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Abstract

Independent component analysis (ICA) has been successfully utilized for analysis of functional MRI (fMRI) data for task
related as well as resting state studies. Although it holds the promise of becoming an unbiased data-driven analysis
technique, a few choices have to be made prior to performing ICA, selection of a method for determining the number of
independent components (nIC) being one of them. Choice of nIC has been shown to influence the ICA maps, and various
approaches (mostly relying on information theoretic criteria) have been proposed and implemented in commonly used ICA
analysis packages, such as MELODIC and GIFT. However, there has been no consensus on the optimal method for nIC
selection, and many studies utilize arbitrarily chosen values for nIC. Accurate and reliable determination of true nIC is
especially important in the setting where the signals of interest contribute only a small fraction of the total variance, i.e. very
low contrast-to-noise ratio (CNR), and/or very focal response. In this study, we evaluate the performance of different model
order selection criteria and demonstrate that the model order selected based upon bootstrap stability of principal
components yields more reliable and accurate estimates of model order. We then demonstrate the utility of this fully data-
driven approach to detect weak and focal stimulus-driven responses in real data. Finally, we compare the performance of
different multi-run ICA approaches using pseudo-real data.
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Introduction

The inherent complexity of functional neuroimaging data has

led to an increased interest in analysis techniques capable of

revealing the intrinsic architecture of the data. Several factors

contribute to the spatiotemporal variation found in functional

neuroimaging data, such as different modes of brain activity, non-

neural physiological sources such as respiratory and cardiac

signals, imaging artifacts and random noise. The ability to

partition the spatiotemporal variation according to the underlying

sources would be the ideal way of isolating the neural activity (or

any other components of interest) and developing an in-depth

understanding of the functional architecture. It turns out that it is

possible, at least in theory, to decompose the data into these

underlying sources using Independent Component Analysis (ICA)

provided the following conditions are met: 1) The underlying

signal sources are statistically independent (i.e. unrelated); 2) The

sources have non-Gaussian distributions; 3) The sources are mixed

in a linear fashion to yield the data. An implicit assumption of ICA

is that the number of observations is equal to the number of

underlying sources (or alternatively, the true number of sources is

known, or can be estimated). This is an important assumption that

strongly influences the ICA result, and will be discussed later in the

text.

The potential of ICA to blindly separate neural activity related

contributions from the data in the presence of neurally irrelevant

contributions has made it an attractive choice for analysis of

electrophysiology and neuroimaging data e.g. electroencephalog-

raphy (EEG), magnetoencephalography (MEG) and functional

MRI (fMRI) [1–3]. For task-related fMRI experiments, ICA not

only separates consistently task-related components, but can also

identify the regions in the brain that are transiently activated due

to the stimulus [4]. Additionally, it can be used for noise removal,

thus resulting in greater functional contrast sensitivity [5]. ICA has

been an attractive choice for analysis of resting state fMRI data

because it does not require pre-selection of a seed time-course,

thus removing the bias from the analysis. Several studies have been

performed in humans and animal models that utilize ICA to

identify functionally relevant networks in the brain [2,6,7].

In the context of functional neuroimaging data, ICA can be

used in spatial or temporal domains (referred to as spatial/

temporal ICA). Spatial ICA (sICA) seeks to decompose the set of

images acquired at different times into a set of statistically

independent images, whereas temporal ICA (tICA) decomposes
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the time-courses into a set of statistically independent time-courses.

tICA has been used for the analysis of EEG/MEG data due to the

large temporal but small spatial dimensions of the data [1].

Conversely, sICA has been the preferred choice for the analysis of

fMRI data due to large spatial but small temporal dimensions.

McKeown et al argued that the assumption of statistical

independence of the spatial images corresponding to different

sources is reasonable for fMRI, and sICA has been used to analyze

task-related as well as resting state MRI data [3,4,7,8]. This study

focuses on sICA and we will use ICA and sICA interchangeably

for the remainder of the document.

As mentioned earlier, ICA decomposes the data into as many

sources (spatial maps, in the case of sICA) as the number of

observations (number of images in the series). In practice, the

number of images in the series (more than 100) is much larger than

the plausible number of sources. Therefore, the data has to be

reduced to a smaller number of images prior to ICA analysis. The

most widely used way to do this is principal component analysis

(PCA). PCA (in the spatial domain) decomposes the data into a set

of orthogonal images, ranked according to their contribution to

the total variance in the data. A reduced dataset comprising the

first nIC principal components is subjected to ICA to obtain nIC

independent components (ICs). nIC will be referred to as the

model order henceforth. Ideally, nIC should be equal to the true

number of sources in the data. However, in practice, it has to be

provided as an input for the analysis. Deviations from true or

‘‘optimal’’ model order have been reported to affect the results.

Too large values of nIC result in overfitting and spatially sparse

components, whereas too small values result in spatially non-

specific (global) independent components [9]. A realistic estimate

of nIC is crucial, therefore, if ICA is to identify the true underlying

sources. Several approaches have been used for model order

selection. Information theoretic approaches such as Minimum

description-length criterion (MDL), Akaike’s information criterion

(AIC) and Bayesian information criterion (BIC) have been

implemented in popular ICA software packages and are widely

used. Some less-commonly used methods (e.g. a method based

upon bootstrap stability of the principal components) have also

been used for ICA of fMRI data [10]. In some studies, more

subjective approaches (such as arbitrary selection of nIC, and

selection based on the variance explained by the first few principal

components) are used [11,12]. However, none of these approaches

is globally accepted as a standard for ICA, and different studies

utilize different techniques to estimate/select nIC. This raises

questions about the truly data-driven and ‘‘blind’’ nature of ICA

and the comparability of the ICA results across studies, and

establishes a need for evaluation of different approaches for model

order estimation.

Accurate model order (nIC) selection is the central issue in

accurate data driven source mapping with ICA, and becomes

increasingly critical when analyzing data sources of interest that

contribute a relatively small fraction of the total variance. Such

situations can arise when the CNR is small, or when the activity of

interest has a very focal spatial (or very sparse temporal)

distribution. Overestimation of the model order results in over-

fitting, whereas underestimation of the model order may result in

exclusion of the contribution of the activity of interest in situations

where it contributes a relatively small amount of variance to the

data. In principle, the CNR of sources of interest may be increased

in the data by appropriate temporal filtering [7]. However, to our

knowledge, the effects of such preprocessing steps on the validity of

the nIC estimated by different methods have not been studied.

In this study, we evaluated the performance of different data-

driven nIC estimation approaches for simulated data, demon-

strating that the model order estimated using bootstrap stability

analysis (BSA) of principal components [13] provided a better

estimate of the true number of components over a wide range of

CNRs and preprocessing conditions. The BSA approach was used

to analyze high-resolution, low CNR fMRI data from squirrel

monkeys, and focal patterns of brain activity associated with

stimulation of individual digits were successfully detected using two

group ICA approaches. We further investigated the performance

of different multi-run ICA methods on pseudo-real data. This

work highlights the shortcomings of commonly used nIC

estimation and multi-run/group analysis methods for ICA, and

provides alternatives that result in more stable and accurate

results. Further, this study suggests that ICA can be used to detect

weak and focal neuronal changes in fMRI in a completely data-

driven fashion with higher sensitivity and specificity (compared

with hypothesis-driven activation mapping), and therefore extends

the spectrum of fMRI applications for which ICA can be used.

Theory

1. ICA Model and Estimation
Consider a p x n data matrix X, where p corresponds to the

number of variables (time-points in the case of sICA) and n

corresponds to number of observations (number of voxels for sICA

– rows of X are obtained by concatenating voxel intensity values at

different locations in the brain). The ICA model assumes that the

observed variables are generated by linear combination of hidden

non-Gaussian ‘‘source’’ variables that are statistically independent.

In the context of sICA, this means that the observed images

constitute a linear combination of the spatial maps of the

underlying source images, i.e.

X~AS

Rows of S correspond to the spatial maps representing different

sources, and the temporal dynamics associated with the spatial

maps are contained in the respective columns of A (the mixing

matrix). ICA aims at estimating an unmixing matrix W, such that

ŜS~WX

Different methods have been proposed to estimate the unmixing

matrix W, under the assumption that the source variables have

non-Gaussian distributions, such as FastICA and infomax [14].

FastICA is an iterative algorithm that estimates the rows of W one

by one by maximizing the non-Gaussianality of rows of ŜS.

Infomax aims at estimating W such that the rows of ŜS are

maximally independent. Both the approaches have been shown to

be theoretically equivalent [14].

2. Model order estimation
ICA estimates as many independent components as the number

of rows in the data matrix X. In practice, the number of rows of X

(number of time-points) is much greater than the plausible number

of underlying sources. However, X is still a full rank matrix in most

cases because of the white noise. Estimation of the independent

components directly from matrix X risks over-fitting noise sources

and yields spatially sparse independent components. For this

reason, it is necessary to reduce the dimensionality of the data.

Dimensionality reduction is typically achieved using PCA.

Robust ICA Model Order Estimation for Low CNR fMRI
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PCA (in the spatial domain) decomposes the data into a set of

orthogonal images, ranked according to their contribution to the

total variance in the data. First, the sample correlation of the data

matrix is obtained: R~
XX T

n{1
. R is symmetric and positive

semidefinite, and therefore has real, non-negative eigenvalues

l1§l2§:::§lp§0 and corresponding orthogonal eigenvectors

q1,q2:::qp. R can be factorized as following: R~QTLQ, where

Q~½q1,q2:::qp� and L is a diagonal matrix with diagonal elements

equal to l1,l2,:::,lp. The rows of matrix QT Xcontain the principal

components of data, and the fraction of the total variance of the

data explained by the ith principal component is equal to
li

l1zl2z:::zlp

. The principal components are linear combina-

tions of rows of X, and are mutually orthogonal. Therefore PCA

can be seen as a whitening transform.

In the absence of noise, the number of non-zero eigenvalues

would be equal to the number of independent sources. Therefore,

ICA can be performed on the principal components correspond-

ing to non-zero eigenvalues only. However, in the presence of

noise, X~ASzg, where g is a p x n matrix and represents the

Gaussian noise contribution. In this case, the rank of X is greater

than the true number of sources, and dimensionality reduction (by

discarding some of the principal components with non-zero

eigenvalues) is required to avoid overfitting. A reduced dataset

comprising the first nIC principal components is then subjected to

ICA to obtain nIC independent components.

Despite its potential to strongly influence the final results of

ICA, there remains no consensus on the appropriate method for

nIC estimation. Several approaches have been proposed and are

available in ICA packages such as GIFT (http://icatb.sourceforge.

net) and MELODIC (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), and

have gained popularity during the past decade [15]. These include

Akaike’s information criterion (AIC), minimum description-length

criterion (MDL), Bayesian information criterion (BIC) and Laplace

approximation to the Bayesian evidence of the model order (LAP).

AIC, MDL and BIC criteria are mathematically similar and

involve minimization of a cost function of the form

C(k)~{a log f (X ĵh)zbk, where a and b are positive constants

for a given dataset, ĥ is a vector containing model parameters

(eigenvalues, eigenvectors and estimated noise variance, in our

case) [16,17]. The first term rewards log-likelihood of the fitted

model with k free parameters, whereas the second term penalizes

complexity of the model (i.e. the number of free model

parameters). In the context of PCA-based representation of the

data, C(k)~{a log
P

i~kz1

p

l
1=(p{k)
i

1
p{k

Pp
i~kz1

li

0
BBB@

1
CCCA

(p{k)n

zbg(k), where k is the

number of retained principal components, and g(k)is an

increasing function of k whose exact formula depends upon

whether the data are real or complex [16,18]. C(k) is computed

for different values of k, and the value of k minimizing the cost

function is chosen as nIC. In this formulation, it is assumed that 1)

the additive noise is white, 2) the sources are Gaussian and 3) the

observations (voxel values in an image, in our case) are

independent and identically distributed [16]. The LAP criterion

for model order estimation is based upon probabilistic PCA. The

model order that maximizes the Laplace approximation to the

model evidence is chosen as nIC [19]. LAP assumes a Gaussian

distribution of the sources [19].

The model order criteria described above involve assumptions

that are violated for real fMRI data. For example, voxel values

within an image cannot be treated as independent variables due to

the intrinsic point spread function of fMRI as well as blurring

applied as a preprocessing step [18]. Additionally, the sources to

be estimated are inherently non-Gaussian (which is the main

assumption behind source estimation using ICA). Also, temporal

filtering, when performed as a preprocessing step, can change the

temporal structure of otherwise uncorrelated noise, further

violating the underlying assumptions. Therefore, there is a need

to explore methods that involve fewer and less restrictive

assumptions about the data.

3. Multi-run/Group-ICA approaches
Different approaches can be used in situations where multiple

datasets (collected from different subjects or different runs/sessions

from the same subject) need to be collectively analyzed using ICA.

The two approaches compared in this article are summarized

below:

3.1. Concatenation ICA with 2-step PCA reduction

(ICAcat). This strategy has been previously described in [3]

and is one of the most widely used group ICA approaches. Data

dimensionality is reduced using two-stage PCA reduction prior to

ICA. First, the data from each dataset (individual runs, in our case)

is reduced to V dimensions by selecting the principal components

that correspond to the V largest eigenvalues. The reduced datasets

are then concatenated and passed through a second stage of PCA

reduction to nIC dimensions. Typically, V and nIC are chosen by

performing model order estimation on the individual datasets and

concatenated reduced dataset. ICA is performed on the reduced

data and the components are then back reconstructed to obtain

the components specific to the individual datasets.

3.2. ICA on averaged runs (ICAavg). All the preprocessed

runs/subjects within a session are averaged together, and the

model order is estimated for the averaged dataset. ICA is

performed on the averaged dataset [20]. This method results in

loss of subject/run specific information, but may result in greater

effective CNR if the activity of interest is time-locked across runs/

subjects (e.g. block-design experiments).

Study Design and Methods

1. Study Design
First we compared performance of different nIC estimation

strategies using simulated data, where the ground truth is known.

Simulated data were generated with different CNRs and the

following nIC estimation strategies were compared: Boostrap

stability analysis of principal components (BSA), Akaike’s infor-

mation criterion (AIC), minimum description-length criterian

(MDL), Bayesian information criterion (BIC) and Laplace

approximation to the Bayesian evidence of the model order

(LAP). AIC, MDL, BIC and LAP methods are implemented in

widely available ICA toolboxes.

Second, we validated our choice of nIC selection strategy using

low-CNR fMRI data with a known driving stimulus. The data

were acquired from monkeys with tactile stimulation of digits 1

and 3 (D1 and D3), as described in previous reports [18,21].

Third, we compared different multi-run ICA strategies using

pseudo-real data.

Pseudo-real data were generated by superimposing activation

on real resting state data. The purpose of utilizing pseudo-real data

was to assess the ability of our methods to detect the known

activation patterns with small magnitude in the presence of the

structured and unstructured noise present in real datasets.

Robust ICA Model Order Estimation for Low CNR fMRI
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2. Generation of Simulated Data
Simulated datasets were generated with 15 underlying non-

Gaussian sources and 300 time points. These datasets were used

for optimization of nIC estimation criteria. The sources were

generated using the square of a Gaussian distribution with zero

mean and unit variance, while keeping the original signs [20]. The

variances of the individual sources were scaled so that the variance

of the ith source was equal to i2, thus simulating the natural

variation in the degree to which different sources contribute

towards the total variance. The time-courses for the sources were

generated from a zero-mean Gaussian distribution with unit

variance, followed by low-pass filtering (0–0.1 Hz). The sources

were mixed in accordance with the associated time-courses,

followed by addition of white Gaussian noise with different

variances to obtain different levels of percentage contribution due

to the underlying sources. 50 simulated datasets were obtained for

each level of noise.

Datasets generated using this method are referred to as Dsim

datasets henceforth.

3. Acquisition of fMRI data
3.1. Animal Preparation. All procedures were in compli-

ance with and approved by the Institutional Animal Care and Use

Committee of Vanderbilt University. Two squirrel monkeys were

sedated with ketamine hydrochloride (20 mg/kg) with atropine

(0.08 mg/kg) and, after intubation, ventilated with isoflurane (0.5–

1.1%) delivered in a 30:70 O2:NO2 mixture to maintain a light

level of anesthesia. Animals were then placed in a custom-designed

MR cradle and their heads secured with ear and head bars.

Intravenous fluids (lactated ringers with 2.5% of dextrose) were

infused (3 ml/kg/hr) throughout an imaging session to prevent

dehydration. For cerebral blood volume (CBV) weighted contrast,

a bolus 12–16 mg Fe/kg dextran coated MION contrast agent

with an average particle diameter of 30 nm in saline, was injected

intravenously along with 0.9% saline solution. This agent has a

half-life time .6 h in blood (Zhao et al., 2003), where a steady-

state condition was reached within a few minutes after injection.

SpO2 and heart rate (Nonin, Plymouth, MN), ECG, ET-CO2 (22–

26 mm Hg; Surgivet, Waukesha, WI), and respiratory pattern (SA

instruments, Stony Brook, NY) were monitored. Rectal temper-

ature (SA instruments) was maintained (37.5–38.5uC) via a

circulating water blanket (Gaymar Industries, Orchard Park,

NY). Real time monitoring of the animal was maintained from the

time of induction of anesthesia until full recovery.

3.2. Stimulus Presentation. Fingers were secured by gluing

small pegs to the fingernails and fixing these pegs firmly in

plasticine, leaving the glabrous surfaces available for vibrotactile

stimulation. Piezoceramic actuators (Noliac, Kvistgaard, Den-

mark) delivered a vertical indentation of a 2 mm diameter probe

with 0.34 mm displacement to individual distal fingerpads. The

piezoactuators were driven by Grass stimulators (Grass-Telefactor,

West Warwick, RI) at a rate of 8 Hz with 30 ms pulse duration.

Seven alternating 30 s blocks of baseline and vibrotactile

stimulation were delivered per imaging run. The MR scanner

controlled the timing of the stimulus blocks consisting of

simultaneous stimulation of digits 1 and 3 (D1 and D3).

3.3. MRI Methods. MR imaging was performed on 9.4 T

21 cm narrow-bore Varian Inova magnet (Varian Medical

Systems, Palo Alto, CA) using a 3 cm surface transmit-receive

coil positioned over the somatosensory cortex. T2*-weighted

gradient echo structural images (TR/TE 200/16 ms, 16 slices,

5126512 matrix; 786786500 mm3 resolution) were acquired to

identify cortical venous structures that were used to locate SI

cortex and provide structural features for coregistration of fMRI

maps across imaging sessions. Isotropic 3D image

(50065006500 mm3) was collected using 3D gradient echo pulse

sequence for registration across imaging sessions. For CBV-

weighted fMRI, 2-shot, multi-slice gradient-echo EPI (TR/TE

750/10 ms) images were acquired beginning 10 minutes following

a slow i.v. bolus of MION (12–16 mg/kg), with an increased in-

plane resolution of 2736273 mm2 compared to our previous

studies (6256625 mm2, [18,22]). Triple references were used for

phase correction. B0 map (t 2 ms) at the same resolution was

collected for distortion correction.

Each monkey was imaged on two different days, thus resulting

in two imaging sessions per monkey. 3–6 CBV weighted runs were

acquired for each session. 6 runs of resting state data were

acquired from one of the monkeys (used later for generation of

pseudo-real datasets).

Datasets acquired using this method are referred to as Dreal

henceforth.

4. Generation of Pseudo-real Data
0.4%–0.8% ‘‘activation’’ above the baseline was superimposed

on resting state datasets described in the previous section. Area,

location and time-course of ‘‘activation’’ were prescribed based

upon those observed for real data. Pseudo-real data generated in

this manner was used to compare different multi-run ICA methods

for analysis of the data with noise structure, activation localization

and activation magnitude similar to the real fMRI data.

Pseudo-real data (generated as described above) is referred to as

Dpreal later in the text.

5. Data Analysis
All the analysis steps were performed using custom MATLAB

programs unless otherwise noted. Only the most superficial slice

was used for the analysis since it contained the activity of interest,

given the prior knowledge about anatomical locations of the

representations of D1 and D3 in the primary somatosensory

cortex.

5.1. Preprocessing. Motion correction and coregistration

between the individual runs within a session were performed using

AFNI [23]. All the images were smoothed using a 363 Gaussian

kernel with s= 2 pixels. The time-courses were detrended by

fitting and removing 3rd order polynomials. Motion parameters

were regressed out of the individual time-courses. In order to

minimize the contribution due to non-neural sources, the

contribution of the signals from the voxels belonging to skin was

regressed out. To achieve this, regions of interest (ROIs) were

manually drawn to obtain a skin mask. Temporal principal

component analysis was performed on the signals from skin, and

the principal components corresponding to the 5 largest eigenval-

ues were regressed out of all the time-courses. The resultant time-

courses were low-pass filtered (0–0.1 Hz).

5.2. Hypothesis-driven activation mapping. All the pre-

processed runs within a session were averaged together, yielding

an averaged dataset. Cross-correlation was obtained between the

individual time-courses of the averaged dataset and a boxcar

reference corresponding to the stimulus, to obtain a cross-

correlation map for each session.

5.3. Optimization of model order selection

criterion. We assessed the performance of five model order

estimation criteria (MDL, AIC, BIC, LAP and BSA) on simulated

datasets (Dsim). MELODIC was used for nIC estimation using

MDL, AIC, BIC and LAP [15]. BSA (based on [13]) was

implemented in MATLAB. The following steps describe the BSA

method as used in this article:

Robust ICA Model Order Estimation for Low CNR fMRI
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Figure 1. Comparison of nIC estimates for simulated data (with true nIC = 15) using different approaches. Box and whisker plots for
different noise levels and nIC estimation methods are shown. Red line in the middle of a box represents median nIC, whereas the boundaries of a
blue box are the 25th and 75th percentile. The whiskers extend to the most extreme values that are not outliers, and the outliers are shown using red
+ signs. Here, outliers are defined as values that are above the 75th percentile or below the 25th percentile by a minimum difference of 1.5x(75th

percentile –25th percentile). Bottom, middle and top grey dotted lines corresponds to nIC = 12, 15 (true nIC) and 18. a) nIC estimates without temporal
filtering –BSA results in the most stable estimates of nIC (smallest spread and number of outliers) for all noise levels, compared with the other
methods. On average, nIC estimated using LAP method is closer to the true nIC (compared with BSA), but exhibits very high spread and number of
outliers. b) nIC estimates with temporal filtering (f,0.1 Hz): BSA results in the most stable and accurate estimates of nIC, compared with the other
methods. Other methods result in highly exaggerated estimates of nIC, especially for high noise levels. Overestimation of nIC is most severe when the
LAP method is used. These results indicate that BSA is compatible with temporal filtering which might be required to increase % variance
contribution due to the sources of interest.
doi:10.1371/journal.pone.0094943.g001
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1) A set of principal components P0 was obtained by performing

PCA on all the images in a run.

2) For the kth iteration, a set of principal components (Pk) was

obtained from bootstrapped samples from the image series.

Each bootstrapped dataset consisted of ,1/3 of the total

images in the series.

3) Correspondence between members of P0 and P1 …. PN (N =

number of bootstraps) was established. Hierarchical clustering

(with the number of clusters forced to match the number of

principal components) was used to establish correspondence

between principal components.

4) Bootstrap stability of the components in P0 was estimated. We

used1-|correlation-coefficient| as a measure of dissimilarity

between the components obtained from the original dataset

and bootstrap replicates.

5) A Gaussian-noise dataset was generated with the same

dimension as that of the dataset on which nIC estimation

was being performed. When temporal filtering/spatial

blurring was applied to the data, the same filtering/blurring

was applied to the noise dataset. Steps 1 through 4 were

repeated for the noise dataset to estimate the stability of the

principal components under the null hypothesis condition (i.e.

when no structured variance is present in the data).

6) A Mann-Whitney U-test is used to estimate the number of

stable components (p,0.05). The distributions compared

using the Mann-Whitney U-test were 1) bootstrap stability of

a given component, and 2) bootstrap stability of the First

principal component of the Gaussian noise dataset.

To save computational time, only the first 100 principal

components were used when establishing component correspon-

dence (step 3). The actual number of stable components (as

obtained by this method) was much less than 100, as described

later in the text. The number of bootstraps was chosen to be 500

for the noise dataset and 100 for the dataset on which nIC

estimation was being performed.

5.4. ICA on real datasets. We used two approaches (ICAavg

and ICAcat) to analyze Dreal datasets. As shown in the results

section, BSA yielded optimal results on the synthetic data, and was

used for nIC estimation on real data. For comparison, we also

estimated nIC for real data using two popular ICA packages for

fMRI (MELODIC [15] and GIFT) using their default nIC

estimation methods (LAP and MDL). For ICAcat, we first used

BSA to estimate the optimum nIC for each run of a particular

session. We then set the model order equal to the largest nIC

identified in a single run in a particular session. Group ICA for

fMRI Toolbox (GIFT) was used to perform group ICA on all the

Figure 2. Activation maps obtained using cross-correlation analysis (CC), ICAcat and ICAavg (|z|.2.5). In general, ICA provides greater
contrast (in terms of z-score) between activated and non-activated brain regions. Compared with ICAcat, ICAavg provides greater functional specificity
and contrast. The results are consistent across subjects and sessions. These maps correspond to nIC estimated using the bootstrap stability analysis
approach (nIC = (9.861.2)).
doi:10.1371/journal.pone.0094943.g002
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runs for a given session (GIFT uses ICAcat for performing group

ICA when multiple datasets are supplied) [3]. To identify the task-

related independent components, we obtained part correlation

between the run-specific time-courses of individual independent

components within a session, and the reference time-course. The

independent component corresponding to maximum average part

correlation with the reference time-course was chosen as the task-

related component.

For ICAavg, we averaged all the preprocessed runs within a

session using MATLAB and saved the averaged dataset as a

NIFTI file (for compatibility with GIFT). nIC for the averaged

dataset was estimated using BSA. GIFT was used to perform

single-run analysis on the averaged dataset [3]. We used this

approach to assess whether the improvement in CNR associated

with averaging away non-phase coherent signal variations across

the sessions could improve our ability to faithfully detect the

activation patterns present in the data. The task-related compo-

nent was identified as the component for which the associated

time-course exhibited highest part correlation with the reference

time-course.

Similarity between the ICA results (stimulus related ICA maps

and associated time-courses) and the hypothesis-driven results

(activation map and stimulus time-course) was assessed using

correlation coefficients between the corresponding time-courses

and maps, and Bland-Altman analysis [24].

5.5. Comparison of multi-run ICA methods. Dpreal

datasets were used for comparison of ICAavg and ICAcat. Since

the true activation maps for the Dpreal datasets were known, we

were able to obtain true ROC curves corresponding to the two

methods. These curves were used to compare the methods for

multi-run analysis.

5.6. Thresholding and display of maps. Activation maps

(derived using ICA/cross-correlation analysis) were rescaled to

spatial z-scores (number of standard deviations from the mean

map). The resultant maps were thresholded (e.g. zj jw2:5), color

coded and overlaid on anatomical images [25,26]. These z-values

do not reflect significance, and are used for visualization only

[25,26]. In cases where the area of activation is much smaller than

the total brain area covered in the field of view, higher z-values of

activated areas would indicate higher ‘‘contrast to noise’’ ratio of

the activation map.

Results

1. Optimization of model-order selection criterion
Figure 1 summarizes nIC estimates obtained using different

strategies for different contributions due to Gaussian noise using

box-and-whisker plots. AIC, MDL and BIC estimates were

identical (which may be expected given their very similar

mathematical forms), and therefore, we have only included

MDL estimates in Figure 1.

Figure 1a shows the results in the situation where temporal

filtering is not used to increase the contrast-to-noise ratio. BSA

yields the most consistent estimates of nIC of all the methods

across all noise levels: the maximum difference between 25th and

75th percentile values is 1, and the detected outliers have a

maximum difference of 1 from the median value for BSA. LAP

estimates have the highest inconsistency, as apparent from larger

spread and extreme values of the outliers. nIC estimated using

LAP shows the least bias (i.e., the average difference between LAP

estimate and true nIC is the lowest, compared with other

methods). However, LAP-derived nIC estimates also show the

greatest amount of variability, and hence least reliability. The

performance of the other methods (BIC, AIC and MDL) is inferior

to the performance of BSA method in terms of bias and

consistency. In general, low CNR results in underestimation of

nIC (Figure 1a)

Figure 1b illustrates the dangers of nIC estimation in the

presence of temporal filtering, particularly in the setting of low

SNR. When temporal filtering is performed, LAP, AIC, MDL and

BIC yield highly exaggerated estimates of nIC when noise levels

are high (Figure 1b, AIC and BIC based estimates were equal to

MDL based estimates in all cases). In contrast, BSA is remarkably

resistant to inflation of the estimated nIC in temporally filtered

data. In fact, temporal filtering results in a slight reduction in bias

of BSA estimates for all noise levels (,0.5, on average).

These results suggest that BSA provides the most consistent and

stable estimates for nIC and does so regardless of whether

temporal filtering is performed. These estimates can be further

improved by incorporating prior information about the frequency

range of the signals. BSA was used for obtaining the results

described in the rest of the article, unless otherwise noted.

2. Hypothesis-driven activation mapping
Tactile stimulation resulted in activation of expected regions in

somatosensory cortex for all monkeys and sessions. For additional

information about expected activation, see [21]. As seen in

Figure 2 (column 1), hypothesis driven analysis (based on voxel-

wise correlation with the stimulus time-course) detects activation in

area 3b of somatosensory cortex corresponding to digits 1 and 3,

as expected. Some activation in area 1 is also observed. Average

percentage signal decrease corresponding to the voxel exhibiting

highest correlation with the stimulus time-course ranged between

0.35% and 0.8%. The difference map (obtained after subtracting

average signal intensity during stimulation from average signal

intensity during rest) explained 1.5–3.5% of the total variance in

the smoothed and detrended data. However after including the

remaining preprocessing steps (regressing out motion parameters,

principal components from skin and filtering), the variance

explained by the difference maps ranged between 2.5 and 9.2%

due to removal of some of the task-unrelated variance.

3. ICA on the real data
Unless otherwise noted, the model order selection was made

based upon BSA. Application of BSA to the preprocessed data

yielded a stable estimate of the number of components across all

runs and sessions (9.861.2 for ICAcat, 9.7561.25 for ICAavg,

pooled over all subjects and sessions. Consistent with the

simulation results, the model order estimated using LAP (default

method used in MELODIC [15]) and MDL (default method used

in GIFT) yielded exaggerated estimates of nIC (ranging between

,50 and ,170; for one subject, local minima of the MDL

function were found for nIC between 11 and 15. However, the

global minima in those cases always occurred for nIC .160). ICA

performed with this model order resulted in overfitting, and the

individual components were found to be very sparse, with highly

localized foci of ‘‘activation’’. Results of ICAavg with nIC = 176 (as

suggested by MDL) on one of the datasets are shown in Figure S1.

Stimulus-related independent components obtained for ICAcat

and ICAavg are shown in Figure 2, columns 2 and 3 respectively.

Visual inspection suggests that the ICAcat and ICAavg generate

spatial modes consistent with classically derived activation maps.

In general, ICA maps had greater functional contrast (expressed

by the z-score in the activated regions), compared with correlation-

based activation maps. ICAavg yields the greater functional

contrast of the two ICA approaches. Two factors may contribute

to the improved CNR in the ICA maps: the noise reduction

associated with PCA filtering in first step of ICA, and ICA’s ability

Robust ICA Model Order Estimation for Low CNR fMRI
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- in contrast to cross-correlation based analyses - to separate the

sources. The stimulus-related independent components obtained

from ICAavg exhibit greater similarity (measured in terms of cross-

correlation) with the hypothesis-driven activation map, in com-

parison with ICAcat (0.6360.16 vs 0.5060.20). Additionally, the

temporal profiles associated with the stimulus-related independent

component obtained using ICAavg showed greater correlation with

the stimulus time-course, compared with that corresponding to

ICAcat (0.6160.07 vs 0.5160.17). These findings suggest that

greater functional contrast and spatial/temporal accuracy can be

achieved when ICAavg is used (for the case of phase-synchronized

stimulus-driven response across the datasets to be averaged), where

spatial/temporal accuracy is estimated by similarity of the maps/

time-courses with those associated with hypothesis-driven analysis.

Figure 3 shows run-specific time-courses associated with the

stimulus-related independent component obtained using ICAcat (3

runs for one session, separated by vertical lines), along with the

stimulus-related component of the time-courses (obtained using

linear fitting). As can be seen, run-specific variations in stimulus-

dependent response can be captured using ICAcat. Run-specific

correlation-based activation maps for these runs are displayed in

Figure 3 (row 2). Visual comparison between rows 1 and 2 of

Figure 3 suggests improved functional contrast (for hypothesis-driven

analysis) associated with greater stimulus-dependent temporal

contribution of the stimulus-related independent component. Both

correlation (Figure 4a) and Bland-Altman analyses (Figure 4b)

confirm the strong agreement between the ICA and hypothesis

driven measures, i.e. 1) similarity (as measured by correlation) of

the temporal profile of the stimulus-related IC and stimulus

function, and 2) average correlation of activated voxels (based on

correlation-based activation maps) with stimulus function. Figure 3

and 4 suggest that differences in run-specific time-courses of the

stimulus-related independent component faithfully capture varia-

tion in stimulus-driven response across different runs.

Coincidence maps derived from the stimulus-related maps for

individual runs (obtained using ICAcat) were found to be highly

reproducible within and between the sessions and animals

(Figure 5).

4. Comparison of multi-run ICA strategies using pseudo-
real data

Figure 6 shows task-related IC maps obtained from pseudo-real

datasets with 0.4% activation using three different multi-run ICA

approaches. True activation boundaries for D1 and D3 are

encircled in black. Consistent with the maps obtained from real

data, the visual comparison reveals that the spatial specificity of the

task-related map obtained using ICAavg is superior to that using

ICAcat and generates fewer spurious areas compared with the

Figure 3. Run-specific changes in activation as captured by ICA and hypothesis-driven analysis. a) Run-specific time-courses for the
stimulus-related independent component obtained using ICAcat capture differences in stimulus-related contribution. ‘‘linefit to ICA’’ represents least
squares approximation of the ICA time-course in terms of the reference function. b) These variations are in agreement with the maps obtained using
hypothesis-driven (correlation-based) analysis. The images are shown with reversed contrast, so that activated pixels appear hot.
doi:10.1371/journal.pone.0094943.g003
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cross-correlation based hypothesis-driven analysis. Quantitative

comparison of the detection power of these approaches using

ROC analysis (Figure 7) confirms that ICAavg provides more

sensitivity for a given level of specificity, compared with ICAcat.

Furthermore, the area under the ROC curve for ICAavg is also

greater than that for hypothesis-driven, correlation-based activa-

tion mapping.

Discussion

The research presented in this article has three main

contributions. First, we address the issue of selection of optimal

model order for ICA of fMRI. We compared five approaches for

data-driven model order estimation (four of which have been

implemented in widely available ICA software) and conclude that

model order selection based upon bootstrap stability of principal

components significantly outperforms more commonly used

methods (AIC, MDL, BIC and LAP) for a wide range of CNRs.

Secondly, we push the limits of sensitivity of ICA by demonstrating

that it can be used to reproducibly detect weak (as small as 0.4%

above the baseline) and focal neural responses in fMRI that are

produced in response to tactile stimulation of individual digits

under anesthesia in a completely data-driven way. Third, we

compare two different approaches for group/multi-run ICA.

There has been no consensus on model order selection criteria

for ICA and it still remains an area of active research. Several

approaches have been proposed to select the model order. Some

studies have chosen the model order based upon the fraction of

total variance explained by the first few principal components of

the data (e.g. more than 99.7%). Other studies have utilized a

model order based upon arbitrary selection, e.g. [11]. Such criteria

have no relationship with the inherent dimensionality of the data.

Information theoretic criteria such as AIC and MDL have also

been used to estimate the number of independent sources. These

methods are more objective, but have been reported to

overestimate the number of components [10]. Model order is a

very important parameter for ‘‘blind’’ source separation, as it can

heavily influence the findings. Thus, inclusion of too many

principal components in the data-reduction step results in sparse

components, with smaller regions of activation [9,27]. Also, the

resultant components have been reported to be less reliable [27].

In contrast, smaller model orders tend to result in less focal

component maps and may not reflect the true underlying

complexity of the source signals. While manual adjustment of

nIC, possibly hypothesis/model driven, may allow one to arrive at

the number of components that yields ‘‘desired’’ results (i.e. similar

to an expected activation pattern), this defeats the very purpose of

data driven analysis and biases the results in favor of the expected/

desired result. Our simulations suggest that BSA outperforms

commonly used nIC estimation criteria in terms of accuracy and

reliability. Also, and in contrast to the methods most commonly

Figure 4. Strong agreement between model-free data-driven
ICA and cross-correlation with stimulus model. a) A linear
relationship is observed between 1) similarity (as measured by
correlation) of the temporal profile of the stimulus-related IC and
stimulus function (CC_ICA), and 2) average correlation of activated
voxels (based on correlation-based activation maps) with stimulus
function (CC_act). b) Bland–Altman plots and fitted linear trends of
mean vs. difference between CC_ICA and CC_act. The difference shows
negligible bias and an insignificant linear trend, suggesting strong
agreement between CC_ICA and CC_act.
doi:10.1371/journal.pone.0094943.g004

Figure 5. High run-to-run reproducibility of activation maps
obtained using ICA. Coincidence maps, representing the percentage
of single runs within a session for which ICA identified a given voxel as
activated, are shown in the figure. To identify activated voxels, run-
specific maps were converted to z-scores and thresholded (|z|.2.5).
Negative values indicate that the voxel appears with negative intensity.
doi:10.1371/journal.pone.0094943.g005
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used for nIC estimation, we found that BSA performance is not

degraded when temporal filtering is performed to increase the

CNR based upon the prior knowledge of the frequency bands of

importance (Figure 1b). BSA is resistant to this effect because it

processes the real data and the data under the null hypothesis

condition using the same steps. Accuracy, reliability and the fact

that this approach is relatively insensitive to the preprocessing

steps make it a desirable method for model order selection.

To demonstrate the effects of over/under estimation of nIC on

the estimated sources, we performed ICAavg on pseudo-real data

(setting activation at 0.4% above the baseline) with different model

orders. For nIC = 10 (as suggested by BSA), the activation-related

component shows excellent agreement with the ‘‘ground truth’’

(outlined regions, Figure 8, a). However, for nIC = 5, none of the

resultant components corresponds to the ‘‘ground truth’’ activa-

tion map. Indeed the component whose time-course exhibits the

highest part-correlation with the stimulus time-course shows no

spatial correspondence with the ‘‘ground truth’’ map (Figure 8, b).

This is expected because underestimation of nIC results in loss of

components that contribute relatively smaller variance to the data,

and the simulated activation is localized to a small area and is

weak (0.4% above the baseline). In fact, the ‘‘ground truth’’ does

not appear in one of the ICA maps for any model order smaller

than 9. Figures 8 c and d demonstrate effect of overestimation of

nIC on ICA results. Two components with high temporal

correlation with stimulus time-course (part correlation .0.3) are

observed when nIC = 50, suggesting that the task-related

component is split into two sub-components. This result is in

agreement with previous work that suggest that increasing nIC

results in sparser components [27]. This subdivision of ‘‘activated

area’’ does not correspond to greater functional specificity of the

maps and represents purely the effect of overfitting, because the

‘‘stimulus-related’’ activity was added with equal magnitude and

phase to all the voxels within the outlined regions in Figure 8.

The degradation of performance of conventional approaches to

nIC estimation (AIC, MDL, BIC and LAP) when using pre-filtered

data is very dramatic and indicates that their use on preprocessed

data requires great caution. This degradation of performance in

Figure 6. Stimulus-related IC maps obtained using different multi-run ICA approaches, compared with hypothesis-driven
activation map. Consistent with the results for real datasets ICAavg provides more specific maps and higher functional contrast, compared with
ICAcat and cross-correlation-based hypothesis-driven analysis. A lower z-threshold (|z|.1.5) was chosen to highlight the differences in specificities of
these approaches.
doi:10.1371/journal.pone.0094943.g006

Figure 7. ROC curves (pseudo-real data with 0.4% activation
above the baseline. ICAavg provides more sensitivity for a given level
of specificity, compared with ICAcat and cross-correlation based
hypothesis-driven analysis. This observation is consistent with Figure 6
as well as the results obtained for real datasets (Figure 2).
doi:10.1371/journal.pone.0094943.g007

Figure 8. Task-related components obtained from pseudo-real
data using different model orders. a) Activation-related map
obtained with nIC = 10 (as suggested by BSA) corresponds well with
the ground truth. b) Spatial map associated with time-course exhibiting
highest part correlation with stimulus time-course when setting nIC = 5
(i.e. under-estimate of nIC). Underestimation of nIC leads to loss of a
spatial component corresponding to the ‘‘ground truth’’ activation. c,
d): Over-estimation of nIC (nIC = 50) splits the ground truth activation
map into 2 components.
doi:10.1371/journal.pone.0094943.g008
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the presence of temporal filtering may be attributed to violation of

the underlying assumptions of common implementations of those

approaches. For example, the commonly used implementation of

AIC and MDL, as proposed in [16] assumes independent and

identically distributed (i.i.d.) samples, which is violated due to

spatial blurring and the intrinsic point-spread function of fMRI.

[28] proposed a procedure for obtaining effectively i.i.d. samples

by downsampling the data, resulting in improved estimation of

nIC (MDL, as implemented in GIFT, utilizes this approach).

Another assumption in the formulation of AIC and MDL

proposed in [16] is that the additive unstructured noise is white.

Temporal filtering adds structure to the noise. Therefore, the

correlation matrix of the data may not be partitioned into white

and colored components, as assumed in [16]. This issue is not

encountered in the case of BSA, since the only assumption

involved is that the principal components corresponding to the

underlying sources are stable, and the randomized data (used to

generate null-distribution) can be filtered equivalently in cases

where filtering is performed on the real data.

The two group/multi-run ICA methodologies (ICAavg and

ICAcat) have their strengths and drawbacks, and which approach is

optimal will depend on the contexts/constraints: In situations

where inter-run/session/group differences are unimportant, neu-

ronal activity of interest is coherent across the runs/session/

groups, and spatial localization of the neuronal activity of interest

is the main objective, ICAavg offers better performance with less

computational load. The results we obtained using pseudo-real

data suggest that of the three approaches compared, ICAavg has

the greatest area under the ROC curve. One possible explanation

for this could be the higher effective CNR achieved due to

averaging. Averaging not only reduces the contribution due to

thermal noise, but also other components of noise such as

respiratory and cardiac sources of variance, making stimulus-

driven activity more likely to be fully captured by the first few

principal components. Indeed ROC analysis indicates that ICAavg

performance is superior to hypothesis-driven activation mapping

(cross correlation based activation mapping). This may be

explained by the fact that ICA inherently favors separation of

sources of structured variance if they are non-Gaussian and

independent.

Despite its high sensitivity for a given level of specificity for the

experiments conducted in a block-design setting, ICAavg cannot

provide any information about run-specific differences in IC maps

or activation time-courses. Also, the ICAavg approach is incom-

patible with experimental paradigms where brain activity changes

of interest are not synchronized/phase-locked across the runs/

sessions/subjects (e.g. resting state or random event-related fMRI

experiments). A concatenation-based multi-run/group ICA ap-

proach needs to be used in such circumstances. ICAcat has been

popular for concatenation-based ICA analysis due to its lower

computational burden and ability to identify run/subject specific

differences in activity. ROC analysis suggests that ICAavg provides

superior performance to ICAcat. Consistent with the ROC results,

visual comparison suggests that the task-related IC map obtained

using ICAcat is more ‘‘blurred’’ compared with that obtained using

ICAavg, possibly as a result of an underestimation of nIC. This

underestimation of nIC may arise from the presence of task-

independent but run-specific ICs reflecting sources of variance that

may not contribute evenly across the runs. In other words, run-

specific underlying independent components may be present.

Estimation of nIC on a run-by-run basis and taking their

maximum would not account for unique stable modes for different

runs, and might therefore lead to underestimation of nIC. This

problem might be overcome by performing nIC estimation on the

concatenation of the individual runs within a session. We

estimated nIC on the concatenation of all the runs for the

simulated datasets and found that the nIC estimates for the

concatenated dataset (,19) was higher than that estimated for any

of the runs individually (,11), confirming the explanation

provided above. The only potential drawback of this approach is

higher computational burden and a consequent increase in

processing time (,6-fold in this case).

We have used several preprocessing steps for noise removal in

order to increase effective CNR. This serves different purposes:

First, it increases the fraction of stimulus-related variance in the

data, making it more likely to be captured by the first few principal

components, and less likely that those principal components

capturing stimulus-related activity are lost in one of the reduction

steps. Secondly, an increase in CNR translates into better spatial

and temporal accuracy of the independent component maps.

These preprocessing steps are not a standard part of many ICA

analyses. However, a few animal studies have utilized filtering as a

preprocessing step, e.g. [7]. A lower frequency cutoff for the low-

pass filter could have been chosen, since the basic frequency of the

stimulus function was 0.0167 Hz. We chose to use 0.1 Hz because

of its relevance for resting state fMRI studies.

Most functional connectivity studies have highlighted the

presence of large-scale networks (for example default mode

network) [29,30]. However, it is well understood that much

smaller functional units exist in the brain such as cortical columns,

that may be detected using fMRI [22,31]. This leads to the

question of whether one can identify resting state connectivity

networks at that level of functional specificity. Our study

demonstrates that very localized and weak neuronal responses

can be detected in a completely data-driven way using fMRI,

making it reasonable to speculate that it may be possible to detect

highly localized networks with coherent spontaneous activity.

Further multi-modal investigations along these lines will play a

crucial role in 1) determining whether such local networks are

present, 2) assessing whether fMRI is sensitive enough to detect

those networks and 3) establishing the neurophysiological impor-

tance of such networks.

In conclusion, this study addresses one of the most fundamental

issues involved in data-driven ICA, i.e. nIC estimation, and

suggests an approach that outperforms commonly used methods.

Additionally, it pushes the limit of sensitivity of ICA of fMRI, and

adds to the applications for which it may be used.

Supporting Information

Figure S1 Effect of overestimation of nIC. Choosing nIC

= 176, as suggested by MDL, results in sparse components with

localized ‘‘hot spots’’, illustrating the effect of overestimation of

nIC.
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