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Postharvest technologies have allowed horticultural
industries to meet the global demands of local
and large-scale production and intercontinental dis-
tribution of fresh produce that have high nutritional
and sensory quality. Harvested products are
metabolically active, undergoing ripening and
senescence processes that must be controlled to
prolong postharvest quality. Inadequate management
of these processes can result in major losses in
nutritional and quality attributes, outbreaks of
foodborne pathogens and financial loss for all
players along the supply chain, from growers to
consumers. Optimal postharvest treatments for fresh
produce seek to slow down physiological processes of
senescence and maturation, reduce/inhibit develop-
ment of physiological disorders and minimize the risk
of microbial growth and contamination. In addition
to basic postharvest technologies of temperature
management, an array of others have been developed
including various physical (heat, irradiation and
edible coatings), chemical (antimicrobials,
antioxidants and anti-browning) and gaseous
treatments. This article examines the current status on
postharvest treatments of fresh produce and emerging
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technologies, such as plasma and ozone, that can be used to maintain quality, reduce losses
and waste of fresh produce. It also highlights further research needed to increase our
understanding of the dynamic response of fresh produce to various postharvest treatments.

1. Introduction
Fresh fruit and vegetables (FFV) are a major source of essential vitamins and minerals, such as
vitamin A, vitamin C and potassium, needed for human wellbeing. They are, however, perishable
living products that require coordinated activity by growers, storage operators, processors
and retailers to maintain quality and reduce food loss and waste. The extent of coordination
can vary greatly from loose in the case of local food supplies to complex for global supply
chains. The Food and Agriculture Organization estimated that 32% (weight basis) of all food
produced in the world was lost or wasted in 2009 [1]. When converted into calories, global
losses represent approximately 24% of all food produced. Reducing the loss and waste of FFVs is
important because these foods provide essential nutrients and represent sources of domestic and
international revenue.

Fresh produce attributes (appearance, texture, flavour and nutritional value) have been
traditional quality criteria, but increasingly safety (chemical, toxicological and microbial) and
traceability are important for all the role players along the supply chain, from the farm to
consumers. Fresh produce is often eaten raw or after minimal processing and food pathogen
contamination can present risk of outbreaks of foodborne illnesses [2]. Listeria monocytogenes,
Salmonella enteritidis phage, and Escherichia coli O157:H7 and O104:H4 are major pathogens
contributing to outbreaks of foodborne illness with fresh produce as vectors for these pathogens
[3]. Owing to multiple uncertainties along the supply chain, microbial contamination leading
to spoilage and postharvest losses can occur at any of the stages in the continuum from farm
to consumer. Therefore, postharvest treatments are essential to minimize microbial spoilage and
reduce the risk of pathogen contamination for FFV [4].

Various postharvest physical, chemical and gaseous treatments may be applied to maintain
fresh-like quality with high nutritional value and meet safety standards of fresh produce.
These postharvest treatments are typically combined with appropriate management of storage
temperatures. This article reviews the current status of postharvest treatments and emerging
technologies that can be used to maintain quality and reduce wastage of fresh produce. An
Overview of such technologies is presented in table 1.

2. Physical treatments

(a) Heat treatment
Heat treatment has been studied as an alternative to chemical treatments for harvested FFV.
Treatments include hot water dip (HWD), saturated water vapour heat, hot dry air and hot
water rinse (HWR) with brushing [5]. Beneficial effects of these heat treatments are linked (i)
through changes in physiological processes such as a reduction in chilling injury and delay of
ripening processes by heat inactivation of degradative enzymes [6], (ii) by killing of critical insect
contaminations, and (iii) by controlling the onset of fungal decay [5]. Heat treatments can be of
short- (up to 1 h) or long-term duration (up to 4 days). Heat treatments have been applied to firm
potatoes, tomatoes, carrots and strawberries; to preserve the colour of asparagus, broccoli, green
beans, kiwi fruits, celery and lettuce; to prevent development of overripe flavours in cantaloupe
and other melons; and to generally add to the longevity of grapes, plums, bean sprouts and
peaches, among others [5–7].
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It has been demonstrated that heat shock by using hot water washing at temperatures ranging
from 37 to 55◦C for a duration of 30 s to 3 min can improve the postharvest quality of spinach,
rocket leaves, apples and mandarin fruit [7–10]. A clear mode of action of any water treatment
is to wash-off the spores from the fruit surface [5]. Hot water is a better vector of energy
than air and has provided comparable reductions in fungal decay. Blue mould on grapefruit
caused by Penicillium sp. has been controlled by dipping fruit in hot water for 2 min at 50◦C [5].
Improvements in the quality of bell pepper, apples, melons, sweet corn, kumquat and grapefruit
have been reported with cold water cleaning in combination with brushing and a short HWR
[7]. Hot water treatments also influence the structure and composition of epicuticular waxes.
Covering of cracks and wounds and the formation of anti-fungal substances in the wax after
heating are thought to be possible modes of action [9].

Hong et al. [10] suggested that the combination of Bacillus amyloliquefaciens HF-01, sodium
bicarbonate and hot water could be a promising method for the control of postharvest decay
on citrus while maintaining fruit quality after harvest. To date, commercial applications of heat
treatments are limited. Heat treatment provides an alternative to fungicide applications, and in
Germany HWD has been used in the storage of organic apples. Treatment of fruit after a few
days of cold storage or immediately after the opening of a long-term controlled atmosphere (CA)
storage room provides new options for prolonging their subsequent storage life [11], although
acceptance of this technology by fruit growers has been hampered by high-energy costs and also
the need for added labour at the peak work period during harvest time.

(b) Edible coating
Edible coatings are thin layers of external coatings applied to the surface of fresh produce to
enhance the waxy cuticle or as replacements for natural barriers where the produce cuticle has
been removed [12,13]. The application of edible coatings on fresh produce provides a partial
barrier to the movement of moisture on the surface of fresh produce, thereby minimizing moisture
loss during postharvest storage; a gas barrier, thereby establishing a modified atmosphere
around the product, which slows down respiration, senescence and enzymatic oxidation and
preserves colour and texture; helps to retain volatile compounds contributing to produce a
natural aroma and restrict foreign odours; maintains fresh produce structural integrity, and
protects against mechanical damages; and serves as carriers of functional or active compounds,
such as nutraceuticals, flavouring and colouring agents, antioxidants and antimicrobials, that
will maintain/improve product quality and safety [13–15]. Edible coatings are composed of
hydrophobic groups, such as lipid-based waxes; hydrocolloid/hydrophilic groups, such as
polysaccharide or protein-based materials; or an integration of both groups in order to improve
the functionality of the coating [12]. Within the last decade, there has been a considerable
amount of research and innovations focused on the development of edible coatings from natural
or synthetic sources in order to control physiological and pathological challenges of fresh
produce (table 2).

Several edible coatings including chitosan, Aloe vera, polyvinyl acetate, mineral oils, cellulose
and protein based have shown desirable attributes on fresh produce with good barrier properties,
without residual odour or taste and efficient antimicrobial activity [13]. However, more research is
required to enhance moisture barrier properties of hydrophilic edible coatings, improve coating
adhesion and durability during storage. To maximize the benefits of edible coatings for fresh
produce, it is important to understand the effect of storage conditions on the desired functions
and the adverse effect on fresh produce quality. The main limitation for the application of
edible coating at the industrial level is the cost of scaling up research concepts or investment
for new installation of film production and coating equipment, the lack of edible materials with
desired physical and functional properties as well as the challenges of regulatory status for the
different coating materials. Furthermore, process parameters, such as the method of coating and
the amount of additives, can affect the film barrier properties and overall quality of the food
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Table 2. Summary of edible coating(s) used on fresh/fresh-cut fruit and vegetables [12–15].

coating material purpose of coating
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

guar gum; pea/potato starch± potassium sorbate antimicrobial
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

candelilla wax-based antimicrobial; antioxidant; quality
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

soya bean gum; jojoba wax; glycerol and arabic gum overall quality
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Shellac± Aloe vera gel keeping quality
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

soy protein; carboxymethyl cellulose antioxidant; H2O barrier
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

chitosan; zein antioxidant; H2O barrier
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

beeswax; coconut and sunflower oil antimicrobial; antioxidant; quality
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pectin base; alginate; carboxymethyl cellulose antioxidant; H2O barrier
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

chitosan; methyl cellulose antimicrobial; antioxidant; O2/CO2/H2O barrier
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

soy protein; carboxymethyl cellulose antioxidant; H2O barrier
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pectin base overall quality
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Aloe vera gel overall quality
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

agar; chitosan; acetic acid (combined) antimicrobial; O2/CO2 barrier
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

whey protein; rice bran oil H2O barrier; overall quality
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

chitosan overall quality
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sucrose-polyester based H2O barrier; antioxidant activity
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

alginate and gellan based O2/CO2/H2O barrier
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

product. One of the commercial coating products is Natureseal, which maintains colour, texture
and shelf life of a number of fresh-cut fruits e.g. apples, pears, carrots, celery, etc., has recorded
a good success. However, further research development is required to investigate the influence
of edible coatings on individual cultivars of fresh-cuts in order to understand the variation in
shelf life.

(c) Irradiation
Irradiation exposes food to radiant energy from γ rays and e-beam (high-energy electrons)
that penetrate objects and break molecular bonds, including the DNA of living organisms.
Ionizing radiation from cobalt-60 or caesium-137, or machine generated electron beams are used
as a source of irradiation for extending shelf life of fresh produce [16]. By inhibiting cellular
reproduction, irradiation can neutralize pest and food safety problems. The effect depends on
the doses, measured in kilograys (kGy). Low doses of irradiation (less than 1 kGy) only disrupt
cellular activity enough to inhibit sprouting of tubers, bulbs and roots and delay senescence.
Medium doses (1–10 kGy) reduce microbial loads while high doses (more than 10 kGy) kill a broad
spectrum of fungi and bacteria spp. and pests [17]. Most medium- and high-level doses are not
appropriate for fresh produce because they can cause sensory defects (visual, texture and flavour)
and/or accelerated senescence due to the irreparable damage to DNA and proteins. Irradiation
presents an effective postharvest treatment for destroying bacteria, moulds and yeasts, which
cause food spoilage, and also control insect and parasite infestation resulting in reduced storage
losses, extended shelf life and improved parasitological and microbiological safety of foods [16].
Irradiation has been commercialized for control of potato and onion sprouting, and strawberry
decay [17]. Low-dose γ -irradiation on mango (0.3–0.7 kGy) resulted in delay in ripening and
extension of shelf life by a minimum of 3–4 days [18]. Recently, Pandey et al. [19] reported an
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irradiation dose of 1 kGy to be the only effective dose in which enhanced shelf life was achieved
without any deterioration of various quality attributes of litchi fruit.

While much of the focus of irradiation use on FFV has been for extending shelf life and
reducing decay, it has been known for many decades that irradiation is effective at killing,
sterilizing or preventing further development of a wide variety of insect pests of quarantine
importance on perishable FFV. Despite some misconceptions, exposing food to irradiation does
not make the food itself radioactive. The irradiation process produces very little chemical change
in food and does not change the nutritional value of food. Extensive research and testing has
demonstrated that irradiated food is safe and wholesome [17].

3. Chemical treatments

(a) Antimicrobial and anti-browning agents
Over the past decade, the increasing number of reported outbreaks of foodborne illnesses has
heightened the concern of regulatory agencies, producers and the consumers about the microbial
safety of FFV. Outbreaks have been associated with vegetables such as cabbage, celery, cucumber,
leeks, watercress, lettuce and sprouts [2,3]. Antimicrobial and anti-browning agents offer the
possibility to maintain safety and can be grouped into chemical- and natural/bio-based agents
[20]. Chemical-based agents include chlorine-based solutions, peroxyacetic acid (PAA), organic
acids, hydrogen peroxide (H2O2) and electrolysed water [20]. A chlorine-based solution such as
NaClO has been one of the commonly used disinfectants for fresh produce, owing to its very
potent oxidizing properties and cost effectiveness [20]. However, its efficacy as an antimicrobial
agent is dependent on the levels of chlorine and at high levels may cause taste and odour defects
on treated products. Additionally, chlorine-based compounds have been reported to have limited
effectiveness in the reductions of microbial load on fresh produce [21]. Surfactants, detergents
and solvents, alone or coupled with physical manipulation such as brushing, may be used to
reduce hydrophobic nature of the waxy cuticle or remove part of the wax to increase exposure of
microorganisms to chlorine. However, chlorine has been associated with the possible formation
of carcinogenic chlorinated compounds and this may lead to new regulatory restrictions
in the EU [20].

PAA is a very strong oxidizing agent, with no harmful by-products [22]. PAA has been reported
to be effective in controlling E. coli O157:H7 and L. monocytogenes on apples, strawberries, lettuce
and cantaloupe [23]. A 5 log reduction in Enterobacter sakazakii was reported for lettuce when
treated with PAA [24]. Landfeld et al. [25] reported that decontamination treatment of fresh-
cut carrot with PAA reduced the initial load of aerobic mesophilic bacteria by about 4 log
units and yeasts and moulds by 3.5 log units and no further microbial growth was observed
during storage.

H2O2 possesses a bactericidal, sporicidal and inhibitory ability, owing to its property as an
oxidant and being able to generate other cytotoxic oxidizing species, such as hydroxyl radicals
[20]. Treatment with H2O2 can extend the shelf life and reduce natural and pathogenic microbial
populations in melons, oranges, apples, prunes, tomatoes, whole grapes and fresh-cut produce
[26]. However, H2O2 treatment requires a long duration of application and can cause injury on
some produce. Also, it is accepted as a generally recognized as safe for some food applications
but not yet approved as an antimicrobial agent [23,26]. However, a recent study by Lopez-Galvez
et al. [27] found that the newly developed H2O2-based sanitizers provoked a significant increase
in the respiration rate and the electrolyte leakage of fresh-cut iceberg lettuce compared with tap
water washing.

Organic acid, ascorbic acid and calcium-based solutions have been applied largely to
slow down enzymatic and non-enzymatic browning, deterioration of texture and microbial
growth on fresh produce. Treatment of fresh-cut melon dipped in 0.52 mM citric acid for 30 s
prior to modified atmosphere packaging (MAP) maintained microbial safety and prevented
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Figure 1. Ethylene production (a,b) and respiration rate (c,d) of mango as influenced by NO fumigation, ripening period and
storage temperature. Reprinted from Zaharah & Singh [32] with permission from Elsevier.

translucency and discoloration [28]. Inhibitory effects of organic acids (acetic, lactic and malic
acids) combined with MAP on foodborne pathogens, including E. coli O157:H7, S. Typhimurium
and L. monocytogenes, on cabbage was reported by Bae et al. [29]. However, there are factors
limiting the efficacy of antimicrobial and anti-browning agents such as internalization of bacteria
and inaccessible sites within fresh produce such as the calyx. These limitations highlight the need
for novel means of applying of antimicrobial and anti-browning agents.

(b) Nitric oxide
Nitric oxide (NO) is a highly reactive free radical gas and acts as a multifunctional signalling
molecule in various plant physiological processes, such as fruit ripening and senescence of
FFV [30]. Endogenous NO concentrations decrease with maturation and senescence in FFV,
thereby offering an opportunity for modulation of their levels with exogenous application to
exert the opposite effects [31]. Optimum NO levels delay the climacteric phase of many tropical
fruits, prolong the postharvest storage life by impeding ripening and senescence, suppress
biosynthesis of ethylene, reduce ethylene production and, consequently, delay in fruit ripening
[31]. NO gas is applied as a fumigant or released from compounds such as sodium nitroprusside,
S-nitrosothiols and also diazeniumdiolates used as a dipping treatment. Reduced ethylene
production during ripening in NO-fumigated fruit has been claimed owing to binding of NO
with 1-aminocyclopropane-1-carboxylic acid (ACC) and ACC oxidase to form a stable ternary
complex, thus limiting ethylene production (figure 1a,b) [32]. Other mechanism of NO action
include the inhibition of ethylene biosynthesis, cross-communication with other phytohormones,
regulation of gene expression [33] and amelioration of oxidative postharvest stress [34].
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Successful application of NO has been reported for apple, banana, kiwifruit, mango, peach,
pear, plum, strawberry, tomato, papaya, loquat, Chinese winter jujube fruit and Chinese bayberry
[33]. NO treatments reduce the rate of respiration (figure 1c,d), water loss and inhibit browning, as
well as reducing the incidence of postharvest diseases. NO fumigation in combination with cold
storage has a synergistic effect in extending storage life of fruit such as plum and mango [32,34].
Similarly, NO combined with modified atmosphere conditions extended the postharvest life of
green beans, broccoli and bok choy [35]. Commercial application of NO in FFV depends upon the
development of a smart carrier/controlled release system for NO.

(c) Sulfur dioxide
Sulfur dioxide (SO2) is widely used on table grapes to prevent decay during storage, by either
initial fumigation of fruit from the field followed by weekly fumigation of storage rooms or
slow release from in-package pads containing sodium metabisulfite [36]. SO2 technology has also
been tested for control of postharvest decay on other fruits such as litchi, fig, banana, lemon or
apple [37]. Cantín et al. [38] reported that SO2 fumigation followed by CA storage (3%O2 + 6
or 12%CO2) is a promising postharvest strategy for fresh blueberries to reduce decay, extend
market life and maintain high nutritional value. Rivera et al. [39] demonstrated that SO2 is an
effective and practical technology for reducing the risk of blueberry grey mould decay during
storage and it could be used for the export market. There are disadvantages to SO2 use; the SO2
concentration necessary to inhibit fungal growth may induce injuries in grape fruits and stems,
and sulfite residues pose a health risk for some individuals [36–38], as well as firming of the
texture of some fruit species (pomaces), incomplete de-sulphiting and incomplete re-colouring
of red fruits. Nevertheless, SO2 treatment is a widespread process because of its advantages of
universal antiseptic action and economic application.

4. Gaseous treatments

(a) Ozone
Recent research and commercial applications have verified that ozone can replace traditional
sanitizing agents [40,41]. Ozone is a very pungent, naturally occurring gas with strong highly
reactive oxidizing properties. Ozone is reported to have 1.5 times the oxidizing potential of
chlorine and 3000 times the potential of hypochlorous acid. Contact times for antimicrobial action
are typically four to five times less than that for chlorine. Ozone rapidly attacks bacterial cell
walls and is more effective than chlorine against the thick-walled spores of plant pathogens
and animal parasites, at practical and safe concentrations [42]. Ali [41] reported that the fruit
exposed to 2.5 ppm ozone had higher levels of total soluble solids, ascorbic acid content,
β-carotene content, lycopene content, and antioxidant activity and also reduced weight loss at
day 10 compared with untreated fruit. The sensory attributes of papaya of ozone-treated fruit was
also superior in sweetness and overall acceptability endorsing ozone as a non-thermal and safe
food preservation technique for FFV. Ozone can be employed in cold storage, washing system
or process water sterilization. Huyskens-Keil et al. [42] reported that irradiation and washing
with ozonated water slightly reduced respiration in white asparagus spears, but increased spear
tissue toughness. However, neither washing the asparagus spears with ozonated water (3 or
4.5 ppm) nor treating them with radiation (1 kJ m−2) systematically and significantly affected their
microbial loads during storage [43]. Some commercial use has occurred with commodities such
as apples, cherries, carrots, garlic, kiwi, onions, peaches, plums, potatoes and table grapes [44].
However, ozone does not penetrate natural openings or wounds efficiently. Additional research
is needed to define the potential and limits of the effective use of ozone for postharvest treatments
for the quality and safety of FFV.
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(b) Ethylene
Endogenous ethylene production and its exogenous application exhibit both beneficial and
deleterious effects on horticultural fresh produce. Beneficial effects of exogenously applied
ethylene includes triggering ripening, improving fruit colour and quality in some crops, such
as bananas and avocados, kiwifruit, persimmon, tomato, mangoes, de-greening of citrus fruit
[45,46]. The deleterious effects of ethylene in postharvest phase horticultural commodities has
also been documented, such as shorter storage life, promotion of senescence, fruit softening,
discoloration (browning) and russet spotting in lettuce, yellowing of leafy vegetables and
cucumbers and increased susceptibility of FFV to decay [47,48]. Therefore, ethylene management
plays a pivotal role in maintaining postharvest life and quality of climacteric and non-
climacteric horticultural produce. Most commercial strategies for maintaining horticultural
commodities involve storing at low temperatures, blocking ethylene biosynthesis and its
action, minimizing exposure produce to ethylene during ripening, harvest, storage and
transport by controlling temperature and atmospheric gas composition [49]. Newly developed
ethylene measurement devices will enable to detect critical concentrations during storage and
transportation [50].

Beneficial effects of ethylene biosynthesis inhibitors such as aminoethoxyvinylglycine alone on
postharvest quality have been demonstrated in apples and stone fruits [51,52] and in combination
with controlled atmosphere (CA) storage [53,54]. Treating FFV with inhibitors of ethylene action,
such as 1-methylcyclopropene (1-MCP) or NO alone or in combination with MAP or CA storage,
also impedes ethylene production and action consequently extends storage life and maintains
quality of FFV (§§3b and 4c).

Commercialization and limitations of different ethylene inhibitors are discussed in detail
by Martínez-Romero et al. [55]. A recent development has been palladium-promoted zeolite
materials, which can be effective ethylene scavengers to prolong the shelf life of climacteric
fresh produce, such as bananas and avocados [56,57]. The material has the potential to be
used commercially, as an alternative and/or supplemental treatment to 1-MCP. Martínez-Romero
et al. [58] developed a carbon-heat hybrid ethylene scrubber for fresh horticultural produce
storage purposes. The device comprised a cartridge heater tightly joined to the activated carbon–
1% palladium. Application of heat pulses leads to an increase in ethylene oxidation and to
auto-regeneration of the activated carbon.

(c) 1-Methylcyclopropene
The discovery and patenting of cyclopropenes as inhibitors of ethylene perception represents a
major breakthrough in controlling ethylene responses of horticultural products [59]. The process
of discovery of the effects of cyclopropenes, and their proposed method of action, has been
described [60,61]. Of the cyclopropenes, 1-MCP proved to be extremely active, but unstable
in the liquid phase. However, 1-MCP can be complexed with α-cyclodextrin to maintain its
stability; this development represented a major step towards its commercialization as it was then
possible to release 1-MCP from the complex to expose to the horticultural products. Regulatory
approval for use of 1-MCP has been obtained in more than 50 countries, and approval for use
of the technology continues to occur around the world. 1-MCP is registered for use on a wide
variety of FFV including apple, avocado, banana, broccoli, cucumber, date, kiwifruit, mango,
melon, nectarine, papaya, peach, pear, pepper, persimmon, pineapple, plantain, plum, squash
and tomato. 1-MCP affects many ripening and senescence processes [62,63], including pigment
changes, softening and cell wall metabolism, flavour and aroma, and nutritional properties,
but to varying degrees in both non-climacteric and climacteric products. While aqueous 1-
MCP shows similar responses as those treated with gaseous 1-MCP, ripening actors such as
activity of cell wall-associated enzymes, e.g. lycopene, antioxidant and volatiles of avocado,
are delayed but recover to reach levels similar to those of untreated fruit [64]. The range of
responses reflects the enormous diversity of these crops in terms of both inherent diversity and
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morphological derivation [65]. Several generalizations can be made about responses of crops to
1-MCP [65,66]:

— genotype, cultivar and maturity effects can be highly variable;
— climacteric fruit are affected by 1-MCP treatment, but the capacity to interrupt ripening

once initiated varies by fruit and attributes studied;
— non-climacteric fruit also respond to 1-MCP, providing insights into ethylene-dependent

and -independent events during ripening;
— treated fruits are firmer, slower to soften, slower to change peel colour, and develop

aroma and flavour. If 1-MCP concentrations and exposure periods for each fruit must
be appropriate to allow ripening to occur, so the final quality of the treated fruit is similar
to that of the untreated product; and

— the effect of 1-MCP on physiological disorders is dependent on the role of ethylene. 1-
MCP decreases senescent-related and ethylene-induced disorders (senescent breakdown
of apples and water soaking of watermelons). 1-MCP can increase susceptibility of
apple fruit to CA storage-related disorders (CO2 injury). Some chilling-related disorders
(woolliness and internal breakdown of peaches and nectarines, chilling injury of citrus
and bananas) can be increased by inhibition of ethylene production. Other chilling-related
disorders (superficial scald of apples and pears and internal flesh browning of avocados
and pineapples) are decreased by inhibition of ethylene production.

Registration of 1-MCP for FFV has focused on major or specialty products important to specific
countries. The apple has been an excellent crop for use of 1-MCP, and the technology is used
extensively around the world to maintain quality through the whole marketing chain from
storage to consumer [66]. Success of 1-MCP technology for apples is largely associated with a
fruit where maintenance of ‘at harvest’ quality and only moderate softening to a crisp fracturable
texture is desirable. Watkins et al. [67] found that rapid treatment of fruit with 1-MCP after
harvest can afford storage operators more freedom to delay CA storage application, but attention
to cultivar, fruit maturity and susceptibility of fruit to storage disorders must be considered.
Challenges exist for the effective use of 1-MCP for fruit that ripen uniformly to a melting texture
and/or have major colour, flavour and aroma changes that are expected by the consumer. Failure
to ripen normally has been shown in avocado, banana, pear and tomato, where fruits were treated
at an early ripening stage or where applied 1-MCP concentrations were too high [68–71]. Despite
the challenges, successful commercialization of SmartFresh for treatment of avocados, bananas,
melons, persimmons and tomatoes has resulted from careful attenuation of 1-MCP concentrations
and/or ripening stage at harvest.

Recently, 1-MCP formulations have been approved by the Environmental Protection Agency
and other regulatory authorities for preharvest applications, and these are marketed as Harvista
for FFV. Semi-commercial trials have been carried out in several US locations, Argentina, Brazil,
Canada, Chile, New Zealand and South Africa. Harvista has useful effects on delaying fruit
drop, slowing fruit maturation and ripening, and in maintaining postharvest quality, including
improving the effects of SmartFresh [71,72].

(d) Controlled atmosphere storage
CA storage refers to the monitoring and adjustment of the CO2 and O2 levels within gas tight
stores at optimum storage temperature. Thus, the atmosphere is controlled rather than established
passively as in the case of MAP outlined in §4e, though the effects of altered atmospheres
on metabolism of FFV are essentially the same. In most cases, the concentrations of CO2 are
higher and those of O2 are lower, optimum concentrations depending on the specific product
and the purpose of the CA storage conditions. Reduced O2 and elevated CO2 levels affect both
primary (glycolysis, fermentation and aerobic respiration) and secondary (e.g. processes involved
in ethylene production and action, pigments, phenolics and volatiles) metabolism [73].
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Each FFV has an optimal range of O2 and CO2 for maintaining quality and extending shelf life
[74], and these can differ for whole and fresh-cut products of the same fruit or vegetable. Benefits
of CA as well as detrimental effects resulting from exposure of FFV to atmospheres outside of the
safe range were summarized by Kader [75]. The beneficial effects of CA include:

— retardation of senescence and associated biochemical and physiological changes, e.g.
slowing down rates of respiration, ethylene production and softening;

— reduction in sensitivity to ethylene action at O2 levels less than 8% and/or CO2 levels
more than 1%;

— alleviation of certain physiological disorders, e.g. chilling injury of avocado and
superficial scald of apples and pears;

— direct or indirect effect on postharvest pathogens (bacteria and fungi) and consequently
decay incidence and severity e.g. CO2 at 10–15% inhibits development of Botrytis rot on
strawberries and cherries; and

— low O2 (less than 1%) and/or elevated CO2 (40–60%) can be a useful tool for insect control
in some fresh and dried fruits, flowers and vegetables; and dried nuts and grains.

The detrimental effects of CA include:

— initiation and/or aggravation of certain physiological disorders, such as internal
browning in apples and pears, brown stain of lettuce and chilling injury of some
commodities;

— irregular ripening of fruits, such as banana, mango, pear and tomato, can result from
exposure to O2 levels below 2% and/or CO2 levels above 5% for more than one month;

— development of off-flavours and off-odours at very low O2 concentrations (as a
result of anaerobic respiration) and very high CO2 levels (as a result of fermentative
metabolism); and

— increased susceptibility to decay when the fruit is physiologically injured by insufficient
O2 or too-high CO2 concentrations.

Use of CA technology is limited to relatively few FFV, the major crop being apples. Other FFV
include cabbages, sweet onions, kiwifruits, avocados, persimmons, pomegranates, nuts and dried
fruits, and vegetables [74]. Atmospheric modification during long-distance transport is used on
apples, asparagus, avocados, bananas, broccoli, cranberries, cherries, figs, kiwifruits, mangos,
melons, nectarines, peaches, pears, plums and strawberries. Limited use of CA for many FFV
is related to the high levels of capital investment required for high-quality storage rooms and
the maintenance and monitoring of atmospheres; therefore, fruit volumes must be high enough
to fill rooms, and extended storage periods are needed to make investments economical. For
shipping containers, limitations include maintaining container identity for those with equipment.
Specific CA storage technologies that are used are a function of the FFV, growing region and size
of the industry. Where used, static systems are still used for the majority of FFV CA storage,
ranging from simple controlled ventilation systems to conventional CA (more than 2 kPa O2).
The use of low O2 (LO) and ultra low O2 (ULO) CA storage, where O2 levels are as low as 1.5–2.0
and 0.8–1.2 kPa, respectively [76], is increasingly becoming common. Chong et al. [77] proposed
a hollow fibre membrane module for generating nitrogen-enriched air stream that controls the
concentration of both O2 and CO2 in the CA storage.

Other developments include dynamic CA (DCA), initial low O2 stress (ILOS) and hypobaric
storage. The principle of DCA is that responses of fruit to decreasing O2 in the storage atmosphere
are monitored. As O2 levels reach the anaerobic compensation point, stress responses by the fruit
can be detected and the O2 increased to slightly higher levels. The most common commercial DCA
system is based on chlorophyll fluorescence (DCA-DF; [78]), but others include measurement of
ethanol in the fruit (dynamic controlled systems, DCS; [79]) and the respiration quotient (DCS-
RQ; [80]). Most research has been carried out with apples and pears, a major impetus for research
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being the loss of diphenylamine, the antioxidant used widely for control of the physiological
disorder superficial scald in Europe. However, DCA has been tested with avocado [81] and should
work with any chlorophyll-containing product [82]. ILOS involves the use of low partial pressures
of O2, e.g. 0.4 kPa, that result in ethanol accumulation for short periods of time that result in
delay of fruit ripening [83]. Hypobaric or low-pressure storage results in very low O2 around
the product and delay ripening and senescence [76] but has yet to find commercial acceptance
because of factors such as cost and safety. These issues may be addressed in the future.

(e) Modified atmosphere packaging
MAP generally involves the packaging of a whole or fresh-cut product in plastic film bags, and
can be either passive or active. In passive MAP, the equilibrium concentrations of O2 and CO2 are
a function of the product weight and its respiration rate, which is affected by temperature and
the surface area, perforations, thickness and permeability to gases of films used in packaging. In
active MAP, the desired atmosphere is introduced in the package headspace before heat sealing,
but the final atmosphere will eventually be a function of the same factors that affect passive MAP.
Correct equilibrium atmosphere can delay respiration, senescence, and slow down the rate of
deterioration, thereby extending product storage life [3]. More recently, active MAP also includes
technologies to adsorb substances, such as O2, ethylene, moisture, CO2, flavours/odours, and
release substances such as CO2, antimicrobial agents, antioxidants and flavours [84].

An extensive number of models have been developed to predict respiration rates of FFV under
MAP conditions [3]. An example of prediction models is that of Mahajan et al. [85], where the
Pack-in-MAP software for optimum packaging solutions for FFV was developed. Behind the
software is an extensive database on product respiration rate, optimum temperature, optimum
ranges of O2 and CO2 and gas permeability of packaging materials commonly used in MAP
(figure 2). The software is based on a series of mathematical algorithms to simulate the evolution
of internal gas composition in the packaging as a result of food respiration and mass transfer
through the packaging material and, when used in a reverse manner, to identify the window
of gas permeability that satisfy food requirements, size and number of micro-perforations,
if needed [86].

Current MAP design considers the respiration rate of product as the only important
parameter for deciding target gas barrier properties required to achieve an equilibrium-modified
atmosphere. However, besides in-package gas composition it is also important to take into
consideration the in-package level of humidity, in order to avoid condensation and/or mould
and bacterial development in MAP systems [87]. It is well known that the in-package humidity
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is influenced by respiration and transpiration of the fresh produce as well as the water
vapour permeability of the packaging material (figure 2). However, most polymeric materials
(polyethylene, polypropylene or polyvinyl chloride) used in MAP have lower water vapour
permeability relative to transpiration rates of fresh produce; therefore, most water molecules
evaporated from the produce do not escape through the film and remain within the package,
enhancing the water vapour pressure in the package microenvironment. Under these near-
saturation conditions, even minor temperature fluctuation may result in condensation inside
the package resulting in produce sliminess and enhancement of microbial growth and decay of
produce [88]. Therefore, the major challenge of modified atmosphere and humidity packaging
(MAHP) is finding a solution for creating optimal atmosphere and reducing the risk of water
condensation in the package while still maintaining produce weight loss as low as possible.
Recent developments on high water vapour permeable films such as Xtend, NatureFlex or
biodegradable films or use of hygroscopic additives located within the package headspace or
directly integrated into the packaging material. However, the hygroscopic additives should not be
used for fresh produce, which have high water activity, in order to avoid excessive weight loss of
the packed food. Recently, Singh et al. [89] reported that the humidity absorption of the trays with
NaCl improved the quality and shelf life of fresh mushrooms. In this study, different percentage
of NaCl was incorporated in the polymer matrix of a film from which trays were produced. The
results indicate that the amount of water vapour absorbed by the tray is directly proportional
to the percentage of salt incorporated in the trays, which enhanced the total appearance of the
package. The maximal capacity and the rate of moisture absorption by the humidity regulating
trays need to be studied further in order to confirm whether the trays have enough moisture
absorption capacity to prevent condensation for the selected horticultural crops. Additionally,
questions about sustainability and consumer expectations of such humidity regulating trays have
to be taken into consideration.

5. Emerging technologies
Plasma is an emerging technique for decontaminating FFV. Plasma is composed of ionized
gas molecules, which have been dissociated via an energy input. Depending on the mode
of particles activation and the excitation energy, they can generate high or low temperatures,
referred to as thermal or cold plasma, respectively [90]. Cold plasma at atmospheric pressure
can be generated by transforming argon gas into plasma at radio frequency of 27 MHz [91] or
by electric discharge between two electrodes separated by dielectric barriers [92]. Three basic
mechanisms have been suggested for the inactivation microbial spores in plasma environments,
including the erosion of microbial spore surface atom by atom through adsorption of reactive free
radicals ‘etching’; direct destruction of DNA via UV irradiation and volatilization of compounds
from the spore surface by UV photons through intrinsic photo-desorption. Fernández et al. [93]
revealed that at the optimal operating conditions of cold gas plasma treatment about 15 min
treatment time was required to achieve 2.72, 1.76 and 0.94 log-reductions in viable cells of S. enteric
sv. Typhimurium on lettuce, strawberry surfaces and potato tissue, respectively. Recent study
by Baier et al. [91] on fresh corn salad leaves showed that the plasma treatment at 20 W for
1 min successfully inactivated E. coli by 4 log-cycles. However, more research is required for a
complete understanding of the role of microbial cell structure, physiology and stress resistance
mechanisms involved in plasma resistance. Also, the effect of plasma treatment on food enzymes
and postharvest quality attributes of FFV requires more detailed study. Safety of gases, consumer
perception and the translation of laboratory scale to large commercial scale, also requires
further investigation.

6. Conclusion and future prospects
A wide range of physical and chemical treatments exist to maintain and extend shelf life FFV.
Specific treatments may only be applicable to certain types of product and spoilage conditions
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and the effectiveness of existing treatments on emerging quality issues need to be assessed.
Postharvest treatments, such as CA and MAP, in combination with appropriate temperature
control are the basis for maintaining physical, nutritional and sensory attributes, and by reducing
decay incidence. These can be supplemented by chlorine, SO2, irradiation, hot water, hot
air, antimicrobial agents and edible coatings as appropriate for the specific product. Newer
technologies include ULO and postharvest technologies based on ethylene oxidation, inhibitors
of ethylene action and modulators of ripening, such as NO. Research on these technologies is
continuing on a range of FFV, including climacteric and non-climacteric types. Research with
DCA represents a new era where the technology is applied in a dynamic fashion, recognizing that
the metabolism of the product changes in response to the applied storage conditions. To date, use
of this technology is limited but the introduction of nanotechnology to the postharvest arena may
open new opportunities. For example, the development of nanocomposite packaging materials
with tuneable architecture can act as a smart carrier/controlled release system for 1-MCP, NO or
antimicrobial agents. Future research in development of delivery systems will not only improve
efficacy of postharvest systems but may also address the safety issues.
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