
Efficient delivery of lentiviral vectors into resting human CD4 T 
cells

Xin Geng, Ph.D.1,*, Gilad Doitsh, M.Sc., Ph.D.1,*, Zhiyuan Yang, Ph.D.1, Nicole LK Galloway, 
B.A.1, and Warner C. Greene, M.D., Ph.D.1,2,3,†

1Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA 94158

2Department of Medicine, University of California San Francisco, San Francisco, CA 94143

3Department of Microbiology and Immunology, University of California San Francisco, San 
Francisco, CA 94143

Abstract

Resting human CD4 T cells are highly resistant to transfection or infection with lentiviral vectors 

derived from the human immunodeficiency virus (HIV LV). We now describe a flexible and 

efficient approach that permits effective genetic manipulation of these cells while preserving their 

naturally quiescent state. This technology can also be extended to primary lymphoid cultures 

where authentic cellular composition and functional relationships are preserved.
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INTRODUCTION

CD4 T cells play a central role in stimulating adaptive immune responses by interacting with 

various types of immune cells including B cells, cytotoxic T cells, macrophages and 

dendritic cells. Because of their key functions, enhanced CD4 T-cell activity produced by 

genetic mutations, infection, or injury generates pathogenic responses characterized by 

chronic inflammation and hypersensitivity disorders1–3. Conversely, compromised CD4 T-

cell function produces a profound state of immunodeficiency exemplified by the infection 

and depletion of human CD4 T lymphocytes by the human immunodeficiency virus-1 

(HIV-1).

CD4 T cells have been studied primarily in cultures of human peripheral blood because of 

the relative ease of access to this biological fluid. More recently, human lymphoid aggregate 

cultures (HLACs) derived from fresh tonsillar or splenic tissue have also been used for ex 
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vivo analysis of CD4 T cell function4. However, a critical limitation in the study of 

quiescent human CD4 T cells is the lack of an experimental system that allows for either the 

efficient knockdown or expression of exogenous genes. A number of viral and non-viral 

(synthetic) methods have been tested including antibody-targeted liposomes5, CD4 aptamer-

siRNA chimeras6, electroporation7, and peptide transduction8. Nevertheless, these synthetic 

approaches have been hampered by low efficiency, direct cell toxicity, or a lack of adequate 

experimental throughput. Retroviral vectors, particularly those derived from lentiviruses 

such as HIV-1 and SIVmac251, are an alternative and more efficient strategy for gene 

delivery to lymphoid cells9. However, lentiviruses are critically limited by their inability to 

infect resting CD4 T cells in peripheral blood and lymphoid tissues. Lentiviral infection is 

often aborted in these cells after viral entry as reverse transcription is initiated but progresses 

with a much slower kinetics that often fail to reach completion10–18. Lentiviral vectors are 

also commonly pseudotyped with the vesicular stomatitis virus glycoprotein G (VSV-G)2, 19 

due to its broad viral tropism. However, in resting CD4 T cells, only CXCR4-tropic HIV 

envelope-mediated entry, but not VSV-G-mediated endocytosis, supports gene delivery by 

lentiviral vectors20, 21. This limitation is attributed to a lack of viral entry via the endocytosis 

pathway, which is active in transformed cells, antigen-presenting cells, and activated CD4 T 

cells, but not in quiescent primary CD4 T cells20.

RESULTS AND DISCUSSION

To relieve the resistance of primary CD4 T cells to HIV LV infection, we used the accessory 

lentiviral gene product protein X (Vpx), which induces proteasomal degradation of 

SAMHD1 in non-permissive human myeloid22 and resting CD4 T cells23, and alleviates 

restriction to HIV-1 in these cells. Vpx is encoded by HIV-2 and its related simian 

immunodeficiency virus (SIV) strains, but not by HIV-1. Vpx molecules were incorporated 

into viral-like particles encoding the core packaging functions of SIVmac251 (Vpx-VLPs), 

as previously described24. These Vpx-VLP particles are non-infectious as they do not 

contain any viral genetic material, but they are used to transiently deliver Vpx into target 

cells where they promote degradation of SAMHD1, thereby rendering the cells permissive 

to HIV LV infection22. In contrast to the commonly used VSV-G glycoprotein, we 

pseudotyped the Vpx-VLPs with the CXCR4-tropic Env of HIV-1, which supports efficient 

fusion of viral particles to quiescent CD4 T lymphocytes20. For the purpose of genetic 

modification, we used a third generation shRNA-encoding HIV LV vector pSico (plasmid 

for Stable RNA interference, conditional)25, bearing a EF1α:mCherry transgene expression 

cassette. The HIV LV particles were also pseudotyped with a CXCR4-tropic Env of HIV-1. 

To achieve productive infection of HIV LV particles, target cells were initially challenged 

with Vpx-VLPs, followed by a second infection with the HIV LV of interest after 24 hours. 

This sequential infection strategy allowed Vpx to establish an optimal permissive state 

within the target cells at the time when the HIV LV infection was performed. To facilitate a 

synchronized delivery of Vpx and fusion of HIV LV particles, cells and particles were 

subjected to high-speed spinoculation at each step (Fig. 1a).

Using these experimental conditions, CD4 T cells were positively isolated from fresh human 

peripheral blood, tonsillar, or splenic tissues, and spinoculated with Vpx-VLPs or empty 

VLPs, followed by infection with HIV LV particles encoding shRNA designed to silence the 
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expression of CD4 (shCD4) or NLRP3 (shNLRP3), versus a non-silencing control 

scrambled sequence (Scramble). Interestingly, spinoculation of Vpx-VLPs efficiently 

abrogated SAMHD1 expression after 48 hours in target CD4 T cells for all of the tissues 

analyzed. It was at this time that HIV LV infection was in progress (Fig. 1b). Of note, at 

longer times (96 and 120 hours), endogenous SAMHD1 expression returned to normal 

levels, likely reflecting protein re-synthesis when cellular Vpx levels decline 

(Supplementary Fig. 1). After 4 days, the abundance of successful HIV LV infections was 

measured by flow cytometry according to the number of CD4 T cells expressing the 

mCherry transgene. Remarkably, spinoculation with Vpx-VLPs dramatically increased the 

number of mCherry-expressing CD4 T cells in all tested tissues (Fig. 1c). Such an increase 

was not observed in cultures spinoculated with empty VLPs, which remained highly 

resistant to HIV LV infection. The background levels of mCherry expression in these 

cultures represent a small fraction of naturally “primed” CD4 T cells that are permissive for 

HIV-1 infection10, 14, 26. Importantly, spinoculation with Vpx-VLPs did not lead to 

activation of resting CD4 T cells or initiation of programmed cell death, as assessed by 

surface expression of the CD69 and CD25 activation markers and Annexin V respectively 

(Fig. 1c, Supplementary Fig. 2). As previously reported27, 28, exogenous supplement of 

deoxynucleosides enhanced shRNA lentiviral delivery to the target cells, but not as 

effectively as spinoculation with Vpx-VLPs (Supplementary Fig. 3). Interestingly, the 

highest fold increase of HIV LV infection was observed in peripheral blood and spleen, 

corresponding to tissues where CD4 T cells exhibit particularly high resistance to lentiviral 

infection (Fig. 1d). Together, these results indicate that the loss of restriction to HIV LV 

infection produced by Vpx-VLPs is not associated with non-specific cellular activation, 

cellular stress promoting apoptosis, or matched by the addition of deoxynucleosides.

We next examined the efficiency of gene silencing by HIV LV particles encoding shRNAs. 

For these experiments, peripheral blood CD4 T cells were spinoculated with Vpx-VLPs and 

infected with either shCD4 or Scramble HIV LV particles. After 4 days, flow cytometry 

analysis revealed a marked decrease of surface CD4 expression among mCherry-positive 

CD4 T cells infected with shCD4 HIV LV particles (Fig. 1e). No decrease in CD4 

expression occurred in either the mCherry-negative cells, or cells infected with Scramble 

HIV LV particles. These results support the conclusion that the decrease in CD4 expression 

reflected shCD4-mediated silencing in the mCherry-positive cells. We next assessed gene 

silencing by shNLRP3 HIV LV particles introduced into tonsillar CD4 T cells. As with 

peripheral blood, pronounced decreases in intracellular NLRP3 mRNA levels and protein 

expression were observed in the mCherry-positive subset of CD4 T cells following infection 

with shNLRP3 HIV LV particles (Fig. 1f). These data demonstrate the efficient and specific 

genetic silencing of resting CD4 T cells by shRNA-coding HIV LV particles. Importantly, 

pseudotyping with CXCR4-tropic HIV-1 Env allowed resting CD4 T cells to be selectively 

targeted for genetic silencing in fresh HLACs containing heterogeneous populations of 

lymphocytes, avoiding the need for prior CD4 T-cell purification (Supplementary Fig. 4).

We next assessed whether the genetic manipulations produced by HIV LV particles were 

sufficient to affect the biological responses occurring within these target cells. We first 

assessed whether infection of shCD4 HIV LV particles inhibits HIV-1 fusion into resting 

blood CD4 T cells. Remarkably, infections with shCD4, but not Scramble HIV LV particles, 
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significantly reduced the level of HIV-1 fusion into mCherry-positive CD4 T cells (Fig. 2a). 

In contrast, HIV-1 fusion was not inhibited in the mCherry-negative CD4 T cells within the 

same cultures (Fig. 2b), indicating that the observed inhibition was produced by the shCD4-

encoding HIV LV. We next infected tonsillar CD4 T cells with shNLRP3 HIV LV particles 

and assessed their response to nigericin, which specifically engages NLRP3 inflammasome 

promoting caspase-1 activation and cell death29. Treatment with nigericin induced 

pronounced activation of caspase-1 activation in cultures infected with scramble HIV LV, 

including mCherry-positive and negative CD4 T-cells. Strikingly, nigericin treatment failed 

to induce caspase-1 activation in mCherry-positive CD4 T cells receiving the shNLRP3 HIV 

LV particles (Fig. 2c). Further, nigericin no longer induced cell death in these mCherry-

positive CD4 T cells (Fig. 2d, Supplementary Fig. 5).

These findings demonstrate a new and efficient lentivirus-based approach for manipulating 

gene expression in resting CD4 T cells. The use of CXCR4-tropic HIV-1 Env instead of 

VSV-G glycoprotein allows both selective and efficient fusion of lentiviral particles into 

quiescent CD4 T cells without prior mitogen activation or cytokine stimulation. Activation-

rest strategies have been previously used to introduce HIV LV into CD4 T cells, although 

this approach may alter the natural physiology of these cells, skewing them toward a 

memory phenotype and increasing their intrinsic state of activation. The sequential 

spinoculation technique that we employed allows Vpx to establish an optimal permissive 

state in the target cells during the early steps of HIV LV infection. Importantly, this 

permissive state is reversible, as SAMHD1 expression returns to normal levels in the target, 

which likely re-acquire their natural non-permissive state. Such a precise and synchronous 

response may be difficult to achieve without spinoculation (Supplementary Fig. 6)23, 30. 

Importantly, genetic manipulations using HIV LV has been shown with cells of myeloid 

origin30, but not in CD4 T cells from blood and lymphoid tissues, the principal targets of 

HIV-1. This technology could therefore provide a long-sought experimental tool to explore 

key questions in the HIV field involving non-permissive CD4 T cells, including 

investigating the mechanisms underlying the establishment and maintenance of latent HIV 

reservoirs, and identifying the innate sensors that detect abortive HIV DNA reverse 

transcripts in lymphoid CD4 T cells and elicit their cell death10.

MATERIALS AND METHODS

Expression plasmids

SIVmac 251 virus-like particles for Vpx delivery (Vpx-VLPs) were produced using the 

pSIV3+ plasmid, kindly provided by Dr. A. Cimarelli31. The pSIV3+ expression plasmid 

was constructed by replacing the 5′ LTR of SIVmac251 with the CMV promoter and 

enhancer region. The 5′ half of the env gene was also removed, leaving the REV-responsive 

element sequence and the 5′ and 3′ exons of the tat and rev regulatory genes intact. The 3′ 

LTR was replaced by a SV40 polyadenylation sequence, resulting in deletion of the 3′ end 

of the nef gene. Finally, the nef initiation codon was inactivated to prevent translation32. The 

detailed map of this construct is available at: http://www.retrovirology.com/content/5/1/50/

figure/F1?highres=y. To produce empty VLPs, the vpx gene in the pSIV3+ plasmid was 

inactivated by converting its initiation codon to a stop codon to give pSIV3+ΔVpx, kindly 
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provided by Dr. Jacek Skowronski33. Different shRNAs were cloned into modified versions 

of the pSicoR lentiviral vector, which encodes a mCherry reporter driven by an EF-1α 

promoter (pSicoR-mCherry).

Production of Vpx-VLPs and shRNA-coding HIV LV particles

Virus-like particles (VLPs) and HIV-1 lentiviral particles were produced from 293T cells 

using the standard phosphate calcium transfection protocol34. The medium was replaced 

after 16 hours. After 48 hours, the supernatants were collected and clarified by 

sedimentation, and virions were concentrated by ultracentrifugation, and stored at −80°C in 

100% fetal bovine serum. For VLPs, 293T cells were transfected with 8 μg pSIV3+ and 2 μg 

CXCR4-tropic Env (gp160) encoding plasmid (Vpx-VLPs) or with 8 μg PSIV3+ΔVpx and 2 

μg gp160 (Empty VLPs). The amount of VLPs was determined by measuring SIV p27gag 

levels by ELISA assay. shRNA-coding HIV-1 vectors were cloned using a modified version 

of the pSicoR (plasmid for Stable RNA interference, conditional) lentiviral vector25, which 

encodes an mCherry reporter driven by an EF-1α promoter (pSicoR-MS1)35. For cloning of 

shCD4-coding HIV LV the following oligos were used:

Sense: 

TGATCAAGAGACTCCTCAGTTTCAAGAGAACTGAGGAGTCTCTTGATCTTTT

TTC;

Antisense: 

TCGAGAAAAAAGATCAAGAGACTCCTCAGTTCTCTTGAAACTGAGGAGTCT

CTTGATCA.

For cloning of shNLRP3-coding HIV LV the following oligos were used:

Sense: 

TGAAATGGATTGAAGTGAAATTCAAGAGATTTCACTTCAATCCATTTCTTTT

TTC;

Antisense: 

TCGAGAAAAAAGAAATGGATTGAAGTGAAATCTCTTGAATTTCACTTCAAT

CCATTTCA.

To generate the shRNA HIV LV particles, 293T cells were co-transfected with 10μg 

pSicoR-mCherry shRNA constructs, 9μg HIV-based packaging construct NL4-3 8.9136, and 

2μg gp160 encoding plasmids. The lentiviral particle stocks were quantitated by measuring 

p24gag levels by ELISA assay (1 ng p24gag equals approximately 2 × 106 viral particles).

Culture of primary cells

Peripheral blood mononuclear cells (PBMCs) from healthy blood donors (Blood Centers of 

the Pacific, San Francisco, CA) were purified by Ficoll-Hypaque density gradients, followed 

by negative selection with CD14+ microbeads and positive selection with CD4+ microbeads 

(Miltenyi, Bergisch Gladbach, Germany) or negative selection with EasySep Human CD4+ 

T Cell Enrichment Kit (Stemcell) (Supplementary Fig. 7). The purified resting CD4+ T cells 

were cultured in RPMI 1640 medium supplemented with 10% FBS, L-glutamine (2 mM), 

penicillin (50 U/ml), and streptomycin (50 μg/ml). Human tonsil or spleen tissue was 
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obtained from the National Disease Research Interchange and the Cooperative Human 

Tissue Network. Human lymphoid aggregate cultures (HLACs) were prepared using 

tonsillar or splenic tissue as previously described10. CD4 T cells were isolated from HLACs 

by positive selection using CD4 microbeads (Miltenyi) and cultured overnight in 96-well U-

bottomed polystyrene plates (1 X 106 cells/well) in medium (200 μl/well) consisting of 

RPMI 1640 supplemented with 15% heat-inactivated fetal bovine serum, 100 mg/ml 

gentamicin, 200 mg/ml ampicillin, 1 mM sodium pyruvate, 1% nonessential amino acids 

(Mediatech), 2 mM L-glutamine, and 1% fungizone (Invitrogen).

Two-step spinoculation procedure

Fresh CD4 T cells, human aggregate lymphoid cultures (HLAC), or peripheral blood 

lymphocytes (PBLs), were cultured in a V-bottom 96-well plate (1×106 cells/well) and 

chilled on ice for 15 min. Vpx-VLPs pseudotyped with the CXCR4-tropic Env of HIV-1 

were then added (100 ng p24gag/100μl) to each well and mixed with cold cells for an 

additional 15 minutes. The cold temperature allows particle-cell attachment but prevents 

fusion. Particle-coated cells are then tightly packed into a pellet by high-speed centrifugation 

(1200g) for 2 hours at 4°C. This step brings the viral particles in close apposition to the cell 

membranes, promoting a uniform and high level of attachment. Immediately after 

centrifugation cells are cultured at 37°C as a pellet. This step facilitates a coordinated fusion 

of the attached viruses, generating a pulse of virion entry into the target cells. After 24 hours 

at 37°C, Vpx-containing target cells are spinoculated again with shRNA-coding HIV LV 

particles coted with CXCR4-tropic Env of HIV-1 as described above. After 3 days of 

incubation, the cultures are analyzed. Of note, the enhancement by Vpx-VLPs using regular 

infection was not as effective as spinoculation (Supplementary Fig. 6). The background 

levels of mCherry expression in these cultures without Vpx-VLPs enhancement represent a 

small fraction of naturally “primed” CD4 T cells that are permissive for HIV LV infection, 

which can be blocked by reverse transcriptase inhibitor (NNRTI) efavirenz (Supplementary 

Fig. 8).

SAMHD1 protein analysis

CD4 T cells were lysed after 48 hrs VLPs treatment in RIPA buffer (150mM NaCl, 1% 

Nonidet P-40 (vol/vol), 0.5% AB-deoxycholate (vol/vol), 0.1% SDS (vol/vol), 50mM Tris-

HCl (pH 8), 1 mM DTT), and EDTA-free Protease Inhibitor (Roche Applied Science) and 

preceded for SDS-PAGE immunoblotting analysis. The primary antibodies used were 

1/1000 dilution of rabbit polyclonal anti-SAMHD1 (Sigma, Cat # SAB2102077),

FACS analysis and gating strategy

CD4 T cells were washed in FACS buffer (PBS supplemented with 2 mM EDTA and 2% 

fetal bovine serum), stained with APC-conjugated anti-CD4 or anti-CD25/CD69 (all from 

BD Pharmingen) and fixed in 1% paraformaldehyde. Data were collected on a FACS 

Calibur (BD Biosciences) and analyzed with Flowjo software (Treestar). The percentages of 

mCherry(+) CD4 T cells were defined based on uninfected control samples. In some 

experiments, mCherry(+) CD4 T cells were purified by flow cytometry on a FACSAria II 

cell sorter (BD Biosciences). After cell sorting, >99% cells were mCherry positive.
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Quantitative real-time RT-PCR

Total RNA was purified from presorted mCherry(+) CD4 T cells with an RNeasy kit 

(Qiagen). Purified RNA was reverse-transcribed with Oligo(dT)20 and the SuperScript III 

first-stand synthesis system (Invitrogen). Real-time PCR was performed with a QuantiTect 

Probe PCR kit (Qiagen) on a 7900HT fast real-time PCR system (Applied Biosystems). 

Thermal cycling consisted of 15 min denaturation at 95 °C, followed by 50 cycles of 15 s at 

95 °C and 60 s at 60 °C. The data were normalized relative to GAPDH as an endogenous 

control. PCR assays were conducted with predeveloped TaqMan assay primers and probes 

(NLRP3: Hs00918082_m1; GAPDH: Hs03929097_g1; Life Technology).

Intracellular NLRP3 staining

For fixation and antibody staining, tonsil CD4 T cells were seeded in a 96-well V-bottom 

plate at 1 ×106 cells/100 μl/well. Cells were fixed for 60 min at room temperature with 2% 

paraformaldehyde and permeabilized by washing 2 times in 1× BD Perm/Wash buffer (BD 

Biosciences, 554723). Cells were stained with DyLight 488-conjugated anti-NLRP3 

antibody (1:20, Abcam, #ab139884) in 1× BD Perm/Wash buffer at 4°C for 30 minutes in 

the dark. The staining was then monitored by flow cytometry.

Nigericin treatment, cell viability measurement and intracellular caspase-1 activation

For stimulating the pyroptosis death pathway, tonsil CD4 T cells were treated with 5μM 

nigericin (Sigma, Cat. # N7143) for 12 h at 37°C. The potassium ionophore nigericin 

mediates an electroneutral exchange of intracellular K+ ions for extracellular protons, 

providing a second inflammatory stimulus, which results in the NLRP3-mediated activation 

of caspase-1. After 12hrs the cells were collected and assessed for cell viability and levels of 

caspase-1 activity. To determine the cell viability, a standard number of fluorescent beads 

(Flow-Count Fluorospheres, Beckman Coulter) were added to each cell-suspension sample 

before data acquisition. The cell-suspension samples were analyzed using flow cytometry. 

The relative cell viability is normalized based on the number of fluorescent beads acquired. 

To determine intracellular activation of caspase-1, Fluorescent Labeled Inhibitors of 

Caspases (FLICA) probe assays (ImmunoChemistry Technologies #9122) were performed. 

FLICA probes were added directly to the cell culture media, incubated for 15 min at 37°C, 

and washed five times with PBS supplemented with 2 mM EDTA and 2% fetal bovine 

serum. FLICA probes are cell-permeable and covalently bind to the active caspase-1. After 

washing, FLICA fluorescent signal is specifically retained within cells containing active 

caspase-1 while the reagent is washed away in cells lacking active caspase-1.

HIV virion-based fusion assay

The HIV virion-based fusion assay was performed as previously described37. Briefly, 

resting CD4+ T cells (1 × 106) were incubated with BlaM-Vpr containing virions (100 ng of 

p24gag) at 37°C for 2 hr, washed in CO2-independent medium (Gibco BRL), and loaded 

with CCF2/AM dye as described by the manufacturer (Invitrogen). 2 ml of CCF2/AM (1 

mM) was mixed with 8 ml of 0.1% acetic acid containing 100 mg/ml Pluronic-F127R and 

1ml of RPMI to constitute the loading solution. Cells were incubated in 100 ml of loading 

solution for 1 hr at room temperature. After two washes with RPMI, the BlaM reaction was 
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conducted for 16 h at room temperature in 200 ml of CO2 independent media supplemented 

with 10% FBS and 2.5 mM probenecid, a nonspecific inhibitor of anion transport (Sigma 

Pharmaceuticals). Finally, the cells were washed once in RPMI and fixed in a 2% solution of 

paraformaldehyde. The change in emission fluorescence of CCF2 after cleavage by the 

BlaM-Vpr chimera was monitored by flow cytometry with LSR2 (Becton Dickinson, San 

Jose, CA). Data were collected with DiVa software and analyzed with FlowJo software 

(Treestar, San Carlos, CA).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Genetic manipulation of resting CD4 T cells by lentiviral vectors using sequential 

spinoculation of Vpx-VLP and shRNA-encoding HIV LV particles. (a) The spinoculation 

procedure. Fresh target cells were spinoculated with Vpx-VLPs, followed by shRNA-

encoding HIV LV particles. Particles were pseudotyped with the CXCR4-tropic Env of 

HIV-1, which supports efficient fusion of virions to resting CD4 T cells. A detailed 

description is available in the Methods section (b) Spinoculation of Vpx-VLPs degrades 

SAMHD1 in resting CD4 T cells isolated from peripheral blood, tonsil, or spleen after 24 

hours. (c) Efficient infection of resting CD4 T cells by three independent HIV LV particles 

indicated by mCherry transgene expression. Cells expressing mCherry remained viable 

(Supplementary Fig. 2) and negative for CD25/CD69 activation markers as indicated. (d) 
Fold increase of HIV LV infection after spinoculation with Vpx-VLPs as observed in CD4 T 

cells from peripheral blood, tonsil and spleen. (e) A marked decrease of surface CD4 

expression in blood CD4 T cells productively infected with shCD4 HIV LV particles. (f) 
Reduced intracellular NLRP3 mRNA and protein expression in mCherry-positive CD4 T 

cells after infection with shNLRP3 HIV LV particles. Note that CD4 and NLRP3 expression 

were not reduced in mCherry-negative CD4 T cell populations. These data are representative 

of four independent experiments performed using CD4 T cells from peripheral blood, tonsil 

and spleen from four different donors.
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Figure 2. 
Modulating specific CD4 T cells responses by HIV LV (a, b) Infection of shCD4 HIV LV 

impedes HIV-1 fusion to resting CD4 T cells isolated from blood. To test the ability of 

HIV-1 to fuse with infected cells, we used an HIV virion-based fusion assay that measures 

β-lactamase (BlaM) activity delivered to target cells upon the fusion of X4-tropic NL4-3 

strain of HIV-1 containing BlaM fused to the Vpr protein (BlaM-Vpr-NL4-3)37. Inhibition 

of fusion was specifically observed in the mCherry-positive (a), but not in the mCherry-

negative cells (b) residing in the same cultures. (c) Infection of shNLRP3 HIV LV blocks 

caspase-1 activation in tonsillar CD4 T cells treated with nigericin. (d) Infections with 

shNLRP3 HIV LV prevent caspase-1-mediated death of mCherry-positive CD4 T cells 

treated with nigericin. Inhibition of cell death was not inhibited by mCherry-positive 

Scramble HIV LV.
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