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Fibrotic lung diseases represent a diverse group of progressive and often fatal disorders with limited
treatment options. Although the pathogenesis of these conditions remains incompletely understood,
receptor type protein tyrosine phosphatase a (PTP-a encoded by PTPRA) has emerged as a key regulator
of fibroblast signaling. We previously reported that PTP-a regulates cellular responses to cytokines and
growth factors through integrin-mediated signaling and that PTP-a promotes fibroblast expression of
matrix metalloproteinase 3, a matrix-degrading proteinase linked to pulmonary fibrosis. Here, we
sought to determine more directly the role of PTP-a in pulmonary fibrosis. Mice genetically deficient in
PTP-a (Ptpra�/�) were protected from pulmonary fibrosis induced by intratracheal bleomycin, with
minimal alterations in the early inflammatory response or production of TGF-b. Ptpra�/� mice were also
protected from pulmonary fibrosis induced by adenoviral-mediated expression of active TGF-b1. In
reciprocal bone marrow chimera experiments, the protective phenotype tracked with lung parenchymal
cells but not bone marrowederived cells. Because fibroblasts are key contributors to tissue fibrosis,
we compared profibrotic responses in wild-type and Ptpra�/� mouse embryonic and lung fibroblasts.
Ptpra�/�

fibroblasts exhibited hyporesponsiveness to TGF-b, manifested by diminished expression of
aSMA, EDA-fibronectin, collagen 1A, and CTGF. Ptpra�/�

fibroblasts exhibited markedly attenuated
TGF-beinduced Smad2/3 transcriptional activity. We conclude that PTP-a promotes profibrotic
signaling pathways in fibroblasts through control of cellular responsiveness to TGF-b. (Am J Pathol
2014, 184: 1489e1502; http://dx.doi.org/10.1016/j.ajpath.2014.01.016)
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Fibrosis within the lung may be a consequence of infectious
or noninfectious injury and is usually a self-limited process.
However, pulmonary fibrosis can also be diffuse and pro-
gressive, as occurs in the idiopathic interstitial pneumonias,
the most common of which is idiopathic pulmonary fibrosis
(IPF).1e3 The most frequent histopathological pattern of IPF
is usual interstitial pneumonia, a process that is character-
ized by heterogeneous areas of dense fibrosis, fibroblastic
foci, and honeycombing, with distortion of the lung archi-
tecture.1,3 IPF is a progressive and frequently fatal disorder,
stigative Pathology.

.

with a median survival of 2.5 to 3.5 years after diag-
nosis.1,2,4 Despite intensive investigation, the pathogenesis
of IPF remains incompletely understood, and treatment
options remain limited.1,3e8 Both genetic and environmental
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factors have been implicated in the pathogenesis of IPF.9e15

Notably, the incidence of IPF increases with age,16 possibly
reflecting the cumulative effect of genetic alterations that
impair the ability of the lung to repair itself after repeated
injury, leading to release of cytokines that induce myofi-
broblast accumulation, deposition of extracellular matrix
(ECM) (including collagen and fibronectin), and progressive
diffuse fibrosis.3,14,17

Many different cell types appear to participate in thefibrotic
process. These include fibroblasts,18,19 cells of hematopoietic
origin (eg, macrophages20e25 and lymphocytes26,27), and
lung epithelial cells,17,28,29 which can promote progressive
fibrosis by diverse mechanisms, including production of
profibrotic cytokines. Interestingly, although a characteristic
feature of pulmonary fibrosis is the presence of increased fi-
broblasts and myofibroblasts, the origin of these mesen-
chymal cells remains uncertain and has been the subject of
recent controversy.14,30 Possibilities include proliferation and
differentiation of resident fibroblasts, recruitment of the bone
marrowederived progenitor cells termed fibrocytes,31,32 and
transformation of lung epithelial cells and pericytes to
mesenchymal cells (epithelialemesenchymal transition).28

TGF-b is a pleiotropic cytokine that regulates diverse
cellular responses including proliferation, differentiation,
apoptosis, and inflammation.33e35 TGF-b is fundamental to
the pathogenesis of pulmonary fibrosis.3,14,36e39 In the lung,
TGF-b is expressed by various cell types (including epithelial
cells, macrophages, and fibroblasts), and levels are elevated
both in animalmodels and in clinical pulmonary fibrosis.39e43

Pulmonary expression of TGF-b is sufficient to induce pro-
gressive fibrosis in animal models.44 In vitro, TGF-b can
induce myofibroblast transition of fibroblasts.29,45 Canonical
cellular responses to TGF-b are mediated through type II and
type I receptors (TGFbR-II and TGFbR-I), leading to phos-
phorylation of Smad2 and Smad3, which form a complexwith
Smad4 that translocates to the nucleus and regulates gene
transcription.33e35,46 TGF-betriggered Smad2/3 signaling is
pivotal in the induction of pulmonary fibrosis in animal
models.39,44,47,48 Smad-independent (noncanonical) mecha-
nisms of TGF-b signaling also exist, with extensive cross talk
between the canonical and noncanonical pathways.35,49e52

Signal attenuation represents an important regulatory aspect
of TGF-b responses, and both receptor activation and down-
stream events are subject to regulation. With respect to the
latter, reversible phosphorylation,53,54 ubiquitination,55e57

nuclear export of Smads,58 and the inhibitory Smad759 all
dampen TGF-b signals.

PTP-a (encoded by PTPRA) is a widely expressed
transmembrane receptor-type protein tyrosine phos-
phatase.60e63 The best-known function of PTP-a is physi-
ological regulation of Src family kinases (SFKs); PTP-a
dephosphorylates the inhibitory C-terminal tyrosine residue
of SFKs (Y529 of Src), leading to kinase activation.63e66

PTP-a has both positive and negative roles in cell growth,
depending on the cell context. For example, PTP-a over-
expression promotes fibroblast growth and tumorigenesis
1490
through Src activation.64 Conversely, PTP-a inhibits prolif-
eration of breast cancer cells67 and oligodendrocytes through
Fyn.68 Mice genetically deficient in PTP-a (Ptpra�/�) are
viable and exhibit no gross morphological defects, but
exhibit abnormalities in learning.63,66,69

We and others have identified PTP-a as a component of
focal adhesions in fibroblasts, where it regulates cell adhe-
sion, spreading, and motility via activation of SFKs.63,70e73

We have recently reported that PTP-a promotes fibroblast
expression of matrix metalloproteinase 3 (MMP-3), a matrix-
degrading proteinase linked to pulmonary fibrosis,71e74 and
that PTP-a promotes fibroblast-mediated degradation of
periodontal connective tissue.75 In addition, PTP-a binds to
and is phosphorylated by the IGF-I receptor,76 a pathway
implicated in pulmonary fibrosis.77,78 Given the importance
of PTP-a in these fibrogenic pathways, we investigated its
role in animal models of pulmonary fibrosis and the control
of profibrotic signaling pathways in the lung. Here, we
demonstrate that mice genetically deficient in PTP-a are
protected from bleomycin-induced and TGF-beinduced
pulmonary fibrosis, with minimal alterations in the acute
inflammatory response or production of TGF-b, that the
protective phenotype resides in resident lung parenchymal
cells, and that Ptpra�/�

fibroblasts exhibit attenuated profi-
brotic responses to TGF-b.

Materials and Methods

Mouse Models of Pulmonary Fibrosis

All mice were housed in a pathogen-free facility accredited
by the Association for Assessment and Accreditation of
Laboratory Animal Care International and were treated in
compliance with National Jewish Health Institutional Ani-
mal Care and Use Committee guidelines under an approved
protocol. Ptpra�/� mice on a C57BL/6 background were
generated as described previously.63 Littermate matched
wild-type (WT) Ptpraþ/þ mice were generated from mating
heterozygous (Ptpraþ/�) mice. An intraperitoneal injection
of 50 mg/kg ketamine and 5 mg/kg xylazine was used for
sedation and anesthesia. After adequate anesthesia was
achieved, a superficial incision was made in the cervical
area for localization and visualization of the trachea. Sub-
sequently, an oral gavage feeding tube was inserted trans-
laryngeally and 1.5 to 2.5 U/kg of pharmaceutical-grade
bleomycin (Bedford Laboratories, Bedford, OH) in 50 mL
saline was instilled. To determine the specific dose for each
set of experiments, each new lot of bleomycin was assessed
for bioactivity in preliminary experiments using WT
C57BL/6 mice, balancing the extent of pulmonary fibrosis
and mortality (desired: <15%). In each set of experiments,
bleomycin from a single lot was used. After instillation, the
oral gavage feeding tube was removed, and the skin incision
was closed using Vetbond tissue adhesive (3M, St. Paul,
MN). Each group consisted of 8 to 12 animals, and animals
were euthanized at days 2, 7, 14, or 21.
ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org
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In a second model of pulmonary fibrosis, mice were treated
with intratracheal instillation of 1� 108 plaque-forming units
(PFU) per mouse of replication-deficient adenovirus (Ad5)
encoding active porcine TGF-b1223/225 [which contains two
point mutations in the LAP domain of the molecule, pre-
venting the LAP from forming a homodimer and associating
with the mature active TGF-b1 (Ad5TGF-b)].44 Empty
vector (AdDL70) was used as a control (1 � 108 PFU per
mouse). Both adenoviruses were obtained from Drs. Jack
Gauldie and Martin Kolb (McMaster University, Hamilton,
ON, Canada).

Reciprocal Bone Marrow Transplants

Bone marrow transplantation into lethally irradiated (900
cGy of total body radiation) mice was performed as
described previously.79 The following chimeric mice were
generated: WT marrow / WT mice; Ptpra�/� marrow /
Ptpra�/� mice; WT marrow/ Ptpra�/� mice; and Ptpra�/�

marrow / WT mice. At 12 weeks after bone marrow
transplantation, engraftment was confirmed by flow cytom-
etry using CD45.2 and CD45.1 expression of bone marrow
leukocytes as markers. The percentage of engrafted cells was
>98% in all experiments. Mice were treated with intra-
tracheal bleomycin as described above.

Pulmonary Physiology

At baseline and at days 2, 7, 14, and 21, mice were anes-
thetized with an intraperitoneal injection of 50 mg/kg ke-
tamine and 5 mg/kg xylazine. Mice were subjected to
cervical dislocation, to prevent aberrations during pulmo-
nary physiology measurements due to spontaneous respi-
ration. Next, the trachea was exposed and isolated using a
1-cm incision; a rigid 10-mm, 21-gauge blunt cannula was
inserted and sutured in place. Mice were then connected to a
FlexiVent small-rodent ventilator (Scireq Scientific Respi-
ratory Equipment, Montreal, QC, Canada) and were venti-
lated at set parameters of respiratory rate of 150, tidal
volume of 10 mL/kg, and positive end-expiratory pressure
of 0. A single recruitment maneuver of 40 mL/kg was
performed to eliminate atelectasis; subsequently, a pressuree
volume (PV) curve was generated using a stepwise inflation
to 40 mL/kg to generate a quasi-static compliance curve. A
SalazareKnowles equation was used to model the deflation
limb of the PV curve, and maximal compliance was then
calculated based on the slope of the curve at a pressure of 4
cm H2O.

80,81 This pressure value was chosen to correspond
to the maximal slope of the SalazareKnowles equation in
WT untreated animals.

Bronchoalveolar Lavage and Tissue Analysis

After measurement of pulmonary physiology, four serial lung
lavages (0.8 mL) with normal saline containing 1 mmol/L
EDTA were performed through the rigid intratracheal
The American Journal of Pathology - ajp.amjpathol.org
catheter and pooled. Cell counts were assessed using a he-
mocytometer, and cell differentials were evaluated using
bronchoalveolar lavage (BAL) cytospin preparations stained
with Diff-Quick reagent (Andwin Scientific, Tryon, NC).
BAL fluid was then centrifuged to remove cells and debris,
and the supernatant was stored at �80�C. Lungs were
perfused with 10 mL of normal saline to remove intravascular
blood, excised after lavage, and rinsed. The left lungs from
three mice of each group were inflated to 20 cm H2O with
10% buffered formalin and were used for histological anal-
ysis. The remaining right lung was flash-frozen and stored at
�80�C for collagen analysis. BAL concentrations of IL-1b,
keratinocyte chemokine, and tumor necrosis factor a (TNF-
a) were measured by a Meso Scale assay according to the
manufacturer’s instructions (Meso Scale Discovery, Rock-
ville, MD). TGF-b enzyme-linked immunosorbent assay
(ELISA) was performed using Elisa Tech (Aurora, CO)
ELISA plates according to the manufacturer’s instructions.

Tissue Collagen Analysis

Fixed lungs were embedded, sectioned, and stained with
H&E, Picrosirius Red, and trichrome by the National Jewish
Health histology core. Collagen content was assessed using
a Sircol assay (Biocolor, Carrickfergus, UK) as described
previously.74,82 The assay was performed on the whole right
lung and was reported as total collagen (mg) per lung.

Isolation of Primary Mouse Lung Fibroblasts

After mice were euthanized, the lungs were perfused with
10 mL normal saline, excised, and immediately placed into
5 mL ice cold Hanks’ balanced salt solution (HyClone;
Thermo Fisher Scientific, Waltham, MA). Lungs were then
placed in a prescored 100-mm dish and chopped finely with
scissors. The resultant small pieces were pressed onto the
surface of the dish and 20 mL of medium (Dulbecco’s
modified Eagle’s medium with GlutaMAX; Life Technol-
ogies, Carlsbad, CA), 15% heat-inactivated fetal bovine
serum (Atlanta Biologicals, Lawrenceville, GA), 100 U/mL
penicillin/streptomycin (HyClone; Thermo Fisher Scientific)
was added. Cultures were placed in a 37�C incubator in 5%
CO2, 95% air for 24 hours. The next day, the medium was
carefully removed from the lung pieces and 15 mL of fresh
medium was added to the cultures. The fibroblasts were
cultured through eight passages.

Cell Culture

Experiments were performed on early-passage primary
mouse lung fibroblasts isolated as described above, mouse
embryonic fibroblasts, or NIH 3T3 cells (ATCC, Manassas,
VA). The cells were maintained in a medium consisting of
Dulbecco’s modified Eagle’s medium with GlutaMAX
supplemented with 15% or 10% heat-inactivated fetal
bovine serum for primary lung fibroblasts or embryonic
1491
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fibroblasts and NIH 3T3 cells, respectively, as well as 100
U/mL penicillin/streptomycin. Medium was changed every
3 to 5 days. Cells were incubated at 37�C in 5% CO2, 95%
air. Cells were plated on tissue culture plastic coated plates
(BD Falcon, Franklin Lakes, NJ) which were precoated with
fibronectin (Sigma-Aldrich, St. Louis, MO). Cells were
growth-arrested by reducing the concentration of fetal
bovine serum to 1% for 24 hours before stimulation with
recombinant human TGF-b (R&D Systems, Minneapolis,
MN) at a concentration of 2 or 5 ng/mL, depending on the
experimental conditions.

Gene Silencing

Knockdown of PTP-a was achieved by transfection using
RNAiMAX (Life Technologies) with 20 nmol/L siRNA.
PTP-aespecific siRNA with the sequence 50-GCAA-
CAACGGGUUAGAGGAtt-30 was obtained from Ambion
(Life Technologies). Experiments were performed in six-
well culture plates. In each well, the transfection reagents
were prepared according to the manufacturer’s instructions.
In parallel, subconfluent NIH 3T3 cells were harvested and
1 � 105 cells were seeded into each well. Cells were then
incubated at 37�C for 48 to 72 hours before use in experi-
ments as described below.

Analysis of Gene and Protein Expression

RNA was extracted from cells and reverse-transcribed into
cDNA using a QuantiTect kit (Qiagen, Valencia, CA)
Figure 1 Genetic deletion of PTP-a protects mice
from bleomycin-induced fibrosis. A: Sircol assay of lung
collagen content illustrates that bleomycin-treated
Ptpra�/� mice develop significantly less collagen depo-
sition than bleomycin-treated WT controls at 21 days. B:
Representative lung sections from Ptpra�/� andWTmice
at day 21 after administration of bleomycin. Lung
mechanics were measured in anesthetized and mechan-
ically ventilatedmice at baseline and at 2, 7, and 21 days
after administration of saline or 1.5 to 2.5 U/kg bleo-
mycin.C:Static compliancewasdeterminedbyfitting the
SalazareKnowles equation to pressureevolume curves.
Data are expressed asmeans� SEM. **P< 0.01. Original
magnification, �10. Scale bar Z 100 mm. Bleo, bleo-
mycin;þ/þ, WT; -/-, Ptpra�/�.

1492
according to the manufacturer’s instructions. cDNA was
analyzed by quantitative real-time PCR (qPCR) using in-
dividual primers optimized for each gene. qPCR was per-
formed for 40 cycles on a CFX96 system (Bio-Rad
Laboratories, Hercules, CA) using iQ SYBR Green super-
mix (Bio-Rad Laboratories). Relative mRNA expression
levels were calculated using the 2�DDCt method.83

Western Blotting

Cells grown on tissue culture plates were gently washed
with 6 mL of PBS and lysed in 0.15 mL of cold radio-
immunoprecipitation assay lysis buffer (1% NP-40, 0.1%
SDS, 50 mmol/L Tris-HCl at pH 7.4, 150 mmol/L NaCl,
0.5% sodium deoxycholate, and 1 mmol/L EDTA). Protein
concentrations were determined using a Pierce bicincho-
ninic acid protein assay (Thermo Fisher Scientific). Cell
lysates were boiled at 100�C for 8 minutes in Laemmli
sample buffer to denature the protein. Sample mixtures were
loaded and subjected to electrophoresis in an 8% poly-
acrylamide gel, then transferred to a nitrocellulose mem-
brane. After blocking in 5% nonfat milk in TriseTween
buffered saline, membranes were treated with primary
antibody, washed, and then treated with secondary antibody.
Labeled proteins were visualized by enhanced chem-
iluminescence according to the manufacturer’s instructions
(Nycomed Amersham Canada, Oakville, ON, Canada).
Densitometry was performed using ImageJ software version
1.47 (NIH, Bethesda, MD). Densitometry values of blots
were normalized so that one represents the densitometry
ajp.amjpathol.org - The American Journal of Pathology
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Figure 2 WT and Ptpra�/� mice exhibit similar
recruitment of inflammatory cells and production
of cytokines in response to bleomycin. A: BAL fluid
was collected at baseline (day 0) and at 2, 7, and
21 days after bleomycin instillation. Total cell
counts and neutrophil counts were determined by
differential cell counting. B: Meso Scale assay for
BAL fluid for proinflammatory cytokines IL-1b and
keratinocyte chemokine at 14 and 48 hours after
bleomycin administration. C: Total TGF-b concen-
tration in BAL fluid determined by ELISA at 7 days
after bleomycin instillation. D: Levels of BAL ma-
trix metalloproteinase MMP-3 as measured by
ELISA at baseline and at 2 and 21 days after
bleomycin treatment. Data are expressed as
means � SEM. *P < 0.05.

PTP-a Mediates Profibrotic Signaling
value of control samples. Antibodies to phosphorylated
p-AKT (Thr308), p-p38 MAP kinase (Thr180/Tyr182), and
p-p44/42 MAP kinase (Thr202/Tyr204) were obtained from
Cell Signaling Technology (Danvers, MA).

Luciferase Reporter Assays

Mouse embryonic fibroblasts were plated at 0.15 � 106

cells per well in transfection medium (Dulbecco’s modified
Eagle’s medium with GlutaMAX and 10% heat-inactivated
fetal bovine serum) in the absence of antibiotics on
fibronectin-coated 12-well plates. Twenty-four hours later,
cells were transfected with the Smad3 luciferase reporter
(SBE4-luc) or Smad2 luciferase reporter (double trans-
fection of ARE-luc and Fast1) plasmids84e86 in the pres-
ence of Lipofectamine 2000 transfection reagent (Life
Technologies) according to the manufacturer’s instructions.
Cotransfection with Renilla luciferase was used for
normalization of each transfection. Cells were incubated
for 24 hours, washed twice with serum-depleted medium
(GlutaMAX and 1% heat-inactivated fetal bovine serum),
The American Journal of Pathology - ajp.amjpathol.org
and then incubated in the absence or presence of 2 ng/mL
TGF-b. After 16 hours, cells were washed once with cold
PBS and lysed in 1� passive lysis buffer. Lysate super-
natants were collected, and reporter activity was assayed on
a Synergy luminometer (BioTek Instruments, Winooski,
VT), using a Dual-Luciferase Reporter (DLR) assay
(Promega, Madison, WI). Firefly luciferase was normalized
to Renilla luciferase to obtain normalized units of lucif-
erase activity.

Collagen Gel Contraction Assay

Collagen gel contraction assays were performed as previ-
ously reported.71,87 In brief, collagen gels were prepared by
combining collagen type I (BD Biosciences, San Diego,
CA) at a concentration of 3 mg/mL in 0.1% acetic acid with
cell suspension. Cultured primary lung fibroblasts were
harvested and resuspended in medium at a concentration of
1.5 � 105 cells/mL. The cells were mixed with collagen
solution for a final concentration of 1.0 � 105 cells/mL,
transferred to wells of a 24-well plate, and allowed to
1493
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solidify for 20 minutes. Gels were released from the walls of
the wells by rimming with a pipette tip. The area of each gel
was obtained at various time points by imaging the 24-well
plate (Gel Doc imaging system; Bio-Rad Laboratories) and
quantified using NIH ImageJ software version 1.47. To
measure the area of the gel, the oval measuring tool was
used to outline each gel. Each experiment included at least
three replicates, and at least three independent experiments
were performed with similar results.

Statistical Analysis

Statistical analysis was performed by Student’s paired or
unpaired t-test, as indicated. Multiple comparisons were
performed by one- or two-way analysis of variance with
Bonferroni post hoc test for determination of differences
between groups. Nonparametric data were analyzed using
U-test analysis. P values of <0.05 were considered to be
statistically significant. Data are expressed as
means� SEM. Data were analyzed from n� 4 independent
experiments; in vitro experiments were performed in
duplicate or triplicate.

Results

Ptpra�/� Mice Are Protected from Bleomycin-Induced
Pulmonary Fibrosis

To investigate the role of PTP-a in the pathogenesis of
pulmonary fibrosis, we used mice genetically deficient in
PTP-a and the well-established bleomycin model of lung
fibrosis.88,89 WT (Ptpraþ/þ) and Ptpra�/� mice were
treated with 1.5 to 2.5 U/kg of intratracheal bleomycin or
saline and were euthanized at days 0, 2, 7, or 21 after
treatment. Biochemical analysis of collagen content from
the right lung was performed using the Sircol method.
Figure 3 Ptpra�/� mice are protected from pulmonary fibrosis induced by aden
from WT and Ptpra�/� mice treated with active vector (AdTGF-b), empty vector (A
lungs of WT or Ptpra�/� mice was determined 21 days after treatment using a
magnification, �40. Scale bar Z 200 mm.
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Notably, there was a significant increase in lung collagen
content at day 21 in WT mice treated with bleomycin,
compared with Ptpra�/� mice (Figure 1A). Histological
findings in lung sections stained with H&E, Picrosirius
red (Figure 1B), and trichrome (data not shown) were
consistent with the collagen measurements, with
increased areas of fibrosis and distortion of the lung ar-
chitecture in the bleomycin-treated WT mice at day 21.
By contrast, the lung architecture of bleomycin-treated
Ptpra�/� mice was well preserved, and fibrosis was
minimal (Figure 1B).
To validate the biochemical and histological analyses by

an independent method, we assessed changes in pulmonary
physiology in these mice. There was no significant differ-
ence in pulmonary compliance at baseline or after saline
instillation between WT and Ptpra�/� mice (Figure 1C). By
contrast, at 21 days after instillation of bleomycin, WT mice
had developed a significant decrease in pulmonary compli-
ance, but Ptpra�/� mice were protected from development
of restrictive physiology (Figure 1C).

The Inflammatory Response to Bleomycin is Minimally
Altered in Ptpra�/� Mice

When given intratracheally, bleomycin induces an early
(days 1 to 7) acute inflammatory response in the lungs, and
fibrosis develops at later time points (days 14 to 21).89 Given
the differences in fibrotic responses to bleomycin in WT and
Ptpra�/� mice, we sought to determine whether these find-
ings are related to differences in the early inflammatory
response. To address this possibility, BAL fluid was
collected at days 0, 2, 7, and 21 after instillation of bleo-
mycin, and total and differential cell counts were assessed.
We found no difference between WT and Ptpra�/� mice for
total BAL cell counts or for neutrophil and macrophage
counts (Figure 2A).
oviral-mediated expression of active TGF-b. A: Representative lung sections
dDL70), or saline control stained with trichrome. B: Collagen content in the
Sircol assay. Data are expressed as means � SEM. *P < 0.05. Original
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Analysis of cytokine levels in BAL fluid at 14 and 48 hours
after bleomycin revealed similar levels of 1L-1b and kerati-
nocyte chemokine in WT and Ptpra�/� mice (Figure 2B).
Levels of total and active TGF-b were measured at day 7 by
ELISA to determine whether the difference in fibrotic
The American Journal of Pathology - ajp.amjpathol.org
response could be attributed to differences in TGF-b pro-
duction. The 7-day time point was chosen because it marks
the peak of TGF-b production in the bleomycin model.39 No
significant difference in total TGF-b levels was noted
between bleomycin-treated WT and Ptpra�/� mice
(Figure 2C). The trend toward a decrease in TGF-b levels in
Ptpra�/� mice likely reflects attenuated TGF-b signaling,
because TGF-b induces its own production.90 Concentrations
of active TGF-b in BAL fluid were very low in WT and
Ptpra�/� mice and did not differ between genotypes (data
not shown). Similarly, TNF-a levels in BAL fluid were
very low in WT and Ptpra�/� mice and did not differ be-
tween genotypes (data not shown). Levels of MMP-3, a
matrix-degrading proteinase implicated in pulmonary
fibrosis,74 were significantly higher in bleomycin-treated
WT than in with Ptpra�/� mice at 21 days (Figure 2D).

Ptpra�/� Mice Are Protected from Pulmonary Fibrosis
Induced by Adenoviral-Mediated Expression of Active
TGF-b

To verify that the protective effects of PTP-a deficiency reside
downstream of TGF-b production, we treatedWT andPtpra�/�

micewith an adenoviral vector expressing active porcine TGF-
b1 by intratracheal instillation (Ad5TGF-b).44 Empty vector
(AdDL70) and saline were used as controls.74 Mice were
euthanized 21 days after treatment. Histologically, the lungs of
WT mice treated with vector expressing active TGF-b con-
tained areas of dense fibrosis, whereas Ptpra�/� mice were
largely protected from fibrosis (Figure 3A). Expression of
active TGF-b induced an increase in pulmonary collagen
content as measured by the Sircol assay in the lungs of
AdTGF-b vector-treated WT mice, compared with either sa-
line or empty vector control (Figure 3B). No increase in lung
collagen content was observed in the lungs of Ptpra�/� mice
(Figure 3B). Levels of TGF-b were similar in the BAL fluid
fromWT and Ptpra�/�mice treated with the AdTGF-b vector
(data not shown).

Resident Lung Parenchymal Cells Mediate the
Protective Effect of PTP-a Deficiency

To determine whether resident lung cells or recruited he-
matopoietic cells are responsible for conferring the protec-
tive phenotype associated with genetic deletion of PTP-a,
Figure 4 Protection from pulmonary fibrosis is mediated by absence of
PTP-a in resident lung parenchymal cells. A: Compliance measurements
obtained via FlexiVent ventilation after reciprocal bone marrow trans-
plantation and treatment with 1.5 to 2.5 U/kg bleomycin for 21 days.
B: Representative stained lung sections of mice undergoing reciprocal bone
marrow transplantation 14 days after administration of bleomycin. C: A
Sircol assay was performed to determine collagen content after reciprocal
bone marrow transplantation and treatment with bleomycin for 21 days.
Data are expressed as means � SEM. *P < 0.05. Original magnification,
�40. Scale bar Z 200 mm.
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Figure 5 Ptpra�/�
fibroblasts exhibit diminished responsiveness to profibrotic TGF-b signals. A and B: After stimulation with 2 ng/mL TGF-b or buffer

control for 6 hours, WT and Ptpra�/� mouse embryonic fibroblasts (A) and primary mouse lung fibroblasts (B) were analyzed by qPCR to assess mRNA
expression of EDA-fibronectin, aSMA, collagen 1A, and CTGF. Data are expressed as means � SEM.*P < 0.05; **P < 0.01.
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we used reciprocal bone marrow transplantation. The
following transplants were performed: WT marrow / WT
mice; WT marrow / Ptpra�/� mice; Ptpra�/� marrow /
WT mice; and Ptpra�/� marrow / Ptpra�/� mice. At 12
weeks after transplantation, mice were treated with bleo-
mycin and euthanized at day 21 for measurements of lung
compliance, histology, and collagen content. A high degree
of chimerism (>98%) was observed in all transplanted mice
(data not shown).

WT mice, regardless of the genotype of the transplanted
marrow, developed decreased lung compliance by 21 days
after intratracheal bleomycin, compared with Ptpra�/� mice
(Figure 4A). Conversely, lung compliance in Ptpra�/� mice
did not diminish in response to bleomycin, regardless of the
genotype of the transplanted marrow. Histologically, mice
with resident WT lung parenchymal cells exhibited an in-
crease in amount and severity of fibrosis after bleomycin,
whereas mice with Ptpra�/� resident lung parenchymal
cells were largely protected from fibrosis and maintained
Figure 6 TGF-b receptor type I and II expression is similar in WT and
Ptpra�/�

fibroblasts. Primary mouse lung fibroblasts were isolated and qPCR
analysis performed for TGFbRI and TGFbRII expression. Data are expressed
as means � SEM.
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normal lung parenchymal architecture (Figure 4B). These
histological findings were not affected by the genotype of
the transplanted marrow that was received.
Analogous to the results of compliance and histological

data, the lungs of mice with resident WT lung parenchymal
cells developed increased collagen content in response to
bleomycin, whereas mice with Ptpra�/� resident lung
parenchymal cells were protected from fibrosis, as demon-
strated by biochemical analysis (Figure 4C). These data
suggest that PTP-a expression in lung resident cells confers
sensitivity to the fibrogenic effects of bleomycin.

Ptpra�/� Fibroblasts Exhibit Attenuated Profibrotic
Responses to TGF-b

Because lung mesenchymal cells are the primary source of
excess collagen and other ECM material during fibrotic
responses, we next compared the profibrotic responses of
isolated WT and Ptpra�/�

fibroblasts in vitro to the profi-
brotic growth factor TGF-b. For these studies, we used both
mouse embryonic fibroblasts and primary mouse lung
fibroblasts. Both types of fibroblasts demonstrated similar
responses. WT and Ptpra�/� embryonic fibroblasts were
stimulated with 2 to 5 ng/mL TGF-b and expression of
aSMA, collagen 1A (Col1A), EDA-fibronectin (EDA-Fn),
and connective tissue growth factor (CTGF) mRNA were
assessed by qPCR as markers of profibrotic responsiveness.91

After stimulation with TGF-b, WT fibroblasts demonstrated
a significant increase in the levels of aSMA, EDA-Fn,
Col1A, and CTGF mRNA. These responses were markedly
attenuated in Ptpra�/� embryonic fibroblasts (Figure 5A). A
ajp.amjpathol.org - The American Journal of Pathology
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Figure 7 Ptpra�/�
fibroblasts exhibit attenuated contractile responses

to TGF-b. Mouse lung fibroblasts were cast into collagen gels and allowed to
contract over 5 days. Images were captured every 24 hours, and gel area
was quantified using ImageJ software. *P < 0.05.

Figure 8 Smad reporter activity is attenuated in Ptpra�/�
fibroblasts. A

and B: WT and Ptpra�/� mouse embryonic fibroblasts were transfected with
Smad2 or Smad3 luciferase reporter constructs for 24 hours and then were
incubated in the absence or presence of 2 ng/mL TGF-b for 16 hours. Ly-
sates were assayed for luciferase activity. Both Smad2 (A) and Smad3 (B)
reporter activity were significantly reduced in Ptpra�/�

fibroblasts,
compared with WT. C: NIH 3T3 fibroblasts were reverse-transfected with
control or PTP-a siRNA, followed by transfection with Smad3 luciferase
reporter construct for 24 hours. Cells were then stimulated with 2 ng/mL
TGF-b for 16 hours or with buffer medium. Luciferase activity in lysates was
normalized to control siRNA treated with buffer. Data are expressed as
means � SEM. *P < 0.05.

PTP-a Mediates Profibrotic Signaling
similar pattern of attenuated responsiveness to TGF-b was
also noted in primary mouse Ptpra�/� lung fibroblasts for
EDA-Fn, CTGF and aSMA (Figure 5B). A similar trend was
observed for Col1A, although it did not achieve statistical
significance.

WT and Ptpra�/� Fibroblasts Have Equivalent TGF-b
Receptor Expression

To ensure that the differences in fibrogenic responses be-
tween WT and Ptpra�/�

fibroblasts were not due to dif-
ferences in baseline expression of TGF-b receptors, we
compared mRNA expression of both TGFbR-I and TGFbR-
II from isolated mouse lung fibroblasts, because these are
the major receptors implicated in tissue fibrosis.42 No sig-
nificant difference in the expression of either TGFbR-I or
TGFbR-II mRNA between isolated primary lung fibroblasts
from WT and Ptpra�/� mice that would account for dif-
ferences in TGF-b responses was observed (Figure 6).

Ptpra�/� Fibroblasts Exhibit Attenuated Contractile
Responses to TGF-b

To assess the importance of PTP-a in contractile responses
of fibroblasts linked to fibrosis,92,93 we compared the ability
of WT and Ptpra�/� lung fibroblasts to contract collagen
gels.71,87 The ability of Ptpra�/�

fibroblasts to contract
collagen gels was significantly diminished, relative to that of
WT cells (Figure 7). Taken together, these observations
demonstrate that Ptpra�/� lung fibroblasts exhibit dimin-
ished profibrotic responses to TGF-b, relative to WT cells,
and are unable to acquire typical myofibroblast features
under these conditions.

PTP-a Promotes TGF-beInduced Smad-Dependent
Transcriptional Activity

Given that genetic deficiency of PTP-a resulted in alterations
in expression of Smad-dependent profibrotic genes, we next
evaluated the importance of PTP-a in TGF-bedependent
Smad2 and Smad3 transcriptional responses in fibroblasts
The American Journal of Pathology - ajp.amjpathol.org
using Smad luciferase reporter assays. WT and Ptpra�/�

mouse embryonic fibroblasts were transfected with a Smad2
or Smad3 luciferase reporter and stimulated with TGF-b for
16 hours. Ptpra�/�

fibroblasts exhibited significantly less
activity of both Smad2 and Smad3 reporters (Figure 8, A
and B). The basal activity of the reporter was also somewhat
less in Ptpra�/�

fibroblasts; importantly, the TGF-be
induced increase was nearly completely abrogated. To
validate these results and to ensure that any differences
1497
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observed between WT and Ptpra�/�
fibroblasts were not

attributable to genetic compensation, we also used NIH 3T3
fibroblasts in which PTP-a expression was acutely silenced
using siRNA, which resulted in 68.3 � 28.0% knockdown.
These cells were then transfected with a Smad3 luciferase
reporter and stimulated in an identical manner with TGF-b.
As expected, acute gene silencing of PTP-a resulted in
significantly attenuated Smad3 reporter activity after TGF-b
stimulation (Figure 8C).

To assess the importance of PTP-a in regulation of
noncanonical TGF-b signaling pathways involving p38
MAP kinase, p42/44 MAP kinase (ERK), and AKT,34,35,94

we compared the extent of TGF-beinduced activation of
these kinases between WT and Ptpra�/�

fibroblasts using
immunoblot analysis with antibodies that recognize their
phosphorylated (activated) state. These studies revealed no
apparent differences between WT and Ptpra�/�

fibroblasts
in these pathways (data not shown).
Discussion

Idiopathic pulmonary fibrosis is a progressive and usually
fatal disease that results in destruction of normal lung ar-
chitecture and ultimately in respiratory failure and death.3,4

IPF is characterized by remodeling of normal ECM,
increased deposition of collagen and other ECM compo-
nents, and proliferation of fibroblasts within the presence of
fibroblastic foci.1,3 The pathogenesis and underlying mech-
anisms of this complex disease remain poorly understood,
despite intensive study. Concepts of abnormal wound healing
and repetitive injury and repair leading to stimulation of
myofibroblast differentiation have emerged, as has the
importance of profibrotic mediators in driving production of
excessive and disorganized fibrous tissue.14,95,96 Here, we
have demonstrated the importance of the transmembrane
receptor tyrosine phosphatase PTP-a in the genesis of pul-
monary fibrosis in two complementary animal models:
intratracheal bleomycin and pulmonary expression of active
TGF-b via adenoviral-mediated gene delivery. In addition, our
results demonstrate an important role for PTP-a in TGF-
bedependent profibrotic responses in fibroblasts and in pro-
fibrotic signaling in the canonical TGF-beSmad pathway that
has been linked to tissue fibrosis.35,91

Using the bleomycin and AdTGF-b mouse models of
pulmonary fibrosis, we have demonstrated that genetic
deficiency of PTP-a protects mice from the development of
fibrosis, specifically with respect to preservation of normal
lung architecture, prevention of excess collagen deposition,
and maintenance of normal pulmonary mechanics after
the administration of robust profibrotic stimuli. These ob-
servations substantiate an important role for PTP-a in pro-
moting fibrotic responses. Notably, the inflammatory
response in these experimental models of pulmonary fibrosis
was not significantly altered by the absence of PTP-a, sug-
gesting that PTP-a selectively promotes fibrogenic signaling,
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rather than acute inflammatory pathways. Results from
reciprocal bone marrow transplantation experiments indi-
cate that the protective phenotype arises from cells residing
within the lung parenchyma, rather than from circulating
bone marrow progenitor cells. Furthermore, the protection
from lung fibrosis in the AdTGF-bmodel that is dependent
on overexpression of active TGF-b strongly suggests that
PTP-a is situated downstream of TGF-b production and
activation in animal models of pulmonary fibrosis. This
concept is also supported by the bleomycin model, in which
levels of TGF-b in lavage fluid were similar between
WT and Ptpra�/� mice but the latter were protected from
fibrosis.
The importance of fibroblasts in the secretion of excess

collagen and other ECM proteins that contribute to the
pathogenesis of pulmonary fibrosis prompted us to focus on
the role of PTP-a in profibrotic responses in this mesen-
chymal cell type. TGF-b has been shown to induce myofi-
broblast differentiation in fibroblasts.29,45 Myofibroblasts are
both contractile and secretory, producing aSMA in stress
fibers that are involved in contractile responses, as well as
secreting ECM protein components such as fibronectin and
collagen.97 qPCR analysis of mouse embryonic fibroblasts
revealed decreased expression of genes involved in ECM
production such as collagen 1A and EDA-Fn in Ptpra�/�

cells in response to TGF-b. Furthermore, Ptpra�/�
fibro-

blasts demonstrated impaired ability to contract collagen
gels, suggesting an attenuated myofibroblast phenotype.
Expression of TGF-b in the lungs is sufficient for induc-

tion of pulmonary fibrosis in animal models via a Smad2/
3edependent profibrotic signaling pathway.41,44,47,48 TGF-b
regulates diverse cellular processes from proliferation and
differentiation to apoptosis, and signaling is achieved
through type II (TGFbR-II) and type I (TGFbR-I) receptors,
which induce phosphorylation of Smad2 and Smad3 after
ligand binding and ultimately regulate gene transcription in
the nucleus.33,34,98 Our observation that levels of expression
of TGFbRI and TGFbRII do not differ between WT and
Ptpra�/�

fibroblasts indicates that PTP-a does not regulate
TGF-bedependent profibrotic signaling by controlling
levels of TGF-b receptor expression but rather that PTP-a
likely acts at or downstream of receptor activation.
Previous studies have provided evidence for the impor-

tance of TNF-a in up-regulating TGF-b in the pathogenesis
of fibroproliferative lung disease induced by bleomycin,
silica, and asbestos in mouse models.25,99 Our present
studies expanded on this concept and provide evidence that
PTP-a acts at or downstream of TGF-b receptors and
therefore also likely downstream of TNF-a in the pathways
driving pulmonary fibrosis.
Despite the similar levels of TGF-b receptors, the absence

of PTP-a had profound effects on the canonical TGF-b
signaling pathway, as evidenced by alterations in receptor-
Smad transcriptional responses. Luciferase reporter assays
showed that Smad2 and Smad3-dependent transcription in
response to TGF-b was significantly attenuated in Ptpra�/�,
ajp.amjpathol.org - The American Journal of Pathology
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compared with WT mouse embryonic fibroblasts. Similar
findings were observed in fibroblast cell lines subjected to
acute gene knockdown with siRNA. The ability to recapit-
ulate the findings seen in isolated primary cells by analysis
of cells treated with siRNA to PTP-a to achieve knockdown
addresses concerns related to genetic compensation that may
occur in primary cells derived from mice genetically defi-
cient in PTP-a.

To our knowledge, this is the first report to show a role for
a tyrosine phosphatase in the development of pulmonary
fibrosis; thus, PTP-a is a novel mediator of the fibrotic pro-
cess and may provide insights into the pathways that drive
progressive fibrosis without affecting the inflammatory re-
sponses within the lungs. Signal attenuation represents an
important regulatory aspect of TGF-b responses with both
receptor activation and downstream events subject to regu-
lation. With respect to the Smad-dependent signaling path-
ways (which appear to be modified by PTP-a, as evidenced
by our in vitro and in vivo studies), possible mechanisms of
regulation or signal attenuation include reversible phos-
phorylation, degradation, ubiquitination, sumoylation, or
alterations in nuclear import and export.35,46,49 Our working
hypothesis is that PTP-a down-regulates one or more of these
signaling checkpoints and thus promotes profibrotic TGF-b
signaling. Therefore, the absence of PTP-a results in atten-
uation of profibrotic signals and a subsequent inability of
fibroblasts to differentiate to myofibroblasts which accumu-
late in the interstitium, produce ECM components, and
impart contractile force; thus the absence of PTP-a confers a
protective phenotype in the setting of a signaling milieu that
would otherwise result in the development of fibrosis.

PTP-a control of profibrotic TGF-b signaling could be via
effects on SFKs. In this regard, PTP-a dephosphorylates and
activates Src, which promotes TGF-bemediated collagen
production in fibroblasts.100,101 Additionally, inhibition of
Src via gene silencing or expression of catalytically inactive
(dominant negative) Src resulted in suppression of Smad2-
and Smad3-dependent reporter responses.102 Src can also
directly phosphorylate TGFbRII on Y284, promoting acti-
vation of p38 MAPK within the noncanonical TGF-b
signaling pathway.94,103 In addition, Src can phosphorylate
and activate FAK, which has been shown to promote focal
adhesion-dependent signaling,104e106 which may promote
profibrotic signaling cascades.107 Fyn, another SFK
expressed in fibroblasts, mediates myofibroblast differentia-
tion, which may be important in pulmonary fibrosis.108 In
addition to enhancing On signals through TGF-b receptors,
PTP-a in association with SFKs could augment TGF-b
signaling by inhibiting Off signals. This may occur by inhi-
bition of Smad phosphatases such as PPM1A and PP2A or
via an independent mechanism.53,109 Our studies suggest that
PTP-a does not regulate noncanonical TGF-b signaling
pathways involving p38 MAP kinase, p42/44 MAP kinase
(ERK), or AKT. A more detailed analysis of the molecular
mechanisms by which PTP-a enhances profibrotic pathways
is currently underway in our laboratory.
The American Journal of Pathology - ajp.amjpathol.org
Idiopathic pulmonary fibrosis and other fibrosing intersti-
tial pneumonias remain deadly diseases with no current
effective therapeutic options. Although some recent clinical
trials have shown promising results, including those of pir-
fenidone and the tyrosine kinase inhibitor BIBF 1120, the
overall findings of multiple clinical trials aimed at varied
potential target pathways have largely failed to identify
ineffective therapies.5,8,110 Furthermore, patients often pre-
sent with late-stage disease, and survival time from initial
diagnosis is brief.3,4 In addition to a lack of effective thera-
pies, there is also a need for improved prognostic markers and
tools to assess the trajectory of disease progression, which
may affect referrals for lung transplantation or palliative care
strategies. The novel discovery of the key role of PTP-a and
the pathways controlled by it in the pathogenesis of pulmo-
nary fibrosis in animal models could ultimately prove useful
as a biomarker to identify patients at risk of developing pul-
monary fibrosis or of having a more rapidly progressive dis-
ease course. In addition, PTP-amay serve as a target for novel
treatment strategies, in particular those that mediate the con-
trol of fibrosis without altering the inflammatory response,
which is thought to be essential for an effective repair process.
Small-molecule inhibitors of PTP-a or targeted antibodies
that result in inactivation of the phosphatase activity of PTP-a
warrant investigation in animal models, with the ultimate goal
of treatment of patients with pulmonary fibrosis. Broader
applications to other progressive fibrosing diseases of the
liver, kidneys, or heart may also prove relevant as the
mechanisms by which PTP-a influences the pathogenesis of
pulmonary fibrosis are further defined.
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