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Hairless mice carrying homozygous mutations in hairless gene manifest rudimentary hair follicles (HFs),
epidermal cysts, hairless phenotype, and enhanced susceptibility to squamous cell carcinomas.
However, their susceptibility to basal cell carcinomas (BCCs), a neoplasm considered originated
from HF-localized stem cells, is unknown. To demonstrate the role of HFs in BCC development, we bred
Ptchþ/�/C57BL6 with SKH-1 hairless mice, followed by brother-sister cross to get F2 homozygous
mutant (hairless) or wild-type (haired) mice. UVB-induced inflammation was less pronounced in shaved
haired than in hairless mice. In hairless mice, inflammatory infiltrate was found around the rudimentary
HFs and epidermal cysts. Expression of epidermal IL1f6, S100a8, vitamin D receptor, repetin, and major
histocompatibility complex II, biomarkers depicting susceptibility to cutaneous inflammation, was also
higher. In these animals, HF disruption altered susceptibility to UVB-induced BCCs. Tumor onset in
hairless mice was 10 weeks earlier than in haired littermates. The incidence of BCCs was significantly
higher in hairless than in haired animals; however, the magnitude of sonic hedgehog signaling did not
differ significantly. Overall, 100% of hairless mice developed >12 tumors per mouse after 32 weeks of
UVB therapy, whereas haired mice developed fewer than three tumors per mouse after 44 weeks of long-
term UVB irradiation. Tumors in hairless mice were more aggressive than in haired littermates and
manifested decreased E-cadherin and enhanced mesenchymal proteins. These data provide novel evi-
dence that disruption of HFs in Ptchþ/� mice enhances cutaneous susceptibility to inflammation and
BCCs. (Am J Pathol 2014, 184: 1529e1540; http://dx.doi.org/10.1016/j.ajpath.2014.01.013)
SupportedbyNIHgrantsR01-ES015323andR01-CA130998-01A2 (M.A.).
Disclosures: None declared.
A guest editor acted as the editor in chief for thismanuscript. No person at the

University of Alabama at Birminghamwas involved in the peer review process
or final disposition for this article.
Homozygous mutations in hairless gene (hr) cause a perma-
nent hair loss, referred to as alopecia in both humans and
mice.1 The hairless animals are used historically as a conve-
nient murine model to study skin carcinogenesis.2 In early
studies, it was found that hairless animals are more suscep-
tible to both chemically and UVB-induced skin squamous
cell carcinogenesis compared with their haired littermates.3,4

However, the mechanism for this enhanced susceptibility to
the development of squamous lesions remains undefined. It is
also not knownwhether loss of hairless gene causes enhanced
susceptibility for other epithelial cancers, such as basal cell
carcinoma (BCC).

BCC is the most common human malignancy affecting
about a million Americans each year. Hedgehog signaling
stigative Pathology.

.

pathway activation, particularly by mutations in PATCHED
(PTCH) and smoothened, is the driving oncogenic signaling
pathway underlying the pathogenesis of this neoplasm.5

Recently, using mouse genetics to identify cells responsible
for the origin of BCC showed that these tumors arise from
long-term resident progenitor cells of the interfollicular
epidermis and the upper infundibulum.6 Later, Wang et al,7

by using cell fate tracking of X-rayeinduced BCCs in
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Ptch1þ/�mice, found that these BCCs essentially exclusively
originate from the keratin 15eexpressing stem cells of the
follicular bulge, suggesting that hair follicle (HF) disruption
may alter the pathogenesis of these tumors.

HFs are complex miniorgans in the skin that are formed
during embryonic development.8 Post-natally, HFs undergo
cyclic phases of active growth (anagen stage), regression
(catagen stage), and inactivity (telogen stage).8,9 Hr is one of
the key genes regulating these responses. Hr, a putative zinc
finger protein, is highly expressed in the skin.10 It is considered
as a candidate gene that regulates basic HF functions. Func-
tionally, Hr is a transcriptional corepressor that is known to
interact with various nuclear receptors, such as thyroid hor-
mone receptor, retinoic acid orphan receptor a, and vitamin D
receptor (VDR).11 These interactions are important for hair
morphogenesis. In the carboxyl terminus of hr gene, a JmjC
domain is located, which is one of the multiple conserved
motifs identified in Jumonji proteins.12 It is known that JmjC
domains in various proteins act as histone demethylases.
Transcriptional repression often results from the association of
corepressors with histone deacetylases (HDACs).13 It has been
demonstrated thatHR interactswith variousHDACs, including
HDACs1, 3, and 5.14 Interestingly, corepressor activity ofHr is
modified in the presence of an HDAC inhibitor.11,14 Although
direct evidence demonstrating a role of HR in modifying
epidermal carcinogenesis response is lacking, the HDACs are
importantmodulators of cancer pathogenesis.15The interaction
of HR with VDR, an important regulator of cutaneous sus-
ceptibility to inflammation,16 also provides a basis for regu-
lating susceptibility of the skin to both epithelial carcinogenesis
and inflammatory tumor microenvironment.

Recently, we showed that loss of hr confers susceptibility to
UVB-induced squamous cell carcinomas (SCCs) by aug-
menting theNF-kB signaling pathway.17 These results raise the
questionofwhether loss ofhr-mediatedNF-kBactivation alters
inflammatory response in these animals, because NF-kB is a
well-established regulator of inflammatory response signaling
in both experimental animal models and humans.18e20

Herein, we investigated whether mice with the loss of hr
gene develop enhanced inflammatory response to UVB. We
also tested whether the observed augmented inflammation in
hairless littermates is associated with the enhanced pathogen-
esis to both SCCs and BCCs. These cancers are grouped as
nonmelanoma cancers and are the most common type of can-
cers in the United States, with a combined incidence of more
than 2 million new cases annually (Skin Cancer Foundation;
http://www.skincancer.org/skin-cancer-information/skin-
cancer-facts, last accessed October 12, 2013).21

By using genetically engineered animals in this study, we
showed that hairlessmice developed significantlymore BCCs
and SCCs compared with their haired littermates. In addition,
an inflammatory response in hairless mice was significantly
higher than in their haired (shaved) littermates. Significantly
more SCCs developed in hairless mice; these are poorly
differentiated carcinomas showing enhanced expression of
mesenchymal markers and reduced expression of epithelial
1530
markers than those that develop in haired (shaved) animals.
These data provide the first evidence that hairless enhances
susceptibility to both cutaneous inflammation and BCCs, in
addition to SCCs. We also show that the enhanced inflam-
matory response also regulates aggressive tumor phenotype
via regulating epithelial-mesenchymal transition (EMT).

Materials and Methods

Animal Model

Ptchþ/�/C57BL/6 haired male mice (Jackson Laboratory, Bar
Harbor, ME) were crossed with SKH-1 hairless female mice
(Charles River Laboratories, Wilmington, MA). The litter was
genotyped for Ptchþ/� heterozygosity using an Extract-N-
Amp Tissue PCR Kit (catalog number XNAT2-1KT) from
Sigma (St. Louis,MO). The genotyping primers ofPTCHwere
as follows: wild type, 50-CTGCGGCAAGTTTTTGGTTG-30

(forward) and 50-AGGGCTTCTCGTTGGCTACAAG-30 (re-
verse); and mutant type, 50-GCCCT-GAATGAACTGCAG-
GACG-30 (forward) and 50-CACGGGTAGCCAACGCTA-
TGTC-30 (reverse). The F1 Ptchþ/�/C57BL/6/SKH-1/hrþ/�

malemicewere crossed with the F1Ptch
þ/�/C57BL/6/SKH-1/

hrþ/� female mice, and only Ptchþ/� mice (both haired and
hairless), aged 6 to 8 weeks, were selected for this study.

Tumor Study

We used a UV irradiation unit (Daavlin Co, Bryan, OH)
equipped with an electronic controller to regulate dosage, as
described earlier.22 Twenty-six hairless mice (15 females and
11 males) were irradiated with 180 mJ/cm2 UVB, twice per
week for 32 weeks, and 23 haired mice (13 females and 10
males) were exposed to 240 mJ/cm2 UVB irradiation, three
times per week for 44 weeks. We titrated the doses of UVB in
SKH-1, C57BL/6, and mixed C57BL/6/129 mice for cuta-
neous carcinogenic and inflammatory responses (unpublished
data). The UVB doses tested were 180, 240, and 360 mJ/cm2.
Chronic irradiation ofC57BL/6 andmixedC57BL/6/129mice
with 180 mJ/cm2, twice weekly for approximately 50 weeks,
did not produce significant inflammatory and tumor induction
responses, whereas 360 mJ/cm2 produced multiple large
spindle-cell carcinomas requiring early euthanasia. Therefore,
the most suitable dose in this setting was 240 mJ/cm2.
The dorsal hair of haired mice was removed weekly by

electric clipper after an initial depilatory cream (NAIR
Lotion, Princeton, NJ) application. Tumors on the dorsal
area of both groups were measured by digital calipers, and
tumor volumes were calculated using the following formula:

volumeZlength�width� height=2 ð1Þ

plotted as a function of weeks taking the test.

SSZ Treatment

Twenty Ptchþ/�/hr�/� mice, aged 6 to 8 weeks, were
divided into two groups (10 mice per group) and irradiated
ajp.amjpathol.org - The American Journal of Pathology
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HF Disruption Enhances BCCs
with 180 mJ/cm2 UVB twice a week for 26 weeks. Group 1
served as control, whereas group 2 animals were orally
administered with 300 ppm of sulfasalazine (SSZ) in
drinking water, which was solubilized by adding a few
drops of sodium hydroxide (1N). Mice were sacrificed at
week 26. Their dorsal skin was removed, and tumors were
harvested and collected for subsequent studies.

Antibodies and Reagents

Primary antibodies include Bcl2, caspase 3, IL1f6, E-cad-
herin, N-cadherin, proliferating cell nuclear antigen (PCNA),
S100a8 (Santa Cruz Biotechnology, Santa Cruz, CA),
CD11b, CD3, CD4, CD49b, GR-1 (BD Biosciences, San
Jose, CA), fibronectin, major histocompatibility complex
(MHC) II, repetin, slug, snail, twist, vimentin, VDR (Abcam,
Cambridge, MA), cyclin D1 (Thermo Fisher, Waltham,
MA), and cyclooxygenase (COX)-2 (Cayman, Ann Arbor,
MI). Horseradish peroxidase secondary antibodies (Thermo
Fisher Scientific, Rockford, IL) and Alexa Fluor 488 or 596
conjugated secondary antibodies (eBioscience, San Diego,
CA) were used. The SSZ was purchased from Sigma.

Immunoblotting

Tissues were homogenized and lysed in 100 mL of
radioimmunoprecipitation assay lysis buffer. Total pro-
tein (50 mg) was separated on a 6% to 12% SDS-PAGE
gel and blotted onto a polyvinylidene difluoride mem-
brane. A Western blot assay was performed as described
previously.22

IHC and Immunofluorescence Analysis in Tissue

Immunohistochemistry (IHC) and immunofluorescence of
formalin-fixed, paraffin-embedded tissue specimens were
performed as described previously.22 The densitometeric
analysis was done by ImageJ software version 1.43u, which
was downloaded from theNIH (Bethesda,MD; http://rsbweb.
nih.gov/ij/index.html, last accessed October 17, 2013).

TUNEL Data

TUNEL staining was performed using a kit (catalog number
1684795) from Roche Applied Science (Indianapolis, IN),
exactly according to the manufacturer’s guidelines.
Table 1 Summary of UVB-Induced Skin Carcinogenesis in Ptchþ/� Ha

Parameters Haired

Tumor latency (weeks) 32
Cumulative UVB dose required to develop first tumor (J) 23.04
Tumor incidence (%) 40 (a
Average no. of tumors per mouse 2.5
Tumor spectrum Papill

spin
Male/female distribution of tumors 4.5:1
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RT-PCR Data

Total RNAwas isolated from skin according tomanufacturer’s
protocol using a TRIzol reagent extraction kit (catalog number
15596-026; Invitrogen, Grand Island, NY). A total of 1 mg of
RNAwas used for reverse transcription using an iScript cDNA
synthesis kit (Bio-Rad, Hercules, CA). Primers used were as
follows: GLI1, 50-GTCGGAAGTCCTATTCACGC-30 (for-
ward) and 50-CAGTCTGCTCTCTTCCCTGC-30 (reverse);
GLI2, 50-GAGCAGAAGCCCTTCAAG-30 (forward) and 50-
GACAGTCTTCACATGCTT-30 (reverse); GLI3, 50-CA-
AGCCTGATGAAGACCTCC-30 (forward) and 50-GCTT-
TGAACGGTTTCTGCTC-30 (reverse); PTCH1, 50-AACA-
AAAATTCAACCAAACCTC-30 (forward) and 50-TGTCT-
TCATTCCAGTTGATGTG-30 (reverse); PTCH2, 50-TGC-
CTCTCTGGAGGGCTTCC-30 (forward) and 50-CAGTTC-
CTCCTGCCAGTGCA-30 (reverse); and Cyclin D1, 50-
AGGAGCAGAAGTGCGAAGAG-30 (forward) and 50-CT-
GGCATTTTGGAGAGGAAG-30 (reverse). The gel image
was semiquantified by ImageJ software version 1.43u.

PCR Array

PCR array was done using an SA Biosciences PCR Array
System (Valencia, CA). First-strand cDNA synthesis was
done using an RT2 First Strand kit. Real-time PCR was done
with mouse inflammatory cytokines and receptor PCR arrays
(PAMM-011C) on the iQ5 (Bio-Rad) using RT2 qPCR
Master Mix. The program was as follows: 95�C for 10 mi-
nutes, followed by 40 cycles of 95�C for 15 seconds and 60�C
for 1minute. For each group, three skin samples were used for
PCR array analysis. Relative fold changes of gene expression
were calculated according to the manufacturer’s instructions,
and the manufacturer’s software was available online.

Enzyme-Linked Immunosorbent Assay Data

An enzyme-linked immunosorbent assay was performed
using a prostaglandin E (PGE) 2 express electroimmuno-
assay kit (item number 500141; Cayman).

Statistics

Statistical analysis was performed using Excel 2003
(Microsoft Corp, Redmond, WA). The significance between
the two test groups was determined using a two-tailed
Student’s t-test, and P � 0.05 was considered as significant.
ired and Hairless Littermates

Hairless

22
7.92

t week 44) 100 (at week 32)
12.5

oma, SCC, BCC, and
dle-cell tumors

Papilloma, SCC, BCC, trichoblastoma,
and rhabdomyosarcomas

1.43:1
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Figure 1 UVB-induced SCCs and BCCs in Ptchþ/� haired and hairless mice.
A: Representative images of tumor-bearing hairless and haired mice. B: Tumor
growth graph showing the progressive increase in tumor number and tumor
size in hairless and haired animals when plotted against week on test. C:
Multiplicity of UVB-induced SCCs and BCCs in hairless and haired littermates.
D: Bar diagram showing tumor numbers by sex categorization. E: b-Gal
staining and bar diagram showing both number and size of microscopic BCCs in
hairless and haired animals. Significance between the two groups was calculated
using a Student’s t-test. *P < 0.05, ***P < 0.001. W, weeks.

Figure 2 Transcript levels of Shh signalingerelated genes in the skin
and BCCs of hairless and haired mice. Semiquantitative/RT-PCR data were
represented as means � SEM of at least three samples (n Z 3), with
expression levels normalized to actin. *P < 0.05, ***P < 0.001, relative to
corresponding control (C). T, tumor; US, UVB-irradiated skin.

Xu et al
Results

Hairless animals are known to be more susceptible to the in-
duction of SCCs than their haired (shaved) littermates.17 To
elucidate the mechanism by which the hairless phenotype
affects UVB carcinogenesis, we developed haired and
hairless littermates by crossing SKH-1 hairless (red-eyed)
and Ptch1þ/�/C57BL6 (black-eyed) mice, as shown in
Supplemental Figure S1. These littermates consist of haired
and hairless mice segregated for black and red eyes. Our
experimental animals in both haired and hairless categories
represented almost equal numbers in phenotypes of black/red
eye color and white/black/agouti brown hair color.

To induce tumors in these animals, hairless mice were
exposed to a much lower dose of UVB (180 mJ/cm2, twice a
week) compared with haired animals that received a higher
dose of UVB (240 mJ/cm2, three times per week). The UVB
1532
dose selection was based on our earlier experiments, in
which we used haired and hairless animals for inducing
cutaneous tumors.23,24 As shown in Table 1, the cumulative
dose of UVB needed to induce tumorigenesis in haired
animals was approximately three times higher than that
required for hairless animals (23.04 J versus 7.92 J). The
latency period of tumor induction was 32 weeks in haired
mice and 22 weeks in hairless mice (Figure 1A). By using
these UVB exposure protocols, only approximately 40%
of animals in the haired group developed tumors by week
44 compared with 100% of animals in the hairless group
that developed tumors by week 32. The tumor multiplicity
of the dorsal area in the two groups was also significantly
different. In hairless mice, the number of tumors per
mouse was 12.5 � 1.5 compared with 2.5 � 0.8 in haired
mice (Figure 1B). The tumor burden in haired (shaved)
mice was much lower compared with that in hairless
mice. Of 23 haired mice, only 8 had tumors (range, 1 to 9
tumors per mouse), whereas of 26 hairless mice, 21 had
tumors (range, 3 to 18 tumors per mouse). The pattern of
tumor growth in terms of both tumor numbers and tumor
volume was significantly different at almost all time
points recorded. However, at 32 weeks, the significance
level reached high (P < 0.001). The tumor spectrum in
the two groups was also different. Haired mice developed
benign papillomas, highly differentiated SCCs, BCCs,
and a few spindle-cell carcinomas, whereas hairless
mice developed benign papilloma, SCCs (both highly
invasive and differentiated), BCCs, trichoblastomas, and
ajp.amjpathol.org - The American Journal of Pathology
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Figure 3 Expression of biomarkers related to proliferation and
apoptosis in tumors induced in hairless and haired Ptchþ/� littermates. A:
IHC staining of cyclin D1, immunofluorescence staining of PCNA, and TUNEL
staining. B: Nuclear cyclin D1 and PCNA staining, as quantified in BCCs
excised from hairless and haired mice. Data are represented as
means � SEM of at least three samples. AU, arbitrary unit.

HF Disruption Enhances BCCs
rhabdomyosarcomas (Supplemental Figure S2). The dis-
tribution of overall tumor multiplicity in males versus
females was 4.5:1 in haired animals, whereas it was not
significantly different in hairless animals (1.43:1). These
data are summarized in Table 1.

HF Disruption Enhances Growth of Both SCCs and BCCs
after Chronic UVB Irradiation

To investigate whether HF disruption in Ptchþ/� mice
affects SCC and BCC growth, we analyzed both haired
(shaved) and hairless chronically UVB-irradiated Ptchþ/�

mice. Hairless mice developed more SCCs and BCCs
compared with their haired littermates (2.51 � 0.41 versus
0.43� 0.20 and 3.90� 0.57 versus 0.58� 0.18 tumors per
mouse) (Figure 1C). Haired mice show a male predilection
in both SCCs and BCCs, whereas hairless mice do not
have remarkable sex differences in the two tumor types
(Figure 1D). Microscopic BCCs in hairless mice are
significantly larger in both number and size than in haired
(shaved) mice (Figure 1E).

Hairless Phenotype Does Not Alter Transcript Levels of
Shh SignalingeRelated Genes

To understand whether the increase in BCCs in hairless mice
is related to altered expression of sonic hedgehog (Shh)
signalingerelated genes that drive the pathogenesis of this
neoplasm, we analyzedmRNA levels of these genes in tumors
and in tumor-adjacent perilesional skin. Compared with their
respective age-matched nonirradiated skin, the mRNA level
of ptch1/2, gli1/2/3, and cyclin D1 increased to approximately
the same level in BCCs induced in both haired and hairless
mice, suggesting that these tumors are not significantly
different in their molecular pathogenesis (Figure 2). However,
we observed significant differences in the baseline expression
of ptch1, gli1, and cyclin D1 transcripts (Supplemental
Figure S3). When compared with baseline expression levels
of age-matched control skins to tumor-adjacent perilesional
skin of the haired and hairless mice, we found an increase in
the expression of all of these genes in hairless mice,
although only significant changes were observed in the
levels of gli2 (Supplemental Figure S3).

Proliferation- and Apoptosis-Related Signaling
Proteins Are Not Significantly Altered in Tumors
Induced in Haired or Hairless Mice

We analyzed cyclin D1 and PCNA expression as markers of
proliferation and TUNEL staining to assess apoptosis in
haired versus hairless skin and tumors (Figure 3). No sig-
nificant differences were found in these biomarkers in tumors
induced in haired versus hairless littermates. Similarly, we
also did not observe significant differences in the expression
of these biomarker proteins in either age-matched control
skin or tumor-adjacent perilesional skin (data not shown).
The American Journal of Pathology - ajp.amjpathol.org
Intensive Inflammation Is Found Associated with
Tumors Developed in Hairless Mice

To unravel the mechanism associated with the ability of
hairless phenotype to develop enhanced epidermal tumors,
we first analyzed inflammatory cell infiltration in the
dermis of chronically UVB-irradiated animals. Analysis of
H&E sections of nonirradiated age-matched control, UVB-
1533
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Figure 4 Hairlessmicemanifest enhanced cutaneous inflammation comparedwith hairedmice.A:H&E staining shows inflammatory cell infiltration in control skin,
UVB-irradiated skin, andBCCs of hairless andhairedmice.B: Immunofluorescence stainingof inflammatory cell surfacemarkers CD49b, CD3, CD4, CD11b, andGR-1 in the
control (Ctrl) skin, UVB-exposed skin, and BCCs of hairless (green circles) and haired (red circles) mice.White, green, and red arrowheads indicate individual staining;
yellow arrowheads, co-staining; blue ovals, CD49b cells; green rectangles, CD3/CD4 cells; orange rectangles, CD11b/Gr1 cells. Boxes show enlarged areas of images.

Xu et al
irradiated tumor-adjacent perilesional skin, and tumors
revealed the presence of more inflammatory cells associated
with hairless phenotype (Figure 4A). Then, we typed these
inflammatory cells using their specific surface markers,
1534
CD49b, CD3, CD4, CD11b, and GR1 (Figure 4B). We
confirmed the presence of more T cells, neutrophils, and
macrophage cells in the dermis of hairless animals. Baseline
numbers of these cells were approximately twofold to
ajp.amjpathol.org - The American Journal of Pathology
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threefold higher, whereas UVB-irradiated skin and BCCs
showed a fivefold to sevenfold increase in their number
compared with haired mice.

Then, we investigated the expression of various biomarker
proteins depicting cutaneous susceptibility to inflammation
in addition to expression of various cytokines regulating
Figure 5 Expression of proteins representing cutaneous susceptibility signat
fluorescence staining of IL1f6, S100a8, VDR, repetin, and MHCII. B: Western blot a
lesions, which developed in hairless and haired mice. Data represent means � SE
magnification, �40 (A). Ctrl (A) or C (B), control; T, tumor; US, UVB-irradiated

The American Journal of Pathology - ajp.amjpathol.org
inflammatory responses. In this regard, the expression of
IL1f6, S100a8, VDR, repetin, and MHCII, which are
considered important in the regulation of cutaneous suscep-
tibility to inflammatory response,25 was determined. Inter-
estingly, enhanced expression of most of these inflammatory
markers both at baseline and in tumor-adjacent perilesional
ure to inflammation and tumors in hairless and haired mice. A: Immuno-
nd densitometry analyses of expression of MHCII and COX-2 in UVB-induced
M of at least three independent samples. *P < 0.05, **P < 0.01. Original
skin.

1535
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Figure 6 PCR array analysis showing a com-
parison of the inflammatory and immune response
gene profile in hairless and haired mice. A: Clus-
tering analysis of the expression of 84 genes
related to inflammatory cytokines/chemokines and
their receptors in the skin of hairless and haired
animals. A clustering pattern is indicated at the
left side of the diagram. Genes with higher corre-
lation coefficients across different samples are
clustered together by rows. Thus, genes within the
same cluster represent closer expression patterns
than genes in different clusters. Each row repre-
sents a single gene labeled with the gene name,
whereas each column represents an independent
skin sample. The color in each cell reflects the
gene expression level of the corresponding sample.
The color scale at the bottom indicates the
magnitude of gene expression. Expression levels
greater than the mean are shaded in red, and those
lower than the mean are shaded in green. B:
Graphs showing relative gene expression levels of
types 1 (Th1), 2 (Th2), and 17 (Th17) helper T-celle
associated inflammatory cytokines/chemokines and
their receptors in the skin of haired and hairless
mice. C: PGE2 levels in control (age-matched) and
UVB-irradiated skin of haired and hairless mice. Data
represent means � SEM of at least three indepen-
dent samples. *P < 0.05. C, control; US, UVB-
irradiated skin.

Xu et al
skin and tumors in hairless compared with haired mice was
found (Figure 5 and Supplemental Figure S4). Similarly, we
also found a distinct pattern of cytokine signature expression
profile in PCR array analysis associated with hairless and
haired phenotypes (Figure 6A). Significantly high expression
of chemokine ligand (CCL) 3, CCL4, CCL5, CCR5,
CXCL5, interferon g, IL-1b, secreted phosphoprotein 1,
CCL17, IL-15, IL-20, IL-10, and IL-15, and decreased
expression of CCL1 and CCL24, were recorded in hairless
littermates (Figure 6B and Supplemental Table S1). In addi-
tion, PGE2 levels were also significantly higher in baseline
control and in tumor-adjacent UVB-irradiated skin in hairless
compared with haired mice (Figure 6C). Because PGE2
production is catalyzed by COX-2, we observed an analogous
enhancement in the expression of this protein in hairless
compared with haired mice (Figure 5B). Xia et al26 showed
that the PGE2 levels affect DNA methylation during the
pathogenesis of colon cancer. We, therefore, tested whether
hairless phenotype is associated with the altered expression of
DNA (cytosine-5)emethyltransferase 1. We did not find
significant changes in the expression of this enzyme in hair-
less versus haired mouse skin (data not shown).
1536
Hairless Phenotype Is Associated with an Enhanced
Expression of Mesenchyme-Related Proteins

Because inflammation is known to regulate the progression of
EMT,27e30 herein, we determined whether enhanced inflam-
matory response associated with hairless phenotype also alters
expression of genes associated with EMT. The expression of
E-cadherin, an epithelial marker in BCCs, induced in hairless
mice was much less compared with its expression in BCCs
developed in haired mice (Figure 7). Consistently, the
expression of mesenchymal markers vimentin, fibronectin,
snail, and twist in BCCs in hairless mice was much higher
than that observed in BCCs in haired mice. This was evi-
denced in both immunofluorescent staining (Figure 7A)
and Western blot analysis (Figure 7B). Although it is
known that more SCCs with a poorly differentiated histo-
logical type are induced in hairless mice,31 the molecular
basis for this difference remains unclear. To assess whether
differential regulation of EMT in haired and hairless phe-
notypes is the underlying cause of enhanced SCC inva-
siveness in hairless mice, we typed these lesions for
epithelial and mesenchymal marker proteins. We selected
ajp.amjpathol.org - The American Journal of Pathology
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Figure 7 Expression of EMT regulatory proteins in BCCs induced in hairless and haired mice. A: Immunofluorescence staining showing expression of
E-cadherin, fibronectin, twist, snail, and vimentin in UVB-induced BCCs in hairless and haired mice. B: Western blot and densitometry analyses showing
expression of snail, slug, twist, and E-cadherin in control skin, UVB-irradiated skin, and UVB-induced BCCs in hairless and haired mice (n Z 3). *P < 0.05,
**P < 0.01. C, control; T, tumor; US, UVB-irradiated skin.

HF Disruption Enhances BCCs
from the two groups similar histological tumor types for
this study. SCCs in haired mice show higher expression of
E-cadherin compared with that in hairless mice
(Supplemental Figure S5). The expression of N-cadherin and
snail was higher in hairless SCCs, whereas the expression of
vimentin,fibronectin, andTwistwas not significantly different
in the two groups. Similarly, the highly invasive SCCs, which
were invading dermis in hairless phenotype, had significantly
higher expression of mesenchymal marker proteins, particu-
larly at the tumor margin (data not shown).

Inhibiting NF-kB by Chronic Treatment with SSZ
Reduces UVB-Induced SCCs and BCCs,
Tumor-Associated Inflammatory Response, and
Expression of Mesenchyme-Related Proteins

To show that NF-kB is important in the regulation of in-
flammatory response and tumorigenesis, we investigated the
effects of SSZ treatment on the onset of UVB-induced pho-
tocarcinogenesis in two different hairless murinemodels. The
SSZ is anNF-kB inhibitor that is one of the agents used for the
treatment of psoriatic rheumatoid arthritis.32 We found that
SSZ significantly decreased skin tumors (both SCCs and
BCCs) in these murine models (Figure 8 and Supplemental
Figure S6). This decrease in tumorigenesis was associated
with a decrease in NF-kB pathway and its proinflammatory,
anti-apoptotic, and proliferation regulatory effects, as well
as tumor-associated inflammation, as shown in Figure 8C.
Thus, we found that expression of NF-kBeassociated
The American Journal of Pathology - ajp.amjpathol.org
protein, IkBa, was elevated, whereas phosphorylated p65
and I k kinase a/b were decreased. We also found a signif-
icant decrease in the NF-kB signal in electrophoretic
mobility shift assay in skin and SCCs excised from SSZ-
treated animals (data not shown). A decrease in NF-kB ac-
tivity and signaling was associated with the diminished
expression of its downstream targets, COX-2 and Bcl2
(Figure 8C). Consistently, we found an increase in apoptosis
and a decrease in proliferation response (Figure 8D).
Similarly, the cell cycle profile depicted by the expression
of cell cycle regulatory proteins, cyclin B1, D1/2/3, and
CDK4/6, was also toned down significantly in these tu-
mors. In BCCs, similar effects are noted.We also found that
UVB-induced, inflammation-related genes were attenuated
in the tumor-adjacent perilesional skin in the SSZ-treated
Ptchþ/�/hr�/� mice group (Figure 8F). A signifficant de-
crease in expression of phosphorylated extracellular
signaleregulated kinase (ERK) in these tumors and a sig-
nificant reduction in the expression of proteins depicting
mesenchymal phenotype, such as snail, slug, and twist,
with a concomitant increase in epithelial polarity depicting
protein E-cadherin, were noted in the SSZ-treated group
(Figure 8E).

Discussion

The HF disruption leads to permanent hair loss, referred to
as alopecia.1 Epidemiological data are not available to
address conclusively whether alopecia enhances skin cancer
1537

http://ajp.amjpathol.org


Figure 8 NF-kB inhibition reduces UVB-induced cutaneous inflammation and tumorigenesis in Ptchþ/� hairless mice. A: Effects of chronic treatment of mice
with 300 ppmof SSZ in drinkingwater on UVB-induced carcinogenesis. *P< 0.05.B: Semiquantitative RT-PCR analysis of Shh signaling genes in UVB-inducedBCCs
and tumor-adjacent perilesional skin. C: Western blot analysis showing expression of NF-kBerelated signaling proteins in skin/tumors of SSZ-treated and UVB-
aloneetreatedmice.D: Effects of SSZ on the expression of cell cycle regulatory proteins, proliferationmarker, PCNA, and apoptosis-related protein, BclII. E: Effects
of SSZ on the expression of EMT regulatory proteins. F: PCR array analysis of inflammatory cytokines in the skin of SSZ-treated and UVB-aloneeirradiated animals.
FLIP, FLICE-inhibitory protein; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; IKK, IkB kinase.
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risk. However, the male predominance of SCCs of the scalp
has been well documented. In elderly men with significant
androgenic alopecia and actinic damage, aggressive SCCs
of the scalp are often reported.33,34 Multiple studies in
murine skin demonstrated that hairless mice are highly
susceptible to chemical- and UVB-induced skin squamous
cell carcinogenesis.3,35 However, the underlying mechanism
for this enhanced susceptibility to squamous cell tumor
development remains undefined. Recently, we have shown
that hr mutations in SKH-1 mice confer susceptibility to
UVB-induced tumorigenesis in an NF-kBedependent
manner.17 Herein, we provide evidence that disrupted HFs
augment squamous cell carcinogenesis and promote basal
cell tumors. We show that by disrupting HFs, the tumor
microenvironment is altered. We demonstrated that disrup-
tion of HFs alters the homing of dermal resident hemopoi-
etic cells, including T cells, neutrophils, and macrophages.
The baseline number of inflammation-related hemopoietic
cells in the dermis of age-matched control skin was twofold
to threefold higher in hairless compared with haired litter-
mates. The basal-level changes in inflammatory response
are also associated with the changes in the basal cytokines/
chemokines and prostaglandin levels. In certain types of
alopecia in humans, such as cicatricial alopecia, inflamma-
tion is considered an important component of the disease
pathogenesis.36,37 It is likely that alterations in cutaneous
1538
inflammatory cells hosting response as a result of HF
disruption may be responsible for the observed enhance-
ment in the susceptibility to epithelial carcinogenesis
affecting the pathogenesis of both SCCs and BCCs. At this
stage, the factors that control the homing of hemopoietic or
other nonkeratinocyte cell types of immune and inflamma-
tion regulatory cells are not defined.38 However, under-
standing of these factors may reveal a novel tumor
susceptibility mechanism in addition to unraveling suscep-
tibility to other cutaneous inflammatory disorders.
Our studies also show that UVB exposure to haired and

hairless mice constitutes a distinct cutaneous inflammatory
milieu that provides a resistant or conducive microenviron-
ment for tumor development. The susceptible or resistant
tumor microenvironment in the skin may be determined by the
alterations in the expression of some of the known quantitative
trait loci related to HF and inflammation.39 In this regard, we
observed significant changes in the UVB-induced epidermal
and tumor expression of Ilf6, S100a8, VDR, repetin, and
MHCII genes. Among these, hairless is known to regulate
VDR.40,41 Interestingly, VDR is known to be associated with
inflammation, microbial defense, stem cell growth, and
tumor susceptibility.42 IL1f6 and IL1f5 are ligands for IL-1
receptor and are known to regulate inflammation in skin
after exposure to mitogens.43 The observed alterations only
in IL-1f6, but not in IL-1f5, in this study (data not shown)
ajp.amjpathol.org - The American Journal of Pathology
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suggest an involvement of IL-1f6 in UVB-induced in-
flammatory response. S100a8, which forms a complex with
S100a9 and provides a proinflammatory signal for cuta-
neous inflammation,44 was also up-regulated in the hairless
phenotype. Similarly, the barrier function regulating genes
such as repetin45 is deferentially regulated in haired skin
and tumor. These data suggest that HF disruption alters
susceptibility to skin carcinogenesis by altering basal and
UVB-induced inflammatory expression of some of the
known quantitative trait loci in the hairless phenotype.
Further studies are needed to understand the mechanisms
underlying pathogenesis of inflammatory response by HF
disruption and role of hr in determining cutaneous sus-
ceptibility to inflammation.

The observed alterations in NF-kB in this study are
consistent with our earlier studies showing that hr regulates
NF-kB.17 NF-kB is an important regulator of both inflam-
mation and tumorigenesis.46 In this study, modulating NF-
kBedependent inflammatory response pharmacologically
by administering SSZ inhibited tumorigenesis in hairless
mice, confirming the role of inflammation in augmenting
tumorigenesis after HF disruption.

Cutaneous inflammation is characterized by high ex-
pression of COX-2, IL1b, and cytokines, chemokines, and
their receptors. Proinflammatory responses are associated
with an invasive and EMT-promoting tumor microenvi-
ronment.47 For example, overexpression of IL1b led to
development of high-grade invasive carcinoma.48 IL1b-
deficient mice showed reduced chemically induced cuta-
neous tumorigenesis.49 IL1b down-regulates E-cadherin and
induces matrix metalloproteinases associated with increased
tumor aggressiveness and invasion.50 Similarly, COX-2
overexpressionemediated increased production of PGE2
has been shown to be associated with snail overexpression
and increased vascularity.51 Therefore, the low expression
of E-cadherin and high expression of Snail and other
mesenchymal markers associated with hairless phenotype in
this study may be due to enhanced levels of IL1b and COX-
2/PGE2 observed in hairless mice.

In summary, these data provide first evidence that HF
disruption augments pathogenesis of BCCs without signif-
icantly altering the pattern of Shh signaling induction. In
addition, the hairless phenotype is also associated with the
enhanced hosting of resident inflammatory cells in the
dermis of the skin. An additional novel finding described
herein is the demonstration that HF disruption leads to
enhanced susceptibility to skin inflammatory response. The
tumor microenvironments in hairless and haired phenotypes
are distinct, and the hairless phenotype is more conducive to
invasive and aggressive tumor growth.
Supplemental Data

Supplemental material for this article can be found at
http://dx.doi.org/10.1016/j.ajpath.2014.01.013.
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