoplasmic CuZnSOD (SOD1). It is also found
in the nucleus and mitochondrial intermembrane space. In
addition, eukaryotes express an MnSOD (SOD2) in the mi-
tochondrial matrix. Similar to human MnSOD, and in contrast
to bacterial MnSODs, which are dimers, S. cerevisiae MnSOD
is a tetramer (94). Yeast with a mutated mitochondrial
MnSOD gene (sod2D) are sensitive to oxygen (124). Under
aerobic conditions, such mutants cannot grow on non-
fermentable carbon sources, but do not show defects when
grown on glucose. Strains with mutations in the cytoplasmic
CuZnSOD gene (sod1D) are much more affected and show
multiple defects. Similar to sodA sodB E. coli, they exhibit poor
growth in normoxic conditions, increased mutation rate, de-
creased stationary phase survival (75), and amino-acid aux-
otrophies for lysine and methionine (34,60,129). Similarities
with sodA sodB E. coli also include suppression of all growth
defects by supplementation of the growth medium with
manganese (106) or by growth under anaerobic conditions.
The defects of SOD1 mutants can be genetically reversed by
mutations classified in two main groups. One group com-
prises mutations influencing transition metal ions homeosta-
sis and includes the BSD1 and BSD2 (bypass SOD defects)
genes (69). BSD1 is identical to the PMR1 gene, coding for a
microsomal Ca2 + ATP-ase, which is eventually involved in
the transport of other cations, including manganese. BSD1
mutants accumulate elevated levels of intracellular manga-
nese and copper (69), and it is known that Mn2 + can form
unstable complexes that are capable of catalyzing O2

� - dis-
mutation (7,10). The BSD2 gene codes for a protein that is
important in copper ion transport and accumulation (74).
Overexpression of another gene, ATX1, which is important in
copper ion accumulation, also suppresses oxygen sensitivity
of SOD-deficient yeast (70), which implies that Cu-containing
complexes might play a protective role (77).

A second group consists of various mutations that suppress
amino-acid auxotrophies without preventing hypersensitivity
to oxidants (114).

The SOD-deficient E. coli and S. cerevisiae as useful
tools for screening of SOD mimics

E. coli and S. cerevisiae strains containing deletions in the
SOD genes could be considered very useful for the initial
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screening of potential SOD mimics. As mentioned earlier, the
lack of SODs in such organisms entails growth deficiencies,
which can be relieved by active SOD or by a molecule that is
capable of functionally substituting for it. Since SOD-deficient
mutants aerobically grow slowly and cannot grow if certain
amino acids are absent in the growth medium, most often, the
activity of SOD mimics is assessed by their effect on the
growth of the mutants. Growth is easy to follow turbidimet-
rically, and the rates of growth of the SOD-deficient mutants
with and without the tested mimic are compared with those of
the SOD-proficient parent.

This section describes growth media and general proce-
dures for storage, inoculation, and growth of E. coli and
S. cerevisiae.

Escherichia coli. E. coli frozen stocks are prepared by
snap-freezing aliquoted overnight Luria–Bertani (LB) cultures
(described below) preincubated for 30 min at room tempera-
ture with glycerol at a final concentration of 30%. In proce-
dures used by different laboratories, frozen stock cultures are
initially grown in LB medium. All media for E. coli growth
are adapted from Sambrook et al. (105). LB medium contains
10 g of bactotryptone, 5 g of yeast extract, 10 g of sodium
chloride (NaCl), and 2 g of glucose per liter. M9CA medium
consists of M9 salts (components are listed next), 0.2% casa-
mino acids, 0.2% glucose, 3 mg pantothenate, and 5 mg of
thiamine per liter.

Among the restricted media, minimal medium is most of-
ten used. It consists of M9 salts supplemented with 3 mg of
pantothenate, 5 mg of thiamine, and 2 g of glucose per liter.
Filter-sterilized L-histidine, L-leucine, L-threonine, L-arginine,
and L-proline (to 0.5 mM each) are added to satisfy the ge-
netic auxotrophies of strains derived from AB1157. This
medium is referred to as a five amino acid (5AA) medium. M9
salts are prepared by autoclaving 0.6 g of disodium phos-
phate, 0.3 g of monopotassium phosphate, 0.05 g of NaCl, and
0.1 g of ammonium chloride per liter in distilled water. After
cooling, separately autoclaved solutions of magnesium sulfate
and calcium chloride are added to a final concentration of
1.0 mM.

Liquid cultures. According to the simplest procedure,
parental and SOD-deficient E. coli frozen stocks are initially
inoculated in liquid LB medium, supplemented with appro-
priate antibiotics for the SOD-deficient mutants.

The LB culture is grown on a shaking water bath (200 rpm)
under aerobic atmosphere for 24 h at 37�C. If compounds are
to be tested in M9CA medium, the LB overnight culture is
diluted into the medium usually to A600nm = 0.005 (*5 · 106

cells/ml) [A600 of 1.0 =*1 · 109 cells/ml (85)]. If tests are
carried out in a minimal/5AA medium, the cells are washed
thrice with M9 salts to avoid transferring nutrients from LB to
the minimal medium. The cells are then resuspended to A600

*0.005 in 10–15 ml of minimal (or 5AA medium, depending
on the genetic background of strains) and grown aerobically
in 50 ml microbiological flasks.

As mentioned earlier, sodA sodB cultures tend to accumu-
late pseudorevertants that grow in aerobic minimal medium
irrespective of the lack of cytoplasmic SODs (63). One way to
suppress the growth of pseudorevertants is to grow the initial
cultures under an anaerobic atmosphere (85% nitrogen, 10%
hydrogen, and 5% carbon dioxide) in LB medium supple-

mented with 0.2% glucose (59). The overnight LB cultures are
then diluted and grown overnight in anaerobic minimal me-
dium. For testing SOD mimics, the anaerobic minimal cul-
tures are diluted in minimal medium, and growth is followed
under aerobic atmosphere.

Solid cultures. Another strategy for minimizing the over-
growth of suppressor mutants is to streak the frozen stocks on
LB agar plates supplemented with 0.2% sucrose (64). In a
procedure adopted by Munroe and coworkers (85), the agar
plates are incubated in air for 24 h at 37�C. To ensure that the
response is not specific for a particular clone, four indepen-
dent colonies for each strain are each inoculated into 3.0 ml LB
sucrose and grown overnight in air at 37�C and 220 rpm.
The overnight 3.0 ml cultures are then inoculated in 15 ml
LB-sucrose to A600 = 0.01 (parental) or 30 ml LB-sucrose to
A600 = 0.02 (sodA sodB) in 50 ml culture flasks. After incubation
for 2–3 h at 37�C and 220 rpm, the cells are washed thrice with
minimal medium and resuspended in the same medium to the
initial volume. Experimental cultures are prepared by diluting
the cell suspension 1/10 with minimal or 5AA medium.

Growth is usually monitored turbidimetrically at 600 nm or
if metalloporphyrins are tested, at 700 nm, in order to mini-
mize the contribution of the absorbance of the compounds
(50).

Until recently, test cultures were standardly grown in 50 ml
flasks on a shaker at 200 rpm and 37�C, which limited the
number of compounds that could be tested simultaneously.
The use of 96-well microtiter plates, instead, has allowed si-
multaneous comparisons of a large number of compounds at
a wide range of concentrations, but requiring minimal
amounts of the tested compounds (85). The microtiter plates
(100 ll of cell suspension per well) are usually shaken at
220 rpm in a 37�C incubator. Growth is measured by record-
ing turbidity at 600 nm using a microtiter plate reader.

Saccharomyces cerevisiae. Using CuZnSOD-deficient
S. cerevisiae as a biosensor for antioxidants was first proposed
by Zyracka et al. (131). Three possible tests were listed, based
on the estimation of lifespan, abolition of superoxide-induced
auxotrophy, and growth in hypertonic medium. As with
E. coli, a turbidimetric growth-based assay appears to be the
easiest and the most often applied.

Two types of media are used for initial growth and for
testing compounds: (i) YPD, a standard complete medium,
contains 1% yeast extract and 2% peptone. Glucose (dextrose)
is separately autoclaved and added to a final concentration of
2%. (ii) Synthetic (defined) dextrose medium (SD) is made of
1.8 g yeast nitrogen base (without amino acids and ammonium
sulfate), 5.0 g ammonium sulfate, and 0.7 g monosodium
phosphate. The pH is adjusted to 6.0 with 10 M sodium hy-
droxide. The SD medium is supplemented with glucose to 2%,
and appropriate amino acids (SDC medium) (125).

For a routine pregrowth, the strains lacking CuZnSOD
activity are cultured in microaerophilic conditions (5% oxy-
gen) using CampyPaks (BBL) for plates or, for liquid cultures,
5 ml of medium in a 16 · 100 mm culture tube. For flask cul-
tures, the low aeration is achieved by decreasing the surface-
to-volume ratio and/or reducing the shaking rate to 100 rpm.
High aeration for experimental samples is achieved by using a
flask volume/medium volume ratio of 5:1 (typically 50 ml of
medium in a 250-ml flask) and shaking at 200 rpm (41).
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In the procedure described by Munroe et al. (85), 20%
glycerol freezer stocks were streaked onto YPD agar plates
and were grown under low oxygen at 30�C for 3 days. Pre-
cultures were prepared by inoculating single colonies in 5 ml
of SD medium in 16 ml culture tubes and growing them
overnight at 30�C and 220 rpm. Experimental cultures were
then inoculated at A600 = 0.05 (*5 · 105 cells/ml; A600 = 1.0
corresponds to *1 · 107 cells/ml) in 10 ml liquid medium
in 50 ml flasks and grown in air at 30�C and 220 rpm.
Usually two to four independent colonies are used for each
experiment.

In general, slight variations in the procedures used by dif-
ferent laboratories practically do not affect experimental
outcomes, and if all precautions to avoid artifacts are taken
into consideration, reported results about the efficacy of the
tested redox-active compounds are consistent.

The Physico-Chemical Properties and the Biological
Effects of SOD Mimics

The requirements for a good SOD mimic

A list of requirements for a compound to mimic SOD in vivo
can be found in a publication by Czapski and Goldstein (40).
Theoretically, an SOD mimic should exert protective effects
by scavenging O2

� - before it reacts with [4Fe-4S] clusters (71)
or with other cellular targets (55). The efficiency of this process
would depend on the concentration of the SOD mimic, its
specificity (39), and the rate constant for reaction with O2

�- .
Keeping in mind that the SOD mimic should outcompete bi-
ological superoxide targets and should complement endoge-
nous SOD enzymes, it becomes clear that the SOD mimic
should react with O2

� - with a rate constant comparable to that
of the SOD enzymes and should be present at comparable
concentrations. This is not easily achievable, because SOD-
catalyzed dismutation occurs at a rate of > 109 M - 1 s - 1 (56)
and intracellular SODs reach a concentration of 10–20 lM (62).

Alternatively, if catalytic activity is lower, the SOD mimic
should accumulate at proportionally higher concentrations at
the site of action. This, in turn, implies that in addition to
catalytic activity, information about uptake and subcellular
distribution of SOD mimics is essential for proper evaluation
of their action. Caution should be exercised in interpreting
data when compounds with low reactivity toward O2

� - exert
noticeable protection. Unless the tested compound preferen-
tially accumulates at the sites of O2

�- production, its effects
are most probably due to actions other than O2

� - scavenging.
Most of our current knowledge about the mechanisms of

action and potential pitfalls in applying SOD mimics in vivo
has been obtained using unicellular SOD-deficient organisms
as a model system.

The mechanism of action of Mn porphyrins
in SOD-deficient E. coli: preliminary insights

Faulkner et al. (50) were the first to use sodA sodB E. coli
for determining the biological activity of several Mn por-
phyrins (MnPs), including MnTM-4-PyP5 + and MnTBAP3 -

[Mn(III) meso-tetrakis(4-benzoic acid) porphyrin, also known
as MnTCPP3 - and AEOL10201)] (Figs. 1 and 3). These re-
searchers made the important observation that intracellular
MnTM-4-PyP5 + looks greenish, suggesting that it exists in its
reduced form, as Mn(II)TM-4-PyP4 + (50). This observation

helped explain the in vivo mechanism of catalytic O2
�- re-

moval by MnP-based SOD mimics. Reduction of MnTM-4-
PyP5 + by cellular reductants (some reaching millimolar in-
tracellular concentrations) rather than by O2

�- , avoids the
rate-limiting first step of MnP-catalyzed O2

� - dismutation
[equation (1)]. Under such conditions, an MnP would act as
superoxide reductase rather than SOD (50).

MnIIIP 5þ þO� �
2ÐMnIIP 4þ þO2 k1 (1)

MnIIP 4þ þ 2Hþ þO��
2ÐMnIIIP 5þ þH2O2 k2 (2)

The importance of the growth medium

Since SOD deficiency slows the multiplication of microor-
ganisms even in media containing all needed nutrients (35),
the simplest way to test a potential SOD mimic would be to
determine whether it restores the growth rate of the mutants
to that of the SOD-replete parents. Evaluating potential SOD
mimic in complete medium, however, poses a risk of erro-
neously taking for an SOD mimic a compound that stimulates
the growth by an action other than catalytic scavenging of
O2

�- . In complete (M9CA) medium, MnTBAP3 - accelerated
the aerobic growth of the sodA sodB E. coli (50). MnTBAP3 - ,
however, has neither the thermodynamic nor kinetic proper-
ties needed to act as an SOD mimic (98) and does not help the
aerobic growth of SOD-deficient E. coli in medium lacking
aromatic, sulfur-containing, and branched-chain amino acids,
such as 5AA medium (Fig. 2) (13). The lack of superoxide
scavenging activity of MnTBAP3 - has been confirmed when
tested on sod1D S. cerevisiae (85). These results point to the
importance of using restricted medium for growth of sodA
sodB E. coli when evaluating the potential of an SOD mimic.

Ortho, meta, and para Mn(III) N-alkylpyridylporphyrins

The importance of appropriate growth medium for as-
sessing SOD mimics was further supported when the effects
of ortho, meta, and para isomers of MnTMPyP5 + [MnTM-2(or
3, or 4)-PyP5 + ] were compared in cultures grown in different
media (12) (Figs. 3 and 4). In M9CA medium, all three iso-
mers stimulated the aerobic growth of the sodA sodB strain.
Growth in 5AA medium, however, revealed clear differences
among the isomers; the ortho isomer was the most efficient in
stimulating the growth of the SOD-deficient mutant, the
meta isomer was similar, while the para isomer did not show
any beneficial effect (Fig. 4) (12). Among the reasons for the
lack of beneficial effect of the para isomer in vivo is the in-
tercalation of its more planar molecule (relative to the ortho
and meta isomers) in DNA, leading to toxicity and loss of
SOD activity (50).

Does catalytic activity predict the biological activity?

Since high catalytic activity [kcat(O2
�- )] of a potential SOD

mimic is considered the main factor contributing to its bio-
logical efficacy, efforts were directed toward bringing the
kcat(O2

�- ) values of MnPs closer to the kcat(O2
�- ) values of the

SOD enzymes. Testing the effect of such compounds on sodA
sodB E. coli, however, revealed that a high kcat(O2

�- ) does not
necessarily translate into a high biological efficacy. To
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increase the catalytic activity of MnP-based SOD mimics, the
pyrrolic moiety was derivatized with electron-withdrawing
groups (e.g., Br and Cl), which stabilized Mn in the + 2 oxi-
dation state, instead of the + 3 state usually found in the non-
derivatized analogs. The electron-deficient ligand produced
by such modification cannot support the higher Mn + 3 oxi-
dation state. Thus, no oxidation occurs on metallation of
the ligand with manganese(II) chloride (MnCl2), and Mn
complex bearing Mn in the + 2 oxidation state was isolated.
With b-octabrominated MnBr8TM-4-PyP4 + [log kcat ‡ 8.67,
E1/2 = + 480 mV vs. normal hydrogen electrode (NHE)] (14)
and MnBr8TM-3-PyP4 + (log kcat ‡ 8.85, E1/2 = + 468 mV vs.
NHE) (42), catalytic activity and reduction potentials com-
parable to those of the SOD enzymes (log kcat = 8.84–9.30,
E1/2 + 300 mV vs. NHE) were achieved (42). When tested on
sodA sodB E. coli, however, MnBr8TM-3-PyP4 + demonstrated
a concentration-dependent protection with maximum growth
rate (*50% of that of the parent) reached at 1.0 lM (Fig. 5)
(42). Higher concentrations were toxic. The para isomer was
toxic even at 1 lM, and the maximum effect achieved at
0.5 lM was only *30% growth compared with the parental
strain (Fig. 5). The reason for such low efficacy in vivo
can be found in the very low stability constant (K) of these
perbrominated MnPs (log K = 8 for MnBr8TM-4-PyP4 + ).
Consequently, they rapidly decompose, presumably gener-
ating toxic products. These results highlight the fact that

the high catalytic activity for O2
�- dismutation is not a suffi-

cient predictor of biological efficacy. Stability of the com-
pound, its cellular uptake, subcellular distribution, and
biological transformations are factors that could override the
impact of kcat.

The accumulation of MnPs by E. coli and S. cerevisiae

In general, the main features that determine the uptake and
subcellular distribution of an externally added compound are
(i) charge, (ii) shape and size, and (iii) lipophilicity of the
molecule.

Charge. Comparison between anionic [MnT(2,6-Cl2-3-
SO3-P)P3 - , MnTSPP3 - , and MnTBAP3 - ] and cationic
[MnTrM-2-PyP4 + , MnTE-2-PyP5 + , MnT(TFTrMA)P5 + , and
MnT(TrMA)P5 + ] MnPs (Fig. 1) revealed that positive charge
is essential for biological activity (19). Cellular/mitochondrial
uptake of positively charged molecules is driven by the
membrane potential, which thermodynamically favors their
accumulation to levels exceeding those of the surrounding
medium. The importance of positive charges is illustrated by
the fact that none of the anionic compounds could substitute
for the missing cytoplasmic SODs in E. coli. Among the cat-
ionic MnPs tested, MnTM-2-PyP5 + (Fig. 3) and MnTE-2-
PyP5 + (Fig. 1), with an E1/2 close to the potential of the SOD

FIG. 1. Chemical structures, superoxide dismutase activity (catalytic rate constant for O2
�2 dismutation, log kcat), and

MnIII/MnII reduction potential (E1/2 in mV vs. normal hydrogen electrode) of various cationic and anionic Mn porphyrins.
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enzyme of + 300 mV, accelerate the aerobic growth of the sodA
sodB mutant to a rate typical for the SOD-containing parent
(Fig. 6). These two cationic MnPs with a log kcat(O2

� - ) *7.8
remain the most active and the least toxic, and are among the
most studied MnPs in animal models of oxidative stress
(21,22,43,108). They are commonly used as a positive control
in SOD-deficient E. coli and S. cerevisiae studies. Anionic MnPs of
low metal-centered reduction potentials (insufficiently redox-
active) such as MnTBAP3 - (log kcat = 3.16 and E1/2 = - 194 mV vs.
NHE), which repel the anionic O2

�- , cannot act as SOD mimics
and do not protect the SOD-deficient E. coli (Fig. 2). Therefore,
the therapeutic efficacy of MnTBAP3 - is likely based on a
mechanism other than O2

� - scavenging (13).

Shape and size of the molecule. The three-dimensional
structure of the molecule exerts a strong influence on the

biological efficacy of the SOD mimics. For example, the
kcat(O2

�- ) of the meta isomers (alkyl side chain varying from
methyl to octyl) is an order of magnitude lower than kcat(O2

�- )
of the corresponding ortho isomers, and their redox potentials
differ significantly. E1/2 of the meta MnP compounds falls in
the region of 52–74 mV versus NHE, while for the ortho ana-
logs, it is in the range from 220 to 367 mV versus NHE, de-
pending on the nature of the alkyl side chains (11,122).
Nevertheless, both ortho and meta analogs efficiently sub-
stituted for SOD when tested on sodA sodB E. coli (Fig. 6). In
contrast, Mn(III) N,N¢-disubstituted imidazolium analogs
(MnTDE-2-ImP5 + , MnTM,MOE-2-ImP5 + , and MnTDMOE-2-
ImP5 + , Fig. 7) despite having lipophilicity (Rf) comparable
to and a kcat similar to or even higher than that of their

FIG. 2. Cell density (based on A600) of SOD-deficient
Escherichia coli ( JI132) after 20 h of growth. Cultures were
grown in the presence of 20 or 200 lM MnTE-2-PyP5 + and
MnTBAP3– in five amino acid medium. The A600 of parental
(SOD-proficient, AB1157) E. coli strain was set at 100%.
Adapted from (13). SOD, superoxide dismutase.

FIG. 4. Aerobic growth of SOD-deficient E. coli ( JI132) in
five amino acid medium in the absence or presence of
25 lM ortho MnTM-2-PyP5 + , meta MnTM-3-PyP5 + , and
para MnTM-4-PyP5 + isomers. Growth was monitored tur-
bidimetrically at 700 nm. The parental strain AB1157 was
used as a control. Adapted from (12).

FIG. 3. Chemical structure, MnIII/MnII reduction potential (E1/2 in mV vs. normal hydrogen electrode), and SOD activity
(catalytic rate constant for O2

�- dismutation, log kcat) of ortho, meta, and para isomers of MnTMPyP5 + .
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N-substituted pyridyl analogs, MnTM-2-PyP5 + and MnTE-2-
PyP5 + , were biologically much less efficient (Fig. 8). Such low
bioefficacy could be attributed to the bulkiness of the molecule
due to the N,N¢-imidazolyl substituents located above and
below the porphyrin plane (19), which hinders the diffusion
across the membranes and prevents a sufficient cellular uptake.

Lipophilicity. Investigations of the relationship between
MnP lipophilicity, influenced by the length of the aliphatic
chains attached to the meso pyridyl nitrogen atoms at the
porphyrin ring, and biological activity, have demonstrated
that more lipophilic SOD mimics (MnTnHex-2-PyP5 + and
MnTnOct-2-PyP5 + ) are efficacious at lower concentrations

(0.1–3.0 lM); whereas less lipophilic compounds, MnTM-2-
PyP5 + , MnTE-2-PyP5 + , and MnTnPr-2-PyP5 + , are highly ef-
ficient only at concentrations above 10 lM (Fig. 9) (88). Since
all tested SOD mimics have similar log kcat(O2

�- ) values, the
higher biological activity of the more lipophilic compounds
could be attributed to more efficient cellular uptake resulting
from facilitated diffusion across membranes.

Figure 10A shows that those MnPs which have high cata-
lytic rate constants for O2

�- dismutation ( > 107 M - 1$s - 1) and
protect the SOD-deficient mutants against O2

�- , accumulate
in cells to concentrations that are comparable to or exceed
those of the native SOD. The figure also shows that cellular
accumulation of the most lipophilic Mn-hexyl derivatives is
*20–30-fold higher than the accumulation of the hydrophilic
Mn-methyl derivatives, which explains why amphiphilic
MnPs are efficient at concentrations lower than 1.0 lM.

These findings helped formulate the key requirements that
should be met by the compounds expected to act as SOD
mimics in vivo: high kcat(O2

� - ), high stability, and efficient
cellular uptake.

Investigations of the relationship between MnPs lipophili-
city and their cellular uptake and distribution, carried out
with E. coli and S. cerevisiae, revealed the general rules that are
applicable to higher organisms: (i) Longer aliphatic chain
analogs with lipophilic properties accumulate in cytosol and
membranes to higher levels than more hydrophilic molecules.
Meta isomers, which are more flexible and more lipophilic
(Fig. 10B), cross cell membranes easier than their respective
ortho analogs, and are found in the cytosol at higher concen-
trations (Fig. 10A); and (ii) in vivo, a lower kcat for O2

� - dis-
mutation can be compensated for by better cellular uptake of
the SOD mimic, resulting in higher efficacy (Fig. 6) (66).
Compensation for low catalytic activity by higher uptake,
however, is limited by potential toxicity of the SOD mimics.

Cellular uptake of MnPs could be significantly influenced
by the components of the growth medium. Reducing com-
pounds, such as ascorbate, could significantly enhance the
uptake of MnPs (Fig. 10C) (111). Reduction of MnIIIP to MnIIP
by ascorbate leads to the loss of a single charge at the metal
center, which decreases the overall charge of the molecule
from + 5 to + 4 and increases the lipophilicity of the

FIG. 5. Effect of b-bromi-
nated Mn(II) N-alkylpyr-
idylporphyrins and their
metal-free ligands on the
growth of SOD-deficient
E. coli in five amino acid
medium. Cell density at the
13th hour of growth is pre-
sented. Adapted from (42).

FIG. 6. Effect of 25 lM ortho (2) and meta (3) isomeric
Mn(III) N-alkylpyridyl porphyrins (alkyls being methyl to
butyl) on the aerobic growth of SOD-deficient E. coli
( JI132) in five amino acid medium. Growth was monitored
turbidimetrically at 700 nm. Cell density at 18 h is presented.
Adapted from ref. (66).
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metalloporphyrin. The importance of the metal center re-
duction is illustrated by the fact that the uptake of meta iso-
meric MnP, MnTM-3-PyP5 + was not affected by ascorbate.
MnTM-3-PyP5 + , with a reduction potential of only 52 mV
is much less reducible than the ortho analog, MnTM-2-
PyP5 + with E1/2 + 220 mV versus NHE. While the ortho isomer
exists as MnIITM-2-PyP4 + in biological milieu, the meta isomer
remains unchanged, as a pentacationic species. Based on such
observations, one could predict that in higher organisms,
cellular/subcellular accumulation and distribution of SOD
mimics may be strongly affected by endogenous reductants,
some of which reach millimolar intracellular levels.

Studies on the subcellular localization of SOD mimics re-
vealed similarities among different classes of organisms. A
positive correlation between the lipophilicity and accumula-
tion in mitochondria relative to the cytosol was observed in
yeast cells incubated with a series of MnP analogs. For the
least lipophilic compound, MnTM-2-PyP5 + , the mitochondria
to cytosol ratio was *1.5; while for the much more lipophilic
MnTnHex-2-PyP5 + , the ratio was > 10, that is, the concen-
tration was 10-fold higher in the mitochondria than in the
cytosol. Compounds of intermediate lipophilicity, MnTE-2-
PyP5 + and MnTnBu-2-PyP5 + , showed intermediate distribu-

tion, with ratios of around 2 and 4, respectively (Li et al., un-
published observation) (112). A similar distribution was
found when MnPs were administered to mice. The mito-
chondria-to-cytosol ratio was 3.6 for MnTnHex-2-PyP5 + and
1.6 for MnTE-2-PyP5 + (126). The reason for such similarities
lies in the identical forces and principles that govern cellular
transport. Uptake of cationic metalloporphyrins by E. coli and
mitochondria of eukaryotic cells is driven by the electro-
chemical proton gradient across membranes and is facilitated
by the amphiphilic properties of the molecule. Depending on
the alkyl chain length, MnPs accumulate more in membranes
or in cytosol; the longer alkyl-chain analogs tend to accumu-
late more in membranes than in cytosol (66).

The toxicity of porphyrins

Toxicity is the main factor restricting the use of metallo-
porphyrin-based SOD mimics. Studies with various classes of
organisms have shown that bacteria are much more sensitive
to the toxicity of metalloporphyrins than other organisms,
including the yeast S. cerevisiae.

Light-independent porphyrin toxicity to bacteria is well
known, and has been proposed as a treatment modality
against antibiotic-resistant strains (113). Several possible
mechanisms of porphyrin toxicity have been suggested:
interference with redox reactions, generation of ROS, distor-
tion of the membrane lipid bilayer, and insertion of a non-
functional heme-like porphyrin in heme-containing proteins,
thus blocking their functions (113).

E. coli responds to oxidative stress by inducing specific
regulons, which, in turn, prompt the expression of hundreds
of genes [reviewed in details in (37,62)]. Activation of this
response can serve as an indication of toxicity due to the re-
versed action of the tested SOD mimics, that is, pro-oxidative
instead of antioxidative. For example, increased production of
ROS explains the toxicity of some MnPs when they are com-
bined with natural reductants. Such MnPs can be easily re-
duced by ascorbate, tetrahydrobiopterin, or glutathione
(18,21,130) and can be subsequently reoxidized by either O2

�-

or dioxygen, generating H2O2 as an ultimate product. Re-
ductants, usually present in all cells, can sustain the redox
cycling, generating toxic levels of H2O2 (Fig. 11A) (15). E. coli

FIG. 7. Structures, MnIII/MnII reduction potential (E1/2 in mV vs. normal hydrogen electrode), and SOD-like activity (cat-
alytic rate constant for O2

�- dismutation, log kcat) of Mn(III) N,N¢-disubstituted imidazolium porphyrins: MnTDE-2-ImP5 + ,
MnTM,MOE-2-ImP5 + , and MnTDMOE-2-ImP5 + . The imidazolium compounds have two imidazolyl substituents, one placed
below and the other placed above the porphyrin ring, which makes them bulkier than N-substituted pyridylporphyrins (19).

FIG. 8. Growth of SOD-deficient E. coli in five-amino-acid
medium in the presence of 25lM Mn(III) N,N¢-disubstituted
imidazolium porphyrins: MnTDE-2-ImP5 + , MnTM,MOE-2-
ImP5 + , and MnTDMOE-2-ImP5 + . Their N-substituted pyridyl
analog, MnTE-2-PyP5 + , was also tested for comparison.
Adapted from (88).
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reacts to the combination of MnP with ascorbate by inducing
members of the oxyR regulon, including catalase and peroxi-
dases (Fig. 11C, D), which is evidence for H2O2 production.
The importance of this cellular response is illustrated by the
fact that an oxyR-deficient mutant, unable to induce protec-

tion against H2O2, was highly sensitive to the combination of
MnP and ascorbate; in the absence of ascorbate, the MnP did
not cause any deleterious effects (Fig. 11B). The toxicity of the
Mn(III) salen EUK-8 has also been attributed to the increased
production of O2

�- and H2O2 (78).

FIG. 9. Aerobic growth of
SOD-deficient E. coli ( JI132)
in the presence of 25 lM
Mn(III) meso-tetrakis(N-al-
kylpyridinium-2-yl)porphy-
rins, where the alkyl group
is methyl (MnTM-2-PyP5 + ),
ethyl (MnTE-2-PyP5 + ), n-
propyl (MnTnPr-2-PyP5 + ),
n-hexyl (MnTnHex-2-PyP5 + ),
or n-octyl (MnTnOct-2-PyP5 + )
in restricted (5AA) medium.
Data from 14 h of growth are
shown. MnTnHex-2-PyP5 +

and MnTnOct-2-PyP5 + were
toxic at a 25 lM concentration
but supported the growth of
E. coli when supplied at a
concentration as low as
0.3 lM. Adapted from (88).

FIG. 10. Relationship between lipophilicity and cellular uptake of MnPs. (A) Accumulation of ortho and meta isomeric
Mn(III) meso-tetrakis(N-alkylpyridyl)porphyrins in the cytosolic fractions of wild-type E. coli (AB1157) after 1 h of incubation
with 5 lM Mn porphyrin (MnP) in M9CA medium. Bars represent mean – SE. (B) Lipophilicity of ortho and meta isomeric
MnPs defined by chromatographic retention factor, Rf. The Rf depends on the number of carbon atoms in alkylpyridyl chains
of MnPs and correlates well with partition coefficient between n-octanol and water, Pow (66,67). (C) Effect of ascorbate on
MnP uptake. Wild-type E. coli (AB1157) was incubated for 1 h at 37�C in M9CA medium containing 5 lM Mn(III) meso-
tetrakis(N-alkylpyridyl)porphyrins with or without 1 mM sodium ascorbate. Bars represent mean – SE. SE, standard error.
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The E. coli-based discovery of MnP-ascorbate cytotoxicity
(92) brought up the idea that the combination can be used for
anticancer treatment (48,95,117,130). The therapeutic poten-
tial of pharmacological doses of ascorbate alone has already
been demonstrated in several preclinical and clinical trials
(46,61,83,127) and is based on the increased production of
reactive species due to ascorbate oxidation, catalyzed by en-
dogenous metalloproteins (36). MnPs, however, are advan-
tageous, as their redox properties can be optimized in order to
achieve the maximal rate of ascorbate oxidation. Conse-
quently, a maximal production of H2O2 and other reactive
species can be achieved, causing a more efficient tumor de-
struction. Promising results of such combinational catalytic
therapy have been reported (48,95,130). In vitro experiments
have shown that some cancer cell lines are more sensitive to
either cationic MnPs or Fe porphyrins (FePs) alone and to the
MnP-ascorbate combination than are normal cells (121).
Among the reasons is preferential accumulation of porphy-
rins in neoplastic cells (51,72).

Toxicity of amphiphilic SOD mimics could be explained by
the membrane damage due to the detergent-like action. Such

action, however, requires a high SOD mimic/lipid ratio (107)
that cannot be achieved at the concentrations usually used.
Further, no signs of membrane damage were detected when
amphiphilic metalloporphyrins were tested at concentrations
of approximately 50 lM (Benov et al., unpublished observa-
tion). Since such compounds accumulate in cells to much
higher concentrations than their hydrophilic analogs, their
higher toxicity most probably results from blocking proteins/
enzymes that require heme for their function (113).

Some toxicity of metalloporphyrin-based SOD mimics
could be related to the light-dependent generation of ROS,
mainly singlet oxygen, as demetallation of these compounds
in the cytoplasm yields a photosensitizing metal-free por-
phyrin ligand in situ. Such compounds show much lower
toxicity in the dark than when cultures are illuminated
(96,121). Of note, MnPs and FePs are not photosensitizers per
se, whereas their corresponding free ligands or the Zn ana-
logues (ZnPs) have been explored as potent photosensitizers
for photodynamic therapy (2–4,24,26,27).

Depending on the nature of the metalloporphyrin, its
concentration, and the environment, including growth media

FIG. 11. Ascorbate-dependent toxicity of MnTE-(2 and 3)-PyP. (A) Suppression of E. coli growth by MnTE-2-PyP plus
ascorbate (M9CA medium) (B). Growth of oxyR-deficient E. coli mutant in the presence of MnTE-2-PyP plus ascorbate (C, D);
Induction of catalase and peroxidase. Adapted from ref. (15).
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and cellular reductants, different mechanisms can eventually
combine, leading to cell damage.

The strategies for decreasing the MnP toxicity

As mentioned earlier, the bioefficacy of amphiphilic MnP-
based SOD mimics is limited by their higher toxicity. Further
efforts have been directed toward decreasing the toxicity of
SOD mimics while preserving the high SOD activity and li-
pophilicity. High catalytic activity was maintained by pre-
serving the ortho cationic pyridyl nitrogens that dominate the
thermodynamics and kinetics of metalloporphyrins-catalyzed
O2

�- dismutation. Previous investigations have shown that
replacement of a CH2 group in the butyl chain of MnTnBu-2-
PyP5 + with an oxygen atom diminishes its toxicity, but at the
expense of decreased lipophilicity and, consequently, de-
creased cellular accumulation (20). Applying such a strategy
to MnTnHex-2-PyP5 + led to the synthesis of its methoxy an-
alog, MnTMOHex-2-PyP5 + . Its lipophilicity was, indeed,
much lower than that of MnTnHex-2-PyP5 + . Since meta iso-
mers are more lipophilic than their ortho analogs (Fig. 10B),
meta isomers of hexyl and ethyl species were synthesized and
examined using sodA sodB E. coli (123). Both MnTMOHex-3-
PyP5 + and MnTMOE-3-PyP5 + appeared more efficacious
than MnTnHex-3-PyP5 + and MnTE-3-PyP5 + in supporting
the aerobic growth of SOD-deficient E. coli (Fig. 12).

In an attempt to preserve the lipophilicity of alkox-
yalkylated porphyrins, the oxygen atoms were pushed deeper
into the cavity encircled by the N-alkylpyridyl substituents.

The reduced oxygen exposure to solvent prevented its solva-
tion, and, thus, preserved the lipophilicity of the oxygenated
derivatives. Such an optimized molecule, Mn(III) meso-tetra-
kis(N-n-butoxyethylpyridinium-2-yl)porphyrin (MnTnBuOE-
2-PyP5 + ) was as lipophilic as its non-derivatized seven-carbon
chain alkyl analog, MnTnHep-2-PyP5 + and stimulated the
aerobic growth of SOD-deficient S. cerevisiae (Fig. 13). At
concentrations 5–30 lM, MnTnBuOE-2-PyP5 + improved the
aerobic growth of the sod1D yeast strain, whereas MnTnHep-2-
PyP5 + was toxic even at 5 lM (Fig. 13). The applicability of
these results to higher organisms was tested in a mouse tox-
icity study, where MnTnBuOE-2-PyP5 + was much less toxic
than either MnTnHex-2-PyP5 + or MnTnHep-2-PyP5 + (93,123)
[reviewed in detail in (120)].

The SOD mimics and E. coli growth curves

The growth pattern of most microorganisms in a closed
habitat can be divided in three distinct phases: lag phase,
during which the organisms adapt to the new environment
and do not grow; exponential phase, where cell number in-
creases in geometric progression; and stationary phase, where
growth practically stops due to the lack of nutrients, accu-
mulation of inhibitory products, or limit of space (90). Im-
portant information about the mechanism of action of tested
compounds can be obtained by analyzing the kinetics of mi-
crobial growth. The significance of analyzing growth curves
has been illustrated using the FeP-based SOD mimics. Para
cationic Fe(III) N-methylpyridylporphyrin, FeTM-4-PyP5 +

FIG. 12. Comparison of the efficacy/toxicity profiles of methoxy-derivatized cationic Mn(III) N-substituted pyridyl
porphyrins (MnTMOE-3-PyP5 + and MnTMOHex-3-PyP5 + ) with their respective alkyl analogs (ortho MnTE-2-PyP5 + ,
MnTnHex-2-PyP5 + and meta MnTE-3-PyP5 + , MnTnHex-3-PyP5 + ). Growth of SOD-deficient E. coli strain ( JI132) in five
amino acid medium was followed turbidimetrically at 600 nm (123). Cell density at 16th hour of growth is shown. The meta
ethyl has similar Rf as meta methoxyethyl, and the meta hexyl has Rf similar to meta methoxyhexyl (inset) (123).
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reported in the late 1970s was the first metalloporphyrin to
possess a high catalytic rate constant for O2

�- dismutation [log
kcat(O2

� - ) = 7.20)] (89). Based on the ortho-driven design of N-
alkylpyridylporphyrins, FePs FP-15, WW-85, and INO-4885
have been synthesized. Beneficial effects of such FePs have
been reported in various pathological conditions, including
spinal cord injury, burn and smoke inhalation injury, septic
shock, diabetes, and so on (57,68,79,80,91,115,116). The effect
was attributed to the catalytic decomposition of peroxynitrite
by FePs. Since Fe(III) N-alkylpyridylporphyrins have SOD
activity that is very similar to their Mn analogs, as indicated
by their log kcat(O2

�- ) values (19,122), the in vivo FeP-based
protection could have ensued from both peroxynitrite de-
composition and superoxide dismutation (17,120). Initially,
the Fe(III) N-alkylpyridylporphyrins were tested on the sodA

sodB E. coli at a concentration optimal for the MnP analogs,
25 lM. Under such conditions, neither cationic nor anionic
FePs (FeTM-2-PyP5 + , FeIIITE-2-PyP5 + , FeIIIT(TMA)P5 + ,
FeIIITCPP3 - , FeIIIT(TFTMA)P5 + , and FeIIITSPP3 - ) afforded
protection; moreover, they acted as bacteriostatics to both
SOD-deficient and SOD-proficient E. coli under aerobic and
anaerobic conditions (19) (Fig. 14). At much lower concen-
trations, 0.01–1.0 lM, FePs stimulated the growth of the sodA
sodB E. coli (Fig. 15). With FePs, however, the sodA sodB
growth pattern was different than that of the SOD-containing
and MnP-stimulated SOD-deficient cultures. If a compound
substitutes for the SOD enzymes, then the SOD-deficient mu-
tants should follow a growth pattern similar to that of the SOD-
containing strains. As mentioned, both sodA sodB E. coli and
sod1D S. cerevisiae can accumulate mutations that suppress the

FIG. 14. Comparison between MnPs and FePs. (A) Growth of wild-type E. coli AB1157 in casamino acids (M9CA) medium
in the presence of 25 lM of ortho (H2O)MnTM-2-PyP5 + , or ortho, meta, and para (OH)FeTMPyP4 + under anaerobic conditions.
The other axial ligand in MnPs and FePs is water molecule. Identical data were obtained with the JI132 SOD-deficient strain
(not shown); anaerobically with and without MnTM-2-PyP5 + the SOD-deficient strain grows as well as wild type. (B)
Structures of ortho, meta, and para (OH)FeTMPyP4 + and ortho (OH)FeTE-2-PyP5 + . (C) Effect of (H2O)MnTM-2-PyP5 + ,
(H2O)MnTE-2-PyP5 + , (OH)FeTM-2-PyP5 + , and (OH)FeTE-2-PyP5 + at 25 lM on the aerobic growth of SOD-deficient E. coli
JI132 in 5AA medium. A700nm after 56 h of growth is shown. Adapted from ref. (19).

FIG. 13. Growth of wild-type (EG 103) and SOD-deficient (EG118, sod1D) Saccharomyces cerevisiae strains in the
presence of MnTnHep-2-PyP5 + and MnTnBuOE-2-PyP5 + (1, 5, 10, or 30 lM). Cultures were grown in YPD medium, and
growth was monitored turbidimetrically at 600 nm. Adapted from ref. (93).
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aerobic defects, including the auxotrophies for amino acids
(63,69). After prolonged incubation in restricted media, the
SOD-deficient strains acquire the ability to overcome the aux-
otrophies and to restore growth without producing functional
SODs. This is exhibited as a growth curve with a long lag fol-
lowed by slow exponential growth. Some candidates for SOD
mimics are able to act at this late stage and accelerate the growth
rate of the sodA sodB cultures, without shortening the length of
the lag phase. The growth stimulatory effect of FePs shown in
Figure 15 could not be attributed to their SOD activity for two
reasons: (i) Since FePs and MnPs have similar values of
kcat(O2

�- ), the effect of FePs should have occurred at a concen-
tration range at which analogous MnPs are efficacious. (ii) The
growth curve of sodA sodB + FeP should be similar to the growth
curve of parental E. coli. The data (122) indicate that at such low
concentrations, FePs act in an identical way as simple Fe salts,
thus supporting metabolism by providing Fe as an Fe source.

The sodA sodB E. coli versus the sod1D S. cerevisiae

A good strategy for screening the potential of SOD mimics
is to compare their effects on sodA sodB E. coli and on sod1D
S. cerevisiae. This strategy was used to screen the representa-
tives from different classes of SOD mimics (85). Even though
some of the tested compounds reportedly ameliorated oxi-
dative stress in animal model systems, investigations of their
ability to substitute for the missing cytoplasmic SODs
produced unexpected results; only the Mn N-alkylpyri-
dylporphyrin complexes MnTM-2-PyP5 + , MnTE-2-PyP5 + ,
and MnTM-4-PyP5 + , (the last one at low concentrations of
3 lM), stimulated the aerobic growth of SOD-deficient E. coli
(85). MnTM-2-PyP5 + and MnTE-2-PyP5 + were also capable of
supporting the aerobic growth of sod1D S. cerevisiae.

The two unicellular organisms responded differently to the
same SOD mimic when other classes of compounds were
studied. Thus, some compounds found to be efficient in rescuing
the aerobic growth of the sodA sodB E. coli proved inefficient
when tested in the sod1D yeast system. It has been hypothesized
that such differences could be due either to the mislocalization or
to the lack of sufficient concentration buildup of active species of
these compounds in compartments where the radicals are
present (85). For example, none of the Mn salen derivatives
tested (Eukarion, EUK-134 and EUK-8) were efficient in sod1D
yeast, but to a certain extent, improved the growth of sodA sodB
E. coli (85). Since in Mn salen, chelated metal is weakly held (65),
the growth stimulation could be due to Mn ions that dissociate
from the ligands. It has been suggested that the protective action
of Mn chelates could result from the facilitated import of Mn,
which forms intracellular Mn complexes possessing SOD-like
activity (1,6,7,10) and replaces the Fe in Fe-containing enzymes
(5). The facilitated Mn transport may explain the beneficial
effects of those SOD mimics that have low metal/ligand
stability such as Mn salen and MnBr8TSPP3 - . Although
MnBr8TSPP3 - is a poor SOD mimic, as indicated by its low log
kcat(O2

�- ), its ability to protect SOD-deficient E. coli mirrored
that of the potent mimic MnTM-2-PyP5 + (Fig. 16). It has been
reported that in contrast to the stable MnP SOD mimics, which
are found intact in the E. coli cytosol, cells loaded with
MnBr8TSPP3 - contained metal-free ligand (96). The following

FIG. 15. Growth of SOD-deficient JI132 and wild-type
AB1157 E. coli in five-amino-acid medium in the presence
of FePs and MnPs. FeP has essentially the same log
kcat(O2

�- ) as MnP (17). Adapted from (122).

FIG. 16. Effect of anionic
b-brominated 4-sulfonato-
phenylporphyrin and its 4-
carboxylatophenyl analog
on the aerobic growth of
SOD-deficient E. coli ( JI132)
in 5AA medium (data at 24th
hour time point is pre-
sented). MnTM-2-PyP5 + was
used as a positive control.
Results are presented as a
percentage of the growth of
the parental strain. Adapted
from (96).

2428 TOVMASYAN ET AL.



scenario was suggested to accommodate the spectroscopic and
E. coli growth data: The Mn(III) complex is taken up by the cell
and is reduced to its Mn(II) analog, which is then demetallated
in situ, yielding Mn2 + and metal-free ligand. The nature of the
resulting Mn2 + species inside the cell remains unknown,
whereas the free ligand, exported out of the cell, is found in the
medium. No demetallation was observed in a cell-free me-
dium. Therefore, MnBr8TSPP3 - was protecting the SOD-de-
ficient cells not by scavenging superoxide but by facilitating
the Mn import. A study using Criptococcus neoformans suggests
that Mn salen (EUK-8) is also acting as a Mn carrier (58). A
similar effect of Mn was reported for sod1D S. cerevisiae (106),
which implies that growth stimulation by the unstable Mn-
based compounds might simply reflect their ability to trans-
port manganese.

The purity of the tested compounds

Various commercial SOD mimics contain impurities, which
can affect the outcomes of biological trials. Impurities are
probably the main reason behind the contradictory reports
about the bioefficacy of MnTBAP3 - (98,99). Impure prepara-
tions of MnTE-2-PyP5 + obtained from CalBiochem (contain-
ing *25% tetraethylated MnTE-2-PyP5 + ; the remaining

*75% comprised tri-, di-, monoethylated, and non-ethylated
derivatives) (99) may be a reason for the lower-than-
anticipated efficacy of this SOD mimic, when tested on SOD-
deficient E. coli and S. cerevisiae (85). Chemicals used in the
preparation of SOD mimics, traces of which might remain in
the final product, should also be tested for their biological
activity. For example, neither tetra-n-butylammonium chlo-
ride nor ammonium hexafluorophosphate, used in the prep-
aration of MnP-based SOD mimics caused any adverse effects
when tested on E. coli (100) (Fig. 17). It is also important to
quantify the amount of residual metal (Mn, Fe, etc.) present in
the preparations (97), and to assess the biological effect of
respective metal salts at matching concentrations.

The role of SOD-deficient E. coli and S. cerevisiae
in distinguishing SOD mimics from non-SOD mimics

Various metal- or non-metal-based compounds (Fig. 18)
were reportedly capable of suppressing oxidative stress in
animal models: Mn(III) salen derivatives, such as EUK-8
(45,103); Mn(II) cyclic polyamine/azacrown ethers, such as
M40403 (102); nitrones, such as NXY-059 (53); nitroxides, such
as tempol (17,110); and MnTBAP3 - (73,128). When tested on
SOD-deficient E. coli or S. cerevisiae, none of them acted as

FIG. 17. Testing the effect of chemicals used for preparation of SOD mimics. Growth of SOD-deficient ( JI132) and wild-
type (AB1157) E. coli in the presence of: (A) TBACl in M9CA medium (Benov et al., unpublished), (B) NH4PF6 (100), in five
amino acid medium. Both compounds are used in the isolation and purification of cationic MnPs and, thus, may be present as
impurities in final preparation. The compounds have been tested at the following concentrations: (i) TBACl, 20 lM; (ii)
NH4PF6, 60 lM; (iii) MnTM-2-PyP5 + , 20 lM; and (iv) MnTE-2-PyP5 + , 1 lM. TBACl, tetra-n-butylammonium chloride;
NH4PF6, ammonium hexafluorophosphate.

FIG. 18. Structures of vari-
ous classes of compounds
that have been tested as
SOD mimics. Summarized in
(17,82).
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SOD mimics (Figs. 19 and 20). Such results are not unex-
pected, because the log kcat(O2

�- ) of some of those compounds
is lower than the rate constant of spontaneous O2

�- dis-
mutation (5 · 105 M - 1$s - 1), while the others have a high log
kcat(O2

�- ) (M40403, EUK-8), but are unstable and eventually
decompose and lose the redox-active metal. In a compre-
hensive study, Munroe and coworkers reported that EUK-8
and EUK-134 at concentrations of approximately 100 lM im-
proved the growth of the sodA sod B E. coli, but the effect was
similar to that of Mn(II)EDTA2 - or MnCl2 (85). None of the
two Mn salen compounds improved the growth of the sod1D
S. cerevisiae (85). No positive results were reported for M40403
(85). Since all these compounds are redox active, they most
probably act by mechanisms other than catalysis of O2

�-

dismutation (17,82,104).

Concluding Remarks

Results obtained so far support the benefit of using SOD-
deficient unicellular organisms for predicting the therapeutic

potential of artificial SOD substitutes and for studying the
mechanisms of action of redox-active compounds. The ab-
sence of superoxide-scavenging enzymes in these organisms
offers an unambiguous background for testing in vivo the
superoxide-scavenging capacity of SOD mimics. Such simple
systems allow growth conditions and growth media to be
manipulated, which is crucial for studying the mechanisms of
action and, to some extent, the biological transformations
of newly synthesized compounds. The relative simplicity of
E. coli and S. cerevisiae is essential in the exploration of factors
that affect accumulation and subcellular distribution of vari-
ous types of compounds. Information on the impact of sta-
bility, charge, lipophilicity, size, shape, and bulkiness of
molecules on the uptake and subcellular distribution of redox-
active compounds could be obtained using these unicellular
organisms. No less important, knowledge obtained with
E. coli and S. cerevisiae could be successfully translated to
higher organisms. Application of SOD-deficient E. coli and
S. cerevisiae models proved that compounds with low catalytic
rate constants (kcat) for O2

�- dismutation and unsuitable

FIG. 19. Growth of E. coli and S.
cerevisiae in the presence of dif-
ferent redox-active compounds
and SOD mimics. Wild-type
AB1157 and SOD-deficient JI132
E. coli (A) were grown in five amino
acid medium. Wild-type EG103 and
SOD1-deficient EG118 S. cerevisiae
strains (B) were grown in YPD
medium. Growth was monitored
turbidimetrically at 600 nm. Adap-
ted from (13) (Benov et al., unpub-
lished). Similar results were
reported by Munroe et al. (85).
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reduction potentials (E1/2) cannot act in vivo as SOD mimics,
and indicate that the beneficial effects observed in various an-
imal model systems most probably result from activities other
than the removal of O2

� - . High catalytic constant, however, is
not a sufficient predictor of an SOD mimic’s bioefficacy. Sta-
bility, size, shape, charges, lipophilicity, and other intrinsic
properties of the molecule, which affect cellular uptake, sub-
cellular distribution, and biological transformations, are factors
that can outweigh the impact of kcat and should be tested on
relevant biological systems before a compound is identified as
an SOD mimic. It is important to keep in mind that irrespective
of their apparent simplicity, the E. coli and S. cerevisiae micro-
organisms have complex physiology and metabolism, and in-
terpretation of their responses to externally added compounds
is not straightforward. Various factors, including composition
of the growth media, aeration, physiological state of the initial
inoculum, time of incubation, and even illumination, could
affect cellular response and should be taken into consideration
when results are analyzed. It becomes clear that a compound
should not be recognized as an SOD mimic based on the results
obtained only in one model system, and that a thorough in-
vestigation of biological actions other than superoxide scav-
enging should be carried out.
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berle I. High lipophilicity of meta Mn(III) N-alkylpyr-
idylporphyrin-based superoxide dismutase mimics
compensates for their lower antioxidant potency and
makes them as effective as ortho analogues in protecting
superoxide dismutase-deficient Escherichia coli. J Med Chem
52: 7868–7872, 2009.

67. Kos I, Rebouças JS, DeFreitas-Silva G, Salvemini D, Vu-
jaskovic Z, Dewhirst MW, Spasojević I, and Batinić-Haberle
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Abbreviations Used

5AA¼five amino acid, minimal, restricted medium
E1=2¼half-wave reduction potential

EG118 and EG103¼ SOD-deficient and SOD-proficient Saccharomyces cerevisiae strains, respectively
EUK-134 and EUK-8¼Mn salen derivatives

FeP¼ Fe porphyrin
FeTM-2-PyP5+¼ Fe(III) meso-tetrakis(N-methylpyridinium-2-yl)porphyrin
FeTM-3-PyP5+¼ Fe(III) meso-tetrakis(N-methylpyridinium-3-yl)porphyrin
FeTM-4-PyP5+¼ Fe(III) meso-tetrakis(N-methylpyridinium-4-yl)porphyrin
FeTE-2-PyP5+¼ Fe(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin

FP-15¼ Fe (III) meso-tetrakis(N-(1-(2-(2(-2-methoxyethoxy)ethoxy)ethyl)pyridinium-2-yl) porphyrin
H2O2¼hydrogen peroxide

INO-4885¼ Fe(III) meso-tetrakis[N-(4-carboxylatobenzyl)pyridinium-2-yl]porphyrin
JI132 and AB1157¼ SOD-deficient and SOD-proficient Escherichia coli strains, respectively

M40403¼ cyclic polyamine
M9CA¼ casamino acid complete medium

Mn(III) meso-tetrakis(N-alkylpyridinium-2-yl)porphyrins, alkyl being methyl (M, MnTM-2-PyP5++, AEOL10112), ethyl (E, MnTE-
2-PyP5++, AEOL10113, BMX-010), n-propyl (nPr, MnTnPr-2-PyP5+), n-butyl (nBu, MnTnBu-2-PyP5+), n-hexyl (nHex, MnTnHex-2-
PyP5+), n-heptyl (nHep, MnTnHep-2-PyP5+), n-octyl (nOct, MnTnOct-2-PyP5+)

Mn(III) meso-tetrakis(N-alkylpyridinium-3-yl)porphyrins, alkyl being methyl (M, MnTM-3-PyP5+), ethyl (E, MnTE-3-PyP5+),
n-propyl (nPr, MnTnPr-3-PyP5+), n-butyl (nBu, MnTnBu-3-PyP5+), n-hexyl (nHex, MnTnHex-3-PyP5+)

MnBr8TBAP3-¼Mn(III) b-octabromo-meso-tetrakis(4-carboxylatophenyl)porphyrin, also known as
MnBr8TM-3(or 4)-PyP4+¼Mn(III) b-octabromo-meso-tetrakis(N-methylpyridinium-3(or 4)-yl))porphyrin

MnBr8TSPP3-¼Mn(III) b-octabromo-meso-tetrakis(4-sulfonatophenyl)porphyrin
MnP¼Mn porphyrin (charges of MnPs are omitted in figures but not in figure legends)

MnT(2,6-Cl2-3-SO3-P)P3-¼Mn(III) meso-tetrakis(2,6-dichloro-3-sulfonatophenyl)porphyrin
MnT(TFTeMa)P5+¼Mn(III) meso-tetrakis(2,3,5,6 tetrafluoro-N,N,N-trimethylanilinium-4-yl)porphyrin

MnT(TrMA)P5+¼Mn(III) meso-tetrakis(2,3,5,6 tetrafluoro- N,N,N-trimethylanilinium-4-yl)porphyrin
MnTBAP3-¼Mn(III) meso-tetrakis(4-carboxyphenyl)porphyrin, also known as MnTCPP3- and AEOL10201

MnTDE-2-ImP5+¼Mn(III) meso-tetrakis(N,N¢-diethylimidazolium-2-yl)porphyrin, AEOL10150
MnTDMOE-2-ImP5+¼Mn(III) meso-tetrakis[N,N¢-di(2-methoxyethyl)imidazolium-2-yl]porphyrin

MnTM-4-PyP5+¼Mn(III) meso-tetrakis(N-methylpyridinium-4-yl)porphyrin
MnTM,MOE-2-ImP5+¼Mn(III) meso-tetrakis[(N-methyl-N¢-methoxethyl)imidazolium-2-yl]porphyrin

MnTMOE-3-PyP5+¼Mn(III) meso-tetrakis(N-(2¢-methoxyethyl)pyridinium-3-yl)porphyrin
MnTMOHex-3-PyP5+¼Mn(III) meso-tetrakis(N-(6¢-methoxyhexyl)pyridinium-3-yl)porphyrin
MnTnBuOE-2-PyP5+¼Mn(III) meso-tetrakis(N-(n-butoxyethyl)pyridinium-2-yl)porphyrin, also BMX-001

MnTSPP3-¼Mn(III) meso-tetrakis(4-sulfonatophenyl)porphyrin
NaCl¼ sodium chloride

NH4PF6¼ ammonium hexafluorophosphate
NHE¼normal hydrogen electrode
NIH¼National Institutes of Health

nitrone¼NXY-059, disulfonated PBN, phenyl-tert-butylnitrone
O2
�-¼ superoxide

ONOO-¼peroxynitrite
ROS¼ reactive oxygen species

SE¼ standard error
SOD¼ superoxide dismutase

TBACl¼ tetra-n-butylammonium chloride
tempol¼ 4-OH-2,2,6,6,-tetramethylpiperidine-1-oxyl
WW-85¼ Fe(III) meso-tetrakis(N-carboxylatobenzylpyridyl)porphyrin
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