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genesis of hematological malignancies; however, the extent to which deregulated phosphorylation
may be involved in B-cell non-Hodgkin lymphoma (B-NHL) pathogenesis is largely unknown. To
identify phosphorylation events important in B-NHLs, we performed mass spectrometry—based,
label-free, semiquantitative phosphoproteomic profiling of 11 cell lines derived from three B-NHL
categories: Burkitt lymphoma, follicular lymphoma, and mantle-cell lymphoma. In all, 6579 unique
phosphopeptides, corresponding to 1701 unique phosphorylated proteins, were identified and
quantified. The data are available via ProteomeXchange with identifier PXD000658. Hierarchical
clustering highlighted distinct phosphoproteomic signatures associated with each lymphoma sub-
type. Interestingly, germinal center—derived B-NHL cell lines were characterized by phosphoryla-
tion of proteins involved in the B-cell receptor signaling. Of these proteins, phosphoprotein
associated with glycosphingolipid-enriched microdomains 1 (PAG1) was identified with the most
phosphorylated tyrosine peptides in Burkitt lymphoma and follicular lymphoma. PAG1 knockdown
resulted in perturbation of the tyrosine phosphosignature of B-cell receptor signaling components.
Significantly, PAG1 knockdown increased cell proliferation and response to antigen stimulation of
these germinal center—derived B-NHLs. These data provide a detailed annotation of phosphorylated
proteins in human lymphoid cancer. Overall, our study revealed the utility of unbiased phospho-
proteome interrogation in characterizing signaling networks that may provide insights into
pathogenesis mechanisms in B-cell lymphomas. (Am J Pathol 2014, 184: 1331—1342; http://
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Protein phosphorylation is a reversible post-translational
modification that modulates stability, enzyme activity, and
protein-protein interaction, as well as mediates signal trans-
duction in response to extracellular and intracellular
stimuli.'” Abnormal protein phosphorylation has been
implicated in a wide range of diseases, especially in can-
cer.>* Indeed, recognition and detailed understanding of
deregulated phosphorylation-mediated signal transduction
pathways have led to the development of targeted therapies
with proven utility in the treatment of cancer.””’

B-cell non-Hodgkin lymphomas (B-NHLs) encompass
>30 different types of clonal B-cell proliferations.” With the
exception of a few B-NHLs, in which abnormal kinase ac-
tivities have been described, such as Janus-activating kinase
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2 overexpression in primary mediastinal B-cell lymphoma,’
clathrin-anaplastic lymphoma kinase (ALK) fusion protein in
ALK-positive diffuse large B-cell lymphoma,'® or Zap-70
aberrant expression in chronic lymphoid leukemia/small lym-
phocytic lymphoma,'' the extent to which deregulated phos-
phorylation may be involved in their pathophysiological
characteristics is largely unknown.

Mass spectrometry (MS) instrumentation has become
sufficiently sensitive and robust to become an ideal tool for
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proteomic studies because thousands of proteins can be
confidently identified in a single experiment within a rela-
tively short period of time. Tandem mass spectrometry (MS/
MS) allows the definitive identification of protein sequences
and sites of phosphorylation.'” Such information can be
subsequently used to highlight activation status of intracel-
lular signaling pathways. An enrichment of the phospho-
proteome is required before conducting MS/MS, mostly
because of the low stoichiometry of phosphoproteins.
Several methods for enriching proteins/peptides harboring a
phosphorylated residue are well described, such as metal
oxide affinity chromatography (MOAC)."” Because protein
phosphorylation does not occur evenly between serine,
threonine, and tyrosine residues (approximate relative ratio
of 90, 10, and 0.05, respectively), the exploration of tyrosine
phosphorylation requires an additional enrichment through
immunopurification with high-affinity anti-phosphotyrosine
antibodies (pY-IP)."*

In this study, we used a combination of MOAC and pY-
IP to perform a shotgun phosphoproteomic analysis of 11
cell lines derived from three B-NHL subtypes: Burkitt
lymphoma (BL) and follicular lymphoma (FL), which are
derived from germinal center B cells, and mantle-cell
lymphoma (MCL), which are derived from naive B cells.
We used a label-free spectral counting method to semi-
quantify the relative abundance of the phosphorylated
peptides/proteins.'” Our phosphoproteomic profiling high-
lighted the existence of phosphoprotein signatures char-
acteristic of each NHL subtype. To our knowledge, this
study provides the first detailed analysis of phosphopro-
teins with phosphorylation site mapping in human B-cell
lymphoma. Furthermore, these results provide a novel
perspective on signaling pathways in B-NHLs and empha-
size the phosphorylation of the B-cell receptor (BCR)
signaling pathway in those arising from the germinal center—
derived NHLs.

Materials and Methods

Cell Lines

A total of 11 cell lines were used in this study: three BL cell
lines, four transformed FL cell lines, and four MCL cell
lines (Supplemental Table S1).

Protein Extraction and Digestion for
Phosphoproteomic Analysis

Cells were lysed in buffer containing 9 mol/L urea/20 mmol/L
HEPES, pH 8.0/0.1% SDS, and a cocktail of phosphatase
inhibitors. Protein (6 mg) was reduced with 4.5 mmol/L
dithiothreitol and alkylated with 10 mmol/L iodoacetamide,
then digested with trypsin overnight at 37°C using an enzyme/
protein ratio of 1:50 (w/w). Samples were desalted on a C18
cartridge (Sep-Pak plus C18 cartridge; Waters, Milford, MA).
Each sample was prepared in triplicate.
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Phosphopeptide Enrichment

MOAC was performed to enrich phosphorylated peptides
and reduce the sample complexity before tyrosine-
phosphorylated peptide immunopurification (pY-IP). We
used titanium dioxide (TiO,) microparticles (Titansphere
Phos-TiO; GL Sciences Inc, Torrance, CA). Briefly, TiO,
microparticles were conditioned with buffer A (80%
acetonitrile/0.4% trifluoroacetic acid), then equilibrated
with buffer B (75% buffer A/25% lactic acid). Peptides
were loaded twice on TiO, microparticles and washed two
times with buffer B and three times with buffer A. Hydro-
philic phosphopeptides were eluted with 5% ammonium
hydroxide solution, and hydrophobic phosphopeptides
were eluted with 5% pyrrolidine solution. The equivalent
of 5 mg of protein was further enriched for phosphorylated
tyrosine peptides by overnight immunoprecipitation
(pY-IP) using a cocktail of anti-phosphotyrosine anti-
bodies [4G10 (Millipore, Billerica, MA); PT-66 (Sigma-
Aldrich, St. Louis, MO); p-Tyr-100 (Cell Signaling
Technology, Beverly, MA)].

MS Analysis

Ammonium hydroxide and pyrrolidine eluents were dried
(SpeedVac, ThermoFisher, Pittsburgh, PA) and recon-
stituted in 25 pL. sample loading buffer (0.1% trifluoroacetic
acid/2% acetonitrile). Eluent from phosphotyrosine immu-
noprecipitation was dried and reconstituted in 35 pL of the
loading buffer. A linear trap quadrupole Orbitrap XL
(ThermoFisher, Pittsburgh, PA) in line with a high-perfor-
mance liquid chromatogram Paradigm MS2 (Michrom
BioResources, Auburn, CA) was used for acquiring high-
resolution MS and MS/MS data. Phospho-enriched peptides
were loaded onto a sample trap (Captrap; Bruker-Michrom,
Auburn, CA) in line with a nanocapillary column (Picofrit;
75-um internal diameter x 15-um tip; New Objective,
Woburn, MA) packed in-house with 10 cm of MAGIC AQ
C18 reversed-phase material (Michrom BioResources). Two
different gradient programs, one each for MOAC and
phosphotyrosine immunoprecipitation samples, were used
for peptide elution. For MOAC samples, a gradient of 5% to
40% buffer B (95% acetonitrile/1% acetic acid) in a 135- and
5-minute wash with 100% buffer B, followed by 30 minutes
of re-equilibration with buffer A (2% acetonitrile/1% acetic
acid), was used. For phosphotyrosine immunoprecipitation
samples, which were a much less complex mixture of pep-
tides, 5% to 40% gradient with buffer B was achieved in 75
minutes, followed by a 5-minute wash with buffer B and a 30-
minute re-equilibration. The flow rate was approximately 0.3
pL/minute. Peptides were directly introduced into the mass
spectrometer using a nanospray source. Orbitrap was set to
collect one MS scan between 400 and 2000 m/z (resolution of
30,000 at 400 m/z) in an orbitrap, followed by data-dependent
collision-induced dissociation spectra on top nine ions in trap
quadrupole (normalized collision energy, approximately
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35%). Dynamic exclusion was set to two MS/MS acquisi-
tions, followed by exclusion of the same precursor ion for 2
minutes. Maximum ion injection times were set to 300
milliseconds for MS and 100 milliseconds for MS/MS.
Automatic gain control was set to 1 x e® for MS and 5000 for
MS/MS. Charge state screening was enabled to discard +1
and unassigned charge states. Technical duplicate data for
each of the MOAC elutions (ammonium hydroxide and
pyrrolidine) and triplicate data for the phosphotyrosine
immunoprecipitation samples were acquired.

Bioinformatics Analysis

RAW files were converted to mzXML using msconvert'® and
searched against the Swissprot Human protein database (ht1p://
www.uniprot.org) appended with common proteomics con-
taminants and reverse sequences as decoys. Searches were
performed with X!Tandem version 2010.10.01.1 (hztp.//www.
thegpm.org/TANDEM) using the k-score plug-in.'”"* For all
searches, the following search parameters were used: parent
monoisotopic mass error of 50 ppm and fragment ion error of
0.8 Da, allowing for up to two missed tryptic cleavages. Var-
iable modifications were oxidation of methionine, carbami-
domethylation of cysteine, and phosphorylation of serine,
threonine, and tyrosine. The search results were then post-
processed using PeptideProphet (hrtp.://peptideprophet.
sourceforge.net) and ProteinProphet (http://proteinprophet.
sourceforge.net).'” !

Spectral counts were obtained for each cell line using
ABACUS.” Tyrosine-enrichment data were processed
through ABACUS separately from the serine and threo-
nine data. ABACUS results were filtered to only retain
proteins with a ProteinProphet probability of >0.7. Only
phosphorylated peptides with a probability of >0.8 were
considered for spectral counting. These parameters resul-
ted in a protein false-discovery rate (FDR) of 0.1 for the
serine and threonine data. For the tyrosine enrichment,
these ABACUS parameters resulted in a protein FDR of
0.0045. This ABACUS output was used for all subsequent
analyses to quantify the relative abundance of phosphory-
lated peptides/proteins.

Phospho-site localization was performed with an in-
house reimplementation of the Ascore algorithm, as
described by Beausoleil et al.”> Ascore values represent the
probability of detection as the result of chance, with scores
>19 corresponding to sites localized with >99% certainty.
The classification of general motif classes or sequence
categories was identified using a binary decision tree
described by Villen et al.”* Briefly, the 13-mer sequences
were assigned as follows: proline at +1 (proline-directed
phosphopeptide), 5 or more glutamic acid/aspartic acid
at +1 to 46 (acidic phosphopeptide), arginine/lysine at —3
(basic phosphopeptide), aspartic acid/glutamic acid at
+1/4-2 or +3 (acidic phosphopeptide), and >2 arginine/
lysine at —6 to —1 (basic phosphopeptide). Recurrent
phosphorylation site motifs were extracted for three
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different B-NHL subgroups with the Motif-X algorithm.>
Sequences used for Motif-X were constructed such that the
phosphorylated residue was flanked on either side by five
amino acid residues. The minimum motif occurrence for
Motif-X was set to 20, and only motifs with P < 107> were
considered.

Hierarchical clustering of the spectral count data were
performed separately for each enrichment type (tyrosine
versus serine/threonine). Apart from this, the procedure
was performed in the same manner on both data sets, as
follows. Only proteins with a total spectral count higher
than nine in at least one of the cell lines used in this study
were retained. After filtering, all protein spectral counts
were normalized first to the total spectral counts within
each cell line, and then to the total across all cell lines.
These normalized values were log2 transformed and un-
derwent hierarchical clustering with a multiscale bootstrap
resampling for 10,000 iterations using the pvclust package
in R (htp:/fwww.r-project.org).”® The resulting dendrogram
was then used to represent the clustered log2 normalized data
in a heat map.

Immunoprecipitation and Western Blot Analysis

The primary antibodies were anti-phosphoprotein associated
with glycosphingolipid-enriched microdomains 1 (PAG1)
antibody (Abcam, Cambridge, MA), anti-LYN antibody
(Abcam), and anti-phosphotyrosine antibodies (4G10 and
PT-66 and p-Tyr-100). For immunoprecipitation, 4 mg of
protein lysates was precleared, then incubated overnight at
4°C with 5 pg of antibody previously cross-linked to protein
A/G plus agarose.

PAG1 Knockdown

PAGI1 was knocked down in the BJAB cell line using the
GIPZ lentiviral shRNAmir clone, V2LHS_175609, from
Open Biosystems (ThermoFisher). A scrambled GIPZ len-
tiviral ShRNA was used as control. Lentiviral particles were
produced by the HEK-293-FT cell line after a FuGene
cotransduction of a packaging mix and the lentiviral
shRNA. Lentiviral infections of the BJAB cell line were
performed in media containing polybrene and selected with
1 pg/mL of puromycin. PAG1 knockdown was assessed by
Western blot analysis, performed in triplicate.

In Vitro Proliferation Assay

Cell lines were seeded at a density of 50,000 cells/mL and
grown for 48 hours, with or without stimulation by 50 pg/mL
anti-IgM antibody (Invitrogen, Grand Island, NY) or 50
png/mL lipopolysaccharide (Sigma-Aldrich). After 2 hours of
incubation with the WST-1 reagent (Roche Diagnostics,
Indianapolis, IN), the absorbance was read at 540 nm. Each
assay was performed in triplicate.
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Colony Formation Assay

BJAB cells, transformed with scramble shRNA or PAGI1
shRNA, were incubated for 14 days in a methylcellulose-
based media (MethoCult; Stem Cell Technology, Vancouver,
BC, Canada). Colonies were stained with iodonitrotetrazolium
chloride overnight and then counted under a microscope. Each
assay was performed in triplicate.

Results

Identification and Quantification of Phosphorylated
Proteins in B-NHLs

To evaluate global phosphoproteomic signatures of B-
NHLs, we performed phosphoproteomic profiling of 11
human NHL-derived cell lines of three distinct lymphoma
subtypes. To maximize identification of phosphoproteins,
we used a two-step approach with an initial MOAC to enrich
for peptides carrying phosphorylated serine (p-Ser), threo-
nine (p-Thr), or tyrosine (p-Tyr) residues, followed by a
subsequent pY-IP to characterize phosphorylation events
occurring at tyrosine residues. Three independent phos-
phopeptide enrichments were performed for each cell line,

A B

p-Ser/p-Thr proteins

6.54% 1.63% 36.36%

13.19%

91.83%

p-Ser/p-Thr proteins
(n=1667)

Figure 1

p-Tyr proteins

p-Tyr proteins
(n=220)

and high mass accuracy MS was performed in technical
replicates. An experimental design is schematically repre-
sented in Supplemental Figure S1. The phosphopeptide
enrichment efficiency was computed as the fraction of the
peptides containing a phosphorylated residue among the
total number of peptides. The mean efficiency of p-Ser/p-
Thr peptide enrichment with MOAC was 83.4%
(SD, 6.5%), and the mean efficiency of p-Tyr peptide
enrichment in pY-IP was 54% (SD, 14.7%). The repro-
ducibility between the biological triplicates ranged from
0.65 to 0.85 (Supplemental Table S2).

In total, 868,578 MS/MS spectra were assigned to 6640
unique phosphorylated peptides. The data have been
deposited to the ProteomeXchange Consortium (http://
proteomecentral. proteomexchange.org) via the PRIDE
(PRoteomics IDEntifications database) partner repository”’
with the data set identifier PXD000658. MS/MS analysis
of peptides obtained from the MOAC enrichment led to
identification of p-Ser peptides (4752 unique peptides)
and/or p-Thr peptides (1292 unique peptides) and p-Tyr
peptides (233 unique peptides) with a peptide FDR at
0.032 (Supplemental Figure S2A). MS/MS analysis of
peptides from the pY-IP led to identification of 275 unique
phosphopeptides composed of 73 p-Ser unique peptides,

C

Phosphorylated proteins
(n=1701)

11.79%

459
50.45% 10.05%
‘ . 78.16%

mOnly in MOAC
®In MOAC and pY-IP
M Only in pY-IP

Phosphorylated kinases

(n=109)
4.59%
27.52% ‘ 67.89%
mOnly in MOAC
MCL ®In MOAC and pY-IP
(106) ®Only in pY-IP

Overview of identification and quantification results of triplicate phosphoproteome enrichment. A: Distribution of the proteins identified with a p-

Ser and/or p-Thr residue between the MOAC enrichments and pY-IP enrichments. Most of the p-Ser/p-Thr proteins were identified in MOAC enrichments. B:
Distribution of the proteins identified with a p-Tyr residue between the MOAC enrichments and pY-IP enrichments. The sequential enrichment strategy improved
considerably the identification of p-Tyr proteins. C: A total of 1701 phosphorylated proteins were identified only in MOAC enrichment, only in pY-IP, or in both
types of enrichment. D: Of the identified phosphoproteins, 109 kinases were found only in MOAC enrichment, only in pY-IP, or in both types of enrichment. E:
Venn diagram representing the repartition of proteins identified with p-Ser/p-Thr residues in the three different types of B-NHLs. Of 1667 p-Ser/p-Thr proteins,
960 (57.58%) were common to the three B-NHL types. F: Venn diagram representing the repartition of proteins identified with p-Tyr residues in the three
different types of B-NHLs.
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49 p-Thr peptides, and 184 p-Tyr peptides with a peptide
FDR at 0.045. Combining the data from a sequential
enrichment strategy allowed us to considerably improve
the identification of p-Tyr proteins from 204 to 388 pep-
tides (Figure 1, A and B); thus, 47.4% of p-Tyr peptides
were identified only in pY-IP.

A total of 1701 unique phosphoproteins (Figure 1C)
were identified, of which 1667 were identified with a p-Ser
or a p-Thr residue (Figure 1D) and 220 were identified
with a p-Tyr residue (Figure 1E). Of note, 186 proteins
were identified with p-Ser/p-Thr and p-Tyr. The complete
list of identified proteins is presented in Supplemental
Table S3 (MOAC) and Supplemental Table S4 (pY-IP),
respectively, and the complete list of identified peptides is
presented in Supplemental Table S5 (MOAC) and
Supplemental Table S6 (pY-IP), respectively. The total
number of unique proteins identified with a p-Ser or p-Thr
residue in BL, FL., and MCL cell lines was 1320, 1375, and
1224, respectively. A total of 220 unique proteins were
phosphorylated at a tyrosine residue (Figure 1E). The total
number of unique proteins identified with a p-Tyr residue
in BL, FL, and MCL cell lines was 173, 155, and 106,
respectively. There was no significant difference in pro-
portion of p-Ser/p-Thr or p-Tyr phosphoproteins between
the three subtypes, BL, FL, and MCL.

Of all identified phosphorylated proteins, 109 were
protein kinases (Figure 1F). Seventy-four kinases were
phosphorylated only at serine or threonine residues,
whereas 30 kinases were phosphorylated at serine, threo-
nine, and tyrosine residues, such as tyrosine-protein kinase
Lck, tyrosine-protein kinase Lyn, mitogen-activated pro-
tein kinase 3, proto-oncogene tyrosine-protein kinase Src,
tyrosine-protein kinase SYK, tyrosine-protein kinase Tec.
Five kinases, hepatocyte growth factor receptor, non-re-
ceptor tyrosine-protein kinase TYK2, Burton tyrosine ki-
nase, ephrin type A receptor 7, and cyclin-dependent
kinase 11A, were phosphorylated only at a tyrosine res-
idue [Supplemental Table S7 (MOAC) and Supplemental
Table S8 (pY-IP)]. Of the 90 tyrosine kinases, 14 were
found to be phosphorylated: BTK, TYK2, EPHA7, MET,
Janus-activating kinase 3, abelson tyrosine-protein kinase
2, protein-tyrosine kinase 2-beta, activated CDC42 kinase
1, SYK, TEC, LYN, SRC, LCK, and abelson tyrosine-
protein kinase 1.

Principal Characteristics of Phosphopeptides in B-NHLs

To correctly localize the phosphorylation site within a
peptide, we used the Ascore algorithm (Supplemental
Tables S5 and S6).”° Of the identified phosphopeptides,
1863 achieved a near certainty (>99%) of localization.
Because protein phosphorylation is known to frequently be
a step-wise process, where the first event may prime sub-
sequent successive events, we examined the level of
phosphorylation of each phosphopeptide, acknowledging
the fact that our bottom-up approach is well suited to
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investigate only phosphorylation events occurring in close
linear proximity. In our study, 87.37% of the phospho-
peptides identified were found to be singly phosphory-
lated. Most of the multiply phosphorylated peptides were
doubly phosphorylated (Supplemental Figure S2B).

To better understand the kinases involved in the phos-
phorylation events identified, we next considered the
amino acid motifs surrounding the phosphorylated res-
idue.”* Proline-directed sites were most common (39.75%)
(Supplemental Figure S2C). When analyzed separately, no
significant difference was found between the three NHL
subtypes (Supplemental Figure S2C). To further analyze
the phosphopeptides, we examined enriched phosphory-
lation site motifs. Peptide sequences for phosphorylation
sites localized with >99% confidence were all aligned,
and their length was adjusted to +6 amino acids from the
central position and submitted to the Motif-X algorithm.
The results are displayed in Supplemental Figure S3. The
five most abundantly enriched p-Ser motifs in each
B-NHL subgroup were mainly characterized by the pres-
ence of amino acids with negatively charged side groups,
such as glutamic acid (E) or aspartic acid (D), in the
proximity of a serine residue. The more abundantly
enriched p-Thr motifs in each B-NHL subgroup were
mainly characterized by the presence of a proline residue.
No recurrent p-Tyr motif was found in MCL, whereas BL
and FL shared the same EXXpY motif (where X denotes
any amino acid).

Distinctive Phosphoproteomic Signatures Discriminate
B-NHL Subtypes

To further define phosphoproteomic signatures for each
B-NHL entity, we performed hierarchical clustering using
408 p-Ser/p-Thr phosphoproteins that were selected on
the basis of the following criteria: proteins with a total
spectral count higher than nine in at least one of the cell
lines in the category. As shown in Figure 2A, all germinal
center—derived NHLs (BL and FL) are shown in the right
half of the heat map, distinct from the pre—GC-derived
MCL cell lines. The three BL cell lines (BJAB, Raji, and
Ramos) clustered together, whereas the FL cell lines (FL-
18, FL-318, OCI-LY-1, and SUD-HL-4) grouped into two
clusters. A p-Ser/p-Thr signature of germinal center-
—derived B-NHLs is highlighted by the vertical black bar
on the right side of the heat map, which included tran-
scription factors (eg, TFEB, FOXKI1, and NFATC2) that
participate in GC B-cell sulrvival,28 and MEF2C, which
regulates GC B cells.”” The MCL cell lines NCEB-1 and
REC-1 clustered apart from BL and FL cell lines, whereas
the two other MCL cell lines (UPN-1 and Jeko-1) clus-
tered with the germinal center—derived B-NHL cell lines.
A phospho-signature of pre—germinal center—derived B-
NHLs is highlighted by the vertical open bar on the right
lower side of the heat map, including DEK, which regu-
lates RNA metabolism, SMAD nuclear-interacting protein
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1 (SNIP1), which is involved in cyclin DI mRNA sta-
bility,” and apoptosis-antagonizing transcription factor
(AATF), which is hyperphosphorylated during G,/S phase
transition.”’

Hierarchical clustering analysis of the p-Tyr phosphopro-
teome using 34 proteins identified by our analysis (Figure 2B)
also separated the pre—GC-derived MCL cell lines from the
germinal center—derived cell lines. A p-Tyr signature of the
GC-derived B-NHLs is highlighted by the vertical black bar
(Figure 2B) and was composed of 15 proteins involved in
signaling pathways, particularly the BCR signaling. These
proteins were analyzed by using the Search Tool for Retrieval
of Interacting Genes/Proteins (STRING version 9.05; http://
string—db.()rg)32 at a high confidence score (0.700). The p-
Tyr proteins expressed in GC-derived NHLs demonstrate a
relatively cohesive group of functionally related proteins
(Figure 2C).
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GC-derived

Pre-GC-
derived

-0.17992926

0.41003537
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B

Two-way hierarchical clustering of phosphorylated proteins. A: Hierarchical
clustering of B-NHL cell lines on the basis of p-Ser/p-Thr proteins: the vertical black bar
highlights differentially phosphorylated proteins in the GC-derived NHLs, whereas the vertical
open bar highlights differentially phosphorylated proteins in the non—GC-derived NHLs. B:
Hierarchical clustering of B-NHL cell lines on the basis of p-Tyr proteins: the vertical black bar
highlights differentially phosphorylated proteins in the GC-derived NHLs. C: Evidence view of
the STRING diagram obtained with proteins highlighted by the vertical black bar in B. Different
line colors represent the types of evidence for the association: turquoise, databases; pink,
experiments; black, co-experiments; and purple, homology.

BCR Signaling Pathway Is Phosphorylated in
GC-Derived B-NHLs

To investigate phosphorylated signaling pathways in the
three B-NHL subtypes, we interrogated our data set using
the functional annotation tool of DAVID software version
6.7 (http://david.abee.nciferf. gov/summary.jsp).>*>*  The
logarithm-transformed P values of the top 10 Kyoto
Encyclopedia of Genes and Genomes pathways identified
in BL, FL, or MCL are plotted in Figure 3. Pathways
identified with p-Ser/p-Thr proteins in BL, FL, and MCL
indicated that the three B-NHLs shared common phos-
phorylation of specific pathways, such as the spliceosome,
ErbB signaling pathway, ubiquitin-mediated proteolysis,
and the mammalian target of rapamycin pathway
(Figure 3A). This analysis also underlined the differential
phosphorylation of specific pathways, such as the BCR
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signaling pathway and the insulin signaling pathway in BL
and FL cell lines compared with the MCL cell lines. Anal-
ysis of p-Tyr proteins similarly highlighted the significant
enrichment of proteins involved in the BCR signaling
pathway in BL and FL cell lines (Figure 3B).

Figure 4 shows a simplified network of proteins involved in
the BCR signaling pathway. Several of these proteins (BTK,
SYK, CD19, CD22, LCK, LYN, and PAG1) were identified
with p-Tyr either only in BL and FL cell lines or with a higher
spectral count in BL and FL cell lines compared with MCL cell
lines. By using the Motif-X algorithm, we defined EXXpY as
the most predominant motif found in the subset of BL and FL.
phosphorylation sites (Supplemental Figure S4). Of the 26
proteins identified with this EXXpY motif, eight are involved
in the BCR signaling pathway (Supplemental Table S9).
Interestingly, the PAG1 was identified with the most spectral
counts in BL and FL (Supplemental Figure S5). This obser-
vation and the implication of PAGI as a regulator of the BCR
signaling pathway’>~° led to subsequent investigation of
PAGTI function in GC-derived NHLs.

PAG1 Is Overexpressed and Phosphorylated in
GC-Derived NHLs

To validate the phosphoproteomic data, we investigated the
expression and phosphorylation status of proteins involved
in the BCR signaling pathway by Western blot analysis. As
shown in Figure 5A, PAGI is strongly expressed in BL and
FL cell lines. In contrast, PAG1 expression is not detectable
or weakly expressed in MCL cell lines. By MS, we found
that 8 of 10 tyrosine residues, contained in the PAG1 amino
acid sequence, were highly phosphorylated in BL and FL,
but not in MCL (Figure 5B). To confirm the phosphoryla-
tion status of PAGI, we performed immunoprecipitation
using either PAG1 or a cocktail of anti-phosphotyrosine
antibodies, followed by Western blot analysis for PAGI.
These experiments revealed significant enrichment of
tyrosine-phosphorylated PAG1 in the four cell lines from
GC-derived B-NHLs. Conversely, tyrosine-phosphorylated
PAGI was absent or weakly detectable in MCL cell lines
(Figure 5C). These two observations validated the MS

Figure 4  Schematic representation of proteins
involved in the BCR signaling pathways. A simpli-
fied network of proteins involved in the BCR
signaling pathway. Several of the proteins (BTK,
B-cell linker protein, PAG1, SYK, CD19, CD22, LCK,
LYN, PLCy, and caspase recruitment domain-
containing protein 11) have been identified with
p-Tyr either only in BL and FL cell lines or with a
higher spectral count in BL and FL cell lines
compared with MCL cell lines. The p-Tyr proteins are
displayed with a small P symbol in a red circle. The
design of this figure was aided by materials from

BN Y WSl R e W\
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results and demonstrated differential expression of tyrosine-
phosphorylated PAG1 in the GC-derived lymphoma cell
lines compared with the MCL cell lines.

Similarly, we demonstrated that, although LYN is ex-
pressed in both GC-derived B-NHLs and MCL, the profile
of LYN phosphorylation is significantly different between
the GC-derived NHLs and MCL (Figure 5D). Indeed, the
balance between the phosphorylation of tyrosine 396, which
induces LYN activity, and tyrosine 507, which inhibits
LYN activity, is clearly in favor of LYN inactivation in
MCL cell lines, but not in GC-derived cell lines.

PAG1 Knockdown Promotes BL Cell Line Proliferation

To investigate a possible functional role for PAGI in GC-
derived lymphoma, we performed PAGI1 depletion by
siRNA-mediated knockdown in a BL-derived cell line,
BJAB. Our lentiviral shRNA-mediated PAGI silencing
achieved 85% knockdown of PAGI protein expression, as
demonstrated by Western blot analysis (Figure 6A). PAGI1
knockdown in BJAB cells resulted in a significant increase
in cell proliferation (Figure 6B). Indeed, after 48 hours, we
observed a 1.2-fold increase in proliferation of BJAB cells
with PAG1 shRNA (P < 0.05). Moreover, colony formation
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assays to evaluate the effect of PAG1 knockdown showed
significantly more colonies after 14 days in PAG1 knock-
down cells (127 colonies for BJAB with scramble shRNA
versus 169 colonies for BJAB with PAG1 shRNA;
P < 0.01) (Figure 6C).

Because PAGI is involved in the BCR signaling
pathway, we evaluated the ability of cells to respond to
antigen stimulation when PAG1 was silenced. We demon-
strated that PAG1 knockdown significantly increased BJAB
response to two different antigen stimulations after 48 hours
(Figure 6D). Cell stimulation with an anti-IgM resulted in a
1.3-fold increase of BJAB proliferation when PAG1 was
silenced (P < 0.05). Similarly, lipopolysaccharide stimula-
tion resulted in a 1.4-fold increase of BJAB proliferation
when PAG1 was silenced (P < 0.05). These results high-
lighted a possible role for PAGI in cell response to antigen
stimulation.

To investigate the consequences on protein phosphory-
lation when PAGT is silenced in BJAB cells, we performed
the phosphopeptide enrichments of BJAB with the scramble
shRNA and BJAB with PAGI shRNA in triplicate.
Depletion of PAG1 in BJAB cells resulted in the alteration
of tyrosine phosphorylation of proteins belonging to either
different pathways (redundant) or functionally connected
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Figure 6  PAG1 knockdown results in increased BJAB proliferation and
responsiveness to antigen stimulation. BJAB with scramble shRNA, black
bars; BJAB with PAG1 shRNA, white bars. A: Western blot analysis control
and its histogram of PAG1 knockdown in BJAB cell lines. B: The WST-1
assay demonstrates a significant increase of BJAB proliferation after 48
hours when PAG1 is stably knocked down. C: This result was confirmed by
the increase of the number of colonies obtained after 14 days of culture in
methylcellulose media. D: Antigenic stimulations of BJAB cells result in a
significant increase of proliferation when PAG1 is stably knocked down.
*P < 0.05, **P < 0.01. LPS, lipopolysaccharide.

pathways (Supplemental Figure S6A). The most signifi-
cantly affected pathway was the BCR pathway, with
changes in the phosphorylation status of proteins, such as
LCK, BTK, SYK, CD19, CD79a/B, and LYN. The
STRING diagram displayed the connections between pro-
teins identified with at least a 1.5-fold differential phos-
phorylation at serine/threonine and/or tyrosine residues
(Supplemental Figure S6B). The BCR signaling pathway
was one of the three functionally annotated pathways
identified, strongly supporting a role for PAGI in the
regulation of BCR signaling.

Discussion

Phosphoproteomic approaches have already demonstrated
their ability to discriminate cell lines derived from acute
myeloid leukemia, multiple myeloma, and diffuse large
B-cell lymphoma.”’ In this study, we have used an unbiased
approach to analyze the global phosphoproteomic signatures
in three different B-cell NHL entities. The unbiased
approach permitted identification, semiquantification, and
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localization of phosphorylated amino acid residues in a
sensitive and reproducible manner that facilitates detection
of constitutively phosphorylated signaling pathways.

The assembled data set of MOAC and pY-IP enrichments
catalogued 6640 phosphorylated peptides corresponding
to 1701 phosphorylated proteins. Bioinformatic analyses
revealed the existence of specific phosphoproteomic signatures
for each lymphoma entity. Specifically, hierarchical clustering
analysis revealed distinctive signatures for the MCL and
germinal center—derived lymphomas (BL and FL), which
correlate with the respective putative cells of origin from
which these NHLs are thought to arise. Indeed, MCLs are
thought to arise from mature naive (pregerminal) center B
cells, whereas BL. and FL putatively arise from germinal
center B cells.”*’

The genetic hallmark of MCL is the t(11;14)(q13;932),
resulting in deregulated overexpression of cyclin DI,
which controls the cell cycle G;/S phase transition. In
phosphoproteomic signatures we identified, SNIP1 was
found to be highly phosphorylated in MCL cell lines
when compared with FL. and BL cell lines. SNIP1 was
initially hypothesized to regulate the cyclin D1 promoter,
but recent studies revealed that SNP1 affects post-spliced
cyclin D1 mRNA, promoting nascent mRNA stability
through the SNIP1/SkIP-associated RNA-processing
complex, which associates with the 3’-end of the cyclin
DI mRNA.’® A longer half-life of cyclin DI mRNA
contributes to the MCL aggressiveness.*” In addition, the
AATF was also found to be phosphorylated in MCL.
AATF, inhibitor of the histone deacetylase HDACI, is
hyperphosphorylated during the G;/S phase transition,
which leads to the activation of E2F target genes and cell
cycle progression.”’

Although all MCL cell lines shared the same phosphor-
ylated protein signature and clustered together when p-Tyr
proteins were analyzed, two of them (UPN-1 and Jeko-1)
were clustered with FL/BL cell lines when p-Ser/p-Thr
proteins were analyzed. Jeko-1 harbors a complex karyotype
with an amplification at 8q24.21, which includes the MYC
gene,”" and UPN-1 harbors a cryptic (8;14)(q24;q32) and
an amplification of the BCL2 gene.”” These additional ge-
netic alterations, which are some of the BL or FL charac-
teristics, might be responsible for their behavior in between
MCL and FL/BL, even if we were not able to clearly
identify p-Ser/p-Thr proteins, which would be directly
correlated to BCL2 or MYC.

Our study revealed phosphosignatures implicating BCR
signaling in the GC-derived BL and FL when compared
with  MCL. Indeed, pathway analysis performed with
differentially expressed phosphorylated proteins between
these two groups of B-NHLs highlighted the BCR signaling
pathway as the highest ranked in germinal center—derived
NHL. A role for tonic BCR signaling has already been
implicated in another B-NHL known as the activated
B-cell—like subtype of diffuse large B-cell lymphoma.*’ In
our study, we identified 14 proteins with phosphorylated
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tyrosine residues that participate in the BCR signaling
pathway. These included three tyrosine kinases (LYN, SYK,
and BTK) that could be therapeutic candidate targets for BL
and FL. Indeed, preclinical studies of tyrosine kinase in-
hibitors against BTK have shown promising results in
different cell lines, and a phase 1 clinical study is in prog-
ress.”**> Inhibition of the tyrosine kinase SYK in cell lines
has highlighted its role as a potentially promising thera-
peutic target in diffuse large B-cell lymphoma.*®

PAGI1 is a lipid raft-anchored adaptor protein whose
expression has been observed to be down-regulated in several
types of cancers, such as non-small cell lung cancer’’” or
colorectal cancer.”® In addition, PAG1 overexpression effi-
ciently suppresses c-Src transformation and tumorigenesis, "’
supporting a tumor-suppressor role. In B lymphocytes, PAG1
is a negative regulator of the BCR-mediated signaling.””
PAGT1 phosphorylation at tyrosine 317 generates a binding
site for tyrosine-protein kinase CSK that, in turn, negatively
regulates tyrosine-protein kinase Lyn, and tyrosine-protein
kinase Fyn, leading to decreased Src kinase—dependent
pathway activation.”' "> However, we identified PAG1 with
the most phosphotyrosine peptides in both BL and FL cell
lines. Immunoprecipitation and Western blot analyses
revealed that PAG1 is overexpressed in BL and FL in com-
parison to MCL, and also highly phosphorylated in these two
germinal center—derived NHLs. Previous studies have
demonstrated strong immunohistochemical expression of
PAGTI in proliferating cells of the germinal center and in
lymphomas derived from these cells.””* In our study, we
demonstrated that PAG1 knockdown increased B-cell prolif-
eration and responsiveness to antigen stimulation, supporting
its role as a negative regulator of the BCR signaling pathway.
Interestingly, our study revealed that, in addition to Y317
phosphorylation, PAG1 is phosphorylated in vivo at seven
additional tyrosine residues, including tyrosine 163 and 181 in
BL and FL cell lines. It has been previously demonstrated that
PAG1 phosphorylation at these two tyrosines (Y163 and
Y 181) results in a dual-domain docking module that enhances
the affinity of the FYN-PAGI interaction and renders FYN
insensitive to negative regulation by CSK.” Accordingly, we
postulate that differential combinatorial phosphorylation of
different tyrosine residues in PAG1 may contribute to the
deregulation of the BCR signaling pathway in BL and FL and
might be the consequence of the phosphorylation status of
different tyrosine residues.

In conclusion, we have generated a comprehensive phos-
phorylation event data set in three different B-NHL entities, and
demonstrated that these entities possess distinctive phospho-
proteomic signatures. These signatures highlight the ability of
post-translational modification profiling strategies to achieve
class discrimination in distinct subtypes of cancer. Our study
highlights the phosphorylation of the BCR signaling pathway
in B-NHLs derived from the germinal center of secondary
lymphatic follicles. Overall, these data reveal the utility of
unbiased phosphoproteomic approaches for elucidation of
signaling networks involved in the pathogenesis of neoplasia.
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