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The paper introduces dyadic brain modelling, offering both a framework for

modelling the brains of interacting agents and a general framework for simu-

lating and visualizing the interactions generated when the brains (and the two

bodies) are each coded up in computational detail. It models selected neural

mechanisms in ape brains supportive of social interactions, including putative

mirror neuron systems inspired by macaque neurophysiology but augmented

by increased access to proprioceptive state. Simulation results for a reduced

version of the model show ritualized gesture emerging from interactions

between a simulated child and mother ape.

1. Ape gesture and ontogenetic ritualization
The extent to which manual gestures can be said to be learned versus inherited

genetically is a matter of current debate. Some authors argue that gestures are

either ‘species typical’ or produced by only a single individual [1,2], arguing

against a significant role for learning in differentiating the gestural repertoires of

different groups of apes of a given species. However, a few group-specific gestures

have been observed in ape populations, suggesting a role for social learning [3].

Gestural behaviour is contextualized by the comprehension and attentional

states of others, and failed gestural communicative attempts often result in pro-

duction of a series of semantically similar gestures [4–6]. We do not review the

broad literature on ape gestural production and comprehension here, but reviews

can be found elsewhere [3,7–9] and in the paper [10] to which this is the sequel.

Instead, we focus on ontogenetic ritualization which was proposed, following

Plooj [11], by Tomasello and co-workers [12,13] as a means whereby some ape

gestures could emerge through repeated interactions between pairs of individuals:

(i) Individual A performs praxic behaviour1 X and individual B consistently

reacts by doing Y.

(ii) Subsequently, B anticipates A’s overall performance of X by starting to

perform Y before A completes X.

(iii) Eventually, A anticipates B’s anticipation, producing a ritualized form XR

of X to elicit Y.

Even though the role of this process remains controversial, we argue that

using computational neuroscience to hypothesize brain mechanisms that

could support ontogenetic ritualization can generate new ideas for primatologi-

cal as well as neurophysiological and neuroimaging studies, and may rephrase

the debate in fresh ways.

We earlier offered a conceptual model of the brain mechanisms that could sup-

port this process, using an example of a child’s initial pulling on a mother

eventually yielding a ‘beckoning’ gesture [10]. We hypothesized six more or less

distinct stages through which the learning would proceed. In §3, we spell out

those stages. We then provide a computational model and show through simu-

lations how development can proceed through these stages without explicit

programming. We do so in the context of prior modelling of the macaque mirror

system and related circuitry. This is part of a comprehensive approach to the evol-

ution of the language-ready brain [14–16] in which the ability of the last common
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Figure 1. A view of ACQ, the augmented competitive queuing model [22]. The agent works towards its distal goal by choosing the most desirable action that is
currently executable. The model includes learning mechanisms for updating estimates of executability and desirability. The mirror system monitors self-actions,
indicating whether an intended action succeeded or whether the output resembled another action, the apparent action.
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ancestor of humans and great apes (LCA-a) to create novel com-

municative manual gestures is postulated to be a crucial

intermediary between the mirror system for manual action of

the last common ancestor of humans and macaques (LCA-m)

and mechanisms supporting language parity [17] in the human

brain. Such parity is the ability of the hearer (or observer) of

an utterance to access (more or less correctly) the meaning

intended by the speaker (or signer). In particular, to bring this

enterprise into the realm of computational neuroscience of

extant species, we seek to assess to what extent brain mechan-

isms in the macaque may be conserved in the ape (e.g.

chimpanzee) brain, and to what extent different mechanisms

must be posited between the species.

A macaque’s recognition of manual actions has only been

demonstrated to activate mirror neurons for transitive actions

[18]. Yet, apes are responsive to non-transitive manual gesture,

and we may plausibly infer that apes have mirror neurons

responsive to many of these gestures. Note, though, that onto-

genetic ritualization yields an ability by one ape to emit a

gesture and by another ape to recognize that gesture, but does

not necessarily posit that motor skill for the observer. Further

changes would be required to yield mirror neurons in each

brain active for both production and perception of the gesture.

We see here the importance of the concept of potential mirror

neurons and quasi-mirror neurons [14, p. 132]. The specifics of

mirror neuron activation as observed in macaque and human

are important considerations for this modelling work, but we

focus below on our previous modelling of the mirror system.

Readers may find further analyses elsewhere in this special issue.
2. Prior modelling as basis for a new overall
model

Although primate neurophysiology offers a range of studies

of mirror neurons, very little attention has been paid to

whether and how mirror neuron activity helps guide the
monkey’s behaviour in response to observing the actions

of another. Where much work on mirror systems focuses

on a single agent recognizing another’s action, ‘interactive’

designs allow more specifically social questions to be explored

[19–21]. Here, we bring such considerations into the realm of

computational neuroscience by advocating dyadic brain model-
ling to trace changes in the brains of two agents during

interactive behavioural shaping.
(a) Prior modelling
There are two key distinctions:

— Event-level versus trajectory-level modelling. In many psycho-

logical models, each task event or action is considered as an

indivisible whole, and emphasis is placed on the stringing

together of distinct behavioural events by decision pro-

cesses. By contrast, trajectory-level modelling analyses, for

example, the trajectory of a hand movement and the tem-

poral relation of shifting neural firing patterns during

that trajectory.

— Proximal versus distal goals. All the actions in a behaviour

may be steps towards a single shared goal, the distal goal,
yet each has a distinct proximal goal that defines that

particular action.

We build on the augmented competitive queuing (ACQ)

model (figure 1; [22]) which addresses the flexible scheduling

of actions to achieve a distal goal. Crucially, and unlike most of

the literature, this model emphasizes the utility of a mirror

system in recognizing one’s own action. Separate subsystems

assess the executability of actions (e.g. the availability of suit-

able affordances) and their desirability (an estimate of the

expectation that executing that action will lead on to attain-

ment of the distal goal). The model is event-level: the system

chooses the action with the highest value of priority ¼
executability � desirability which is then executed to com-

pletion. The mirror system within ACQ monitors self-actions,
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Figure 2: Schematic for dyadic brain modelling. Each brain has the same architecture which it is our challenge to assess on the basis of empirical data and lessons
learned from prior modelling. However, each agent/brain starts in a different state, and thus the actions and learning processes that unfold will differ between the
two agents. (Online version in colour.)
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indicating whether an intended action proceeded as expected

or whether the output resembled another action, the apparent
action. The mirror system’s evaluation of the end-result of

attempting the intended action is used to update the estimate

of its executability, downgrading it if the apparent action

departs too far from the intended action. A method called tem-

poral difference learning [23] is used to update the desirability

of the apparently executed action, whether it is the intended

action or a different apparent action: the desirability of an

action is greater the more likely it is to be on a path to attaining

the distal goal, and the closer it is along the path to the action

that actually achieves it.

An extension of ACQ [24] handles multiple possible distal

goals, with the desirability of an action depending on the cur-

rent selection of distal goal. This then requires modelling

processes setting the current distal goal. Achievement of a

distal goal—e.g. eat versus drink—may remove that goal,

leading to promotion of another distal goal and consequent

resetting of desirability, and so behaviour.

In contrast to ACQ, our earlier models of the reach-to-grasp

action (the Fagg–Arbib–Rizzolatti–Sakata (FARS) model [25])

and of mirror neuron learning mechanisms (MNS and MNS2

[26,27]) are both trajectory level, addressing neurophysiological

data on reach-to-grasp behaviour in macaques [28]. Our MNS

models demonstrate how the activity of mirror neurons can

build up during the successful completion of an observed

action, whether that action is executed by the self or the other.

In the case of the reach to grasp, the models address the neuro-

physiological data on ‘build up’ or anticipatory activity of visual

mirror neurons before the hand reaches the object [29]. The

models also address learning to recognize new actions. A

study [30,31] complementary to FARS addresses human data

on perturbation of the reach to grasp when either the position

or size of the target object is varied [32,33]. In this study, we

will consider a range of actions to be executed by apes, not

just the reach to grasp. Controllers will track the trajectory and
change it if the goal changes and terminate it if the goal is reached.

As will be clear from other papers in this special issue, the

role and nature of mirror neurons, and their modelling, still

poses questions which are very much open in the literature
[34–36]. What is insufficiently emphasized elsewhere is this

importance of trajectory-level analysis: an action may be cor-

rected in mid-flight or halted when its goal is reached,

whereas an agent may recognize and respond to another’s

action before it is completed. Nonetheless, the programme of

dyadic brain modelling to which we now turn will surely

benefit from insights from alternative models of mirror

neuron systems and their interaction with other brain regions.

(b) Dyadic brain modelling
Our prior modelling considered one brain at a time, either per-

forming an action or passively observing the action of another,

with a focus on visual input to each brain and (primarily)

manual output. We lift our models to the domain of true social

neuroscience by modelling dyads (figure 2). Dyadic brain modelling
focuses on what happens in the brains of two interacting agents,

where the actions of one influence the actions of the other, with

both brains changing in the process. Macal & North [37] discuss

interacting agents in general, and Steels [38] has used simulation

of embodied agents in evolutionary games in a fashion relevant

to studies of (cultural) language evolution. Our innovation here

is to provide the agents with ‘brains’ whose structure is indeed

based on prior work in brain modelling. The current model is

simplified, but provides proof of concept for future work which
can increasingly address neuroscience data to explore the role of

mirror systems and related brain regions in primate social

interaction and do so in an evolutionary context.

For conspecifics and for now, we assume that each brain

has the same overall architecture but each agent/brain

starts in a different state (in terms both of neural firing and

synaptic encoding of skills, goals and memories), and thus

the actions and learning processes that unfold will differ

between the two agents.

(c) The overall model
We now summarize changes required in going from figure 1

to generate our new model (figure 3). We then show how

this model covers all the processes necessary to accomplish

ontogenetic ritualization of beckoning. However, the
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requirements below are not beckoning-specific, but represent

abilities of general utility to macaques and/or chimpanzees.

(i) There is a mechanism for social decision-making that can

use recognition of the distal or proximal goal of another as

a basis for possible updating of one’s own goals.

(ii) Decision-making occurs in two stages. A distal goal is set;

this goal then sets up the desirability values used by ACQ

to schedule a sequence of actions to achieve that goal.

(iii) The actions available to (the extended version of) ACQ

are all trajectory level. Depending on the stage of learn-

ing, a mirror system for an action may be sensitive to a

goal and more or less sensitive to trajectory. We now

augment visual input (where appropriate) by attention

to proprioceptive input.

(iv) Each action in the repertoire of child and mother (the

agents of our dyad) will be terminated when it is signalled

that its proximal goal is reached. Moreover, ACQ can

abort a whole behaviour once its distal goal is reached.

We see the above additions as an extension of our

models of what is common to macaque and chimpanzee.

We now turn to a hypothesis on what is different about

the chimpanzee:

(v) Proprioceptive information becomes increasingly available

to mechanisms underlying the learning of novel actions.

3. A model-based analysis of beckoning as a
case study of gesture acquisition

We now outline learning and behavioural mechanisms which

enable the interactions of the two apes to support the six stages

charted by Gasser et al. [10] and then introduce an extended

model to represent the brain of each member of the dyad. Later,

we present a reduced, computationally implemented version
of the model and then present simulation results demonstrating

a number of behaviours critical to our overall hypothesis.

(a) Child (C) reaches out, grabs and tugs on mother (M),
causing M to move towards C as a response

(c1, c2, m1, m2, etc. are the actions of child and mother,

respectively.)

C’s distal goal is ‘bond socially with mother’ and ACQ-C

(the child’s version of ACQ) schedules the actions

c1: reach to grasp M’s upper arm.

c2: tug on M till she moves towards C. This combines a

proximal goal of tugging with the distal goal of ‘bonding’.

Initially, M has no specific goal. However, once she recog-

nizes C’s distal goal, she creates her own distal goal of

bonding with proximal goal ‘move close to C’, and ACQ-M

then schedules

m1: move in the direction of C.

m2: embrace C.

All four actions are assumed already in the repertoire of C

or M as body-centred actions. The mother’s action recog-

nition system (MNS-M) recognizes C’s distal goal on the

basis of the proximal goal of c2, but this recognition is (in

this example) at first based on the haptic2 input of C’s tug-

ging, not on visual recognition. This stage can be seen as

the ‘praxic alternative’ to a ritualized gesture, because if

later a gestural communicative bout fails, then C can

always revert back to this praxic action sequence.

(b) C reaches out and grabs M, and M moves towards C
as soon as C begins to tug

This stage could proceed over many trials as MNS-M comes

to recognize c2 more swiftly: with a visual stimulus, the MNS
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model learns to strengthen recognition neurons earlier and

earlier in the trajectory. We now exploit this property

during the haptic trajectory induced in M by c2. As M recog-

nizes the proximal goal of c2, and thus C’s distal goal, more

quickly, she can respond earlier and earlier. Eventually, C no

longer needs to complete c2. Here, we exploit the notion that

any action can be truncated when its proximal or distal goal

is achieved.

(c) C reaches out and makes contact with M, and this is
enough to get M to move towards C

Eventually, C need only complete c1 for M to respond. ACQ-C

continues to schedule c1, but now c2 is no longer executed,

because c1 alone achieves the distal goal. MNS-M then

comes to associate c1, rather than c2, with C’s distal goal.

This stage, like the previous two, seems not to be a distinction

between macaque and chimpanzee. As a further result of stage

(b), the increasingly early termination of the intended c1,

‘reach to grasp firmly enough to tug’, appears more and

more similar to the action ĉ1, ‘reach to touch’, and ACQ-C

will increase the desirability of the latter action so that it

comes to replace c2 in C’s behaviour. And, MNS-M will recog-

nize this modified action as also having ‘bonding’ as its distal

goal in this context.

(d) C reaches out towards M, attempting to make
contact, but M responds before contact is made

In this stage, contact with M is still C’s proximal goal, and the

action is still transitive. Although MNS-M still linked tactile

feedback to M’s responses, we can now see robust visually

guided adaptive behaviour emerge. That is, M is able to

respond now solely on the basis of the visual trajectory of

C’s arm and hand. Seeing M’s response, C can now truncate

c1 (or ĉ1). However, C’s action is still initiated as a movement

towards M’s arm and so may still be deemed transitive.

(e) C reaches out towards M, no longer attempting to
make contact, yet M still responds by moving
towards C

We now postulate that the brains of ‘chimpanzees’ M and C have
far stronger pathways bringing proprioceptive input (as distinct
from visual, haptic and auditory input) than would be available
in the macaque brain. Hecht et al. [39] used diffusion tensor

imaging to conclude that chimpanzees have stronger ‘connec-

tions’ between superior temporal sulcus and inferior parietal

cortex (viewed as the posterior mirror system) than do mon-

keys and that this may allow more processing of the finer

details of the spatial/kinematic structure of observed actions.

Challenges for future research in these fields include specify-

ing what exactly is involved in such connectivity changes

(and see [40]), and how these data affect modelling projects:

do these results implicate new connections between modules,

stronger existing connections between modules on a per-

species basis, or actual processing differences between and/

or within modules? In any case, our postulate means that

(in this scenario) as M responds earlier in recognition of C’s

goal, C comes to associate the distal (not the proximal) goal

with the proprioceptive state (part way along the original

transitive trajectory) of that response. It is not that C loses
the ability to perform action c1 in appropriate circumstances,

but rather a new action č emerges in C’s repertoire: performing

a reach that has achieving that proprioceptive state (rather than

contact with M) as its proximal goal—but still with the distal

goal (bonding with M) that constitutes the meaning of what

is now a novel gesture.

( f ) C ‘beckons’ towards M
The ritualized gesture č is part of the action repertoire of C, and

C now ‘beckons’ to elicit M’s response. As in the above stage, M

is capable of recognizing his gesture and responding appropri-

ately. Note that apes tend to use visual-only gestures when they

have the other’s attention. Thus, C might retain the tug strategy

when M is otherwise engaged, but use č for times when M is

attending visually. Learning this gesture has not removed C’s

original behaviour but has refined its context.

Each agent contains the same essential machinery—both

are ‘apes’—but throughout their interactions, their roles dic-

tate differential learning, and so allow an analysis of

specific changes in specific networks for each agent, and

how behaviour adapts as a result.
4. Methods: a reduced model and its
implementation

Section 2 culminated with figure 3 as a general framework for

modelling each brain. Section 3 then sketched how the model

could support ontogenetic realization. We now describe a

simulation framework for dyadic brain modelling (figure 4)

and then present a simplified model we have implemented

(figure 5). Section 5 samples the simulation results.

The two model brains are implemented in separate python

scripts (figure 4), using freely available python packages,

including numpy (www.numpy.org) for mathematical calcu-

lations and pybrain (www.pybrain.org) for neural network

algorithms. Each script is linked to MAYA animation software

through a third python script executed in the MAYA python

shell. Each brain script can communicate to MAYA, via this

shell script, through file read–write cycles managed through

their separate pipe. Each brain script implements functions

from a ‘brain module’ library—for action recognition,

decision-making and motor control—to maintain consistency

in their implementation. Each brain script can read relevant

joint and effector position information about the virtual

world in their shared file, and write commands to it for the

brain’s avatar to execute. Each ‘brain’ uses sensory data on

the relation of its body parts to each other and the world,

but MAYA draws the bodies in a coordinate space appropriate

to the view of an external observer.

We now turn to the simplifications of the model of figure 3

used in the present simulations. The overall architecture of

each brain (figure 5a) is the same, but to reduce computation

time, we have implemented learning in the mirror system

only for mother, and motor learning for the reach-to-grasp

only for child. Decision-making processes are implemented

similarly for both agents, and follow the ACQ paradigm

described above (e.g. combining executability and desirability
to yield priority). Our simulations consist of multiple episodes,

each a single explicit case of interaction between the two

agents. An episode may vary from (roughly) 50 to 100 simu-

lation timesteps (though the presumed interaction may last

http://www.numpy.org
http://www.pybrain.org
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only a few seconds). Visual and haptic sensory inputs to each

model represent the output of visual and somatosensory corti-

cal areas, and these inputs may be the result of the others’

ongoing motor output.3 Action recognition modules, proces-

sing visual and haptic information to recognize self and

others’ actions, can affect social behaviour by linking recog-

nition of others’ actions and goals with one’s own. Such

modules may also provide feedback to learn about the trajec-
tory that achieves a goal. Motivational and socio-cognitive

processing selects distal goals which yield new action pol-

icies. Each agent is initialized in different motivational

states: the child to ‘bond’ with the mother (a social goal),

and the mother to remain idle. Following the paradigm of

ACQ, these different goal states lead to different behavioural

policies for each of mother and child: the mother remains

idle, whereas the child executes a sequence of actions to

lead to bonding. However, as a result of learning and recog-

nition processes, these interactions adapt, and the mother’s

rapid updating of her goal leads to anticipatory responses

that achieve the bonding goal for both.

Figure 5b shows how manual action recognition is

implemented for mother. (Action recognition is managed

algorithmically for C in this implementation, meaning we do

not simulate a neural network for this process, but instead situ-

ate our code to achieve the desired behaviour.) C’s wrist (x,y,z)

information is input to a neural network with recurrent, self-

excitatory hidden units to maintain temporal information

about the inputs. These are converted from three-dimensional

absolute coordinates in MAYA to yield three-dimensional coor-

dinates relative to C’s posture: the wrist trajectory being

relative to his starting posture. The recurrent network is

based on the MNS2 model of action recognition [27]. Its out-

puts activate to the degree to which they recognize the time-

series data. These units, along with haptic units representing

haptic feedback if present (i.e. that another has grasped

one’s arm, for example), then pass activation to goal-layer

neurons, via modifiable weights, which compete between

each other. If one passes some activation threshold, they

switch the internal state of M, so that she shares the bonding

goal of C and will cooperate towards achieving that goal.4

M’s motor control elements are managed algorithmically,

as is walking in C. C’s reach-to-grasp (figure 5c) is imple-

mented as an inverse-kinematic controller managing

transport of the arm to a target. We model the learned

target positions in shoulder-centred coordinates, but achieve

inverse-kinematic solutions through the animation software.

Target data are based on a weighted-sum of visual and pro-

prioceptive data, but learning processes may bias each

modality’s influence. An action will terminate when its prox-

imal goal is reached, and an ongoing behaviour will

terminate when its distal goal is reached (which may involve

recognition of the other’s behaviour).

With this, we turn to some further details of the figure 5

model.5 In each episode, C is initialized with bonding with M

as his distal goal, whereas M is at first passive. This leads to

setting C’s proximal goal and action. Because the avatars are

initialized at some distance from each other, the child must

first walk towards his mother. When walk is selected, a

target position is computed for the agent to walk towards,

namely the threshold at which the child can reach towards

the mother.

When the child reaches this threshold, the ‘reach-to-grasp’

action becomes executable, and because it is more ‘desirable’
in the sense that it is more closely associated with the goal, it

is selected for execution. The controller for this action has two

sources of sensory data, visual (which can suffice for object-

directed actions) and postural (which would suffice for pro-

prioceptively guided action). Each alone can determine a

target for the reaching action: targetvisual for object-directed

actions, and targetpostural for proprioceptively guided actions.

The functional target is the weighted average:

targetdesired ¼ a�targetvisual þ b�targetpostural,

where a þ b ¼ 1, with a and b controlled by learning processes.

This integrated target coordinate can then be used to compute

the motor error vector for the inverse-kinematics solver:

error ¼ targetdesired � positioncurrent:

Unlike the FARS model [25] and the ILGM model [41]

where we simulate the pre-shape and enclose of the hand

relative to a target affordance, we here simply simulate

‘grasping’ as having the arm tip (look, Ma, no hands!)

within some threshold of another surface. When grasping

occurs, both agents get haptic feedback indicating grasp/

contact. If the grasp is achieved, but M still does not

respond—i.e. the distal goal has not been achieved—C’s

ACQ-like action scheduler will then set up the next action

of tugging M towards him. C will thus move his arm towards

his shoulder. As M is tugged, her arm is controlled by keep-

ing it within the threshold distance of C’s ‘hand’. Eventually,

the combined mirror system output and the presence of

strong haptic input will drive M’s recognition of C’s distal

goal, and so ‘flip’ her distal goal state from idle to ‘bonding’.

This will cause her to reach for the child’s shoulder in a

‘hugging’ manner. This goal achievement is mutual, and

appropriate reward information is passed to both agents.

Learning processes adapt the above to quickly generate

new patterns of behaviour. M’s action recognition module

(figure 5b) is centred around a recurrent neural network

(RNN) modelled after the MNS2 model [27]. The RNN

receives filtered visual input of C’s wrist: the codes must be

relative, so recognition is possible in different locations. The

RNN is comprised of three linear input units, eight hidden,

self-excitatory (recurrent) sigmoidal units and three output

units ri(t) each of which is passed through a nonlinear function

to obtain a normalized firing rate f(ri(t)) ¼ tanh (ri(t)) for all i.
The network is trained through the backpropagation-

through-time algorithm [42] available through pybrain,

and is trained on a set of three different reaching actions of

C—the two others being reaching to locations other than

M’s wrist—each corresponding to a single output unit of

the RNN. During simulations, C’s reach will activate a

specific output unit to the degree to which its trajectory

matches the training data (the first episode reach). The

firing rate activations from the RNN, along with any haptic

input hi from grasping, are broadcast to the goal neurons gi

before effecting motivational state change, represented by

binary activations in nodes ml:

gi(tþ 1) ¼ a�gi(t)þ b(f(ri(t))�W þ hi(t))
mi(t) ¼ 1, if gi(t) . thresholdg

�
,

where a�gi(t) is the leak component, and a and b are constants.

The goal-layer threshold (thresholdg) can take a range of

values to generate different patterns of behaviour. Over

time, this threshold may be reached more quickly—and so

the mother may respond sooner—by modulating the weights
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Figure 6. Mother mirror system output. The output of M’s recurrent neural
network implementation of the mirror neuron system is shown. The acti-
vations of the three output units relate to how well they can recognize
C’s reaching action, with the output neuron encoding the ‘reach’ action,
appropriately, responding strongly to C’s reach. The timecourse shown is
over the course of C’s whole reaching action (18 simulation timesteps),
and the activation is normalized to 1. The dummy actions are alternative
reaches to other targets.
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W connecting RNN recognition activity in the form of f(ri(t))
to the goal-layer changes that follow: W ¼ W þ a�RS, where

RS ¼ 1 is the social reinforcement following goal achievement,

and a is the learning rate.

C maintains the potential for a full reach-to-grasp-to-pull,

but learns over time to (i) pull less, and then (ii) reach less

effortfully. He learns at first that M responds to his pulling,

and so pulls her for shorter distances—remaining sensitive

to her responses—before learning to only intend to make con-

tact with her wrist. Then, as C reaches, he learns postural

targets he can move to without invoking praxic control mech-

anisms. In each episode, he updates his postural target as the

position at which he terminates his action. Simultaneously,

he learns to value this postural target over his visual target,

as it is effective with less effort: b increases relative to a
while keeping a þ b ¼ 1, and so his postural target increas-

ingly biases his performance towards reaching to positions

closer to him in space. Because it is less effortful and so

more desirable, the postural target comes to be selected as

the ‘proximal’ goal in service of the distal goal of bonding.

This leads to gesturing behaviour that is not constrained by

the peripersonal reach threshold: the child can gesture from

a greater distance removed from his mother.
5. Results
We can replicate the mirror system responses from Bonaiuto

et al. [27], showing anticipatory recognition of reach-to-grasp

actions but—unlike past research—we then link these

responses with differential behaviour on the part of the obser-

ver. Figure 6 shows a sample RNN output for M’s MNS

during a reach-to-grasp action by C. One curve corresponds

to the mirror system representation of the reach to grasp,

whereas the other curves represent ‘dummy’ reaching actions

M had been previously trained to recognize (reaches not

directed at her wrist). Because of these anticipatory

responses, M may initiate an appropriate (new) course of

action before C’s action is completed, thus facilitating, for

example, truncation of the reach-to-grasp action.

Our simulations show how a ‘beckoning’ gesture emerges

over time, across a wide range of parameter settings. Figure 7

shows selected frame shots, whereas a movie (see endnote 5)

shows the animation across multiple episodes of the inter-

action of mother and child, which demonstrate stages in the

process of ontogenetic ritualization. Some parameters are arti-

ficially selected to yield more realistic patterns of behaviour,

whereas others can be systematically varied to achieve faster

(or slower) timecourses of gestural acquisition as well as

longer or shorter gestural forms for C. Changes in certain par-

ameters correspond to the speed of M’s recognition, and may

correlate with sensitivity (or not) to gestural forms and under-

standing others’ goals, whereas others may correlate with C’s

ability to quickly learn postures and/or seek out less effortful

options for action. Future work will more systematically

explore this parameter space, replacing particular parameters

with more nuanced control mechanisms, or else seek to

relate these parameters, and their possible variation, with

available data in primate communication and social cognition.

Changing both learning rates and state-change thresholding

in M can drastically alter the pattern of gesture acquisition.

Figure 8 shows the normalized time to response by M and the

corresponding responses by C for different settings for the
given set of parameters. The time axis is normalized to 1 for

each curve, based on the time until M’s response for the first epi-

sode. The enlarged symbol for each curve represents the episode

at which C began gesturing to M. We can see that each setting

creates a unique timecourse of interaction, with some leading

to relatively rapid acquisition of a gesture, whereas others lead

to more interactions being necessary for a gestural form to

emerge. The weight update determines how rapidly the connec-

tion weights between M’s mirror system and her internal state

change grow, and thus how quickly she reaches threshold in

changing her state. The other parameter directly concerns

this threshold. More rapid connection weight growth, or

lower thresholding, leads to more rapid response from

M. Conversely, slower weight growth and larger thresholding

lead to slower response from M, and so also slower emergence

of a gesture by C. These results, while preliminary, demonstrate

how dynamic these interactions are, with subtle variations in one

agent drastically affecting the future learning and behaviour of

another. Currently, these results are too simple to make direct

comparisons with data from primatological studies, but we

suggest there is potential in using similar simulations to bridge

the fields of computational neuroscience, primatology and

comparative psychology.
6. Discussion
This paper has two overall goals:

(1) To introduce the notion of dyadic brain modelling (figure 2;

compare fig. 1 of [43]), offering both a framework for mod-

elling each brain of interacting agents (figure 3) and a

general framework for simulating and visualizing the

interactions generated when the overall brain (and the

two bodies) are each coded up in computational detail

(figure 4). We also noted the importance of trajectory-level

generation and recognition of actions, and the need of

each agent to keep track of both proximal and distal goals

of self and other.

(2) To extend the conceptual analysis of ontogenetic rituali-

zation offered in Gasser et al. [10] to develop (i) a
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Figure 7. Simulation screen-grabs. Our avatars are simple animated agents capable of ‘walking’ and moving limbs, and interacting with each other. (a) The agents
initialized to start an episode. (b) The child pulling the mother towards him. (c) The mother completing the child’s goal of bonding. (d ) The mother responding to
the child’s learned gesture. (Online version in colour.)
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Figure 8. Parametric and behavioural variation. We show the number of episodes until the emergence of gesturing behaviour in C, as a function of parameter
values in M’s action-recognition module. The connection weights between M’s mirror system and her goal neurons are updated by a constant, which we vary here.
The threshold for these neurons to signal distal goal change in M, and a new action policy, is also varied here. Enlarged graph symbols (see inset) indicate the
episode (x-axis) at which C began gesturing to M. These and other parameter value shifts result in varied patterns of behaviour between M and child. The y-axis
represents the within-episode time duration; we normalize this because episodes where the child can gesture are much quicker than episodes where he must first
walk, then reach, towards the mother in service of his goal. As can be seen, ontogenetic ritualization reduces time to completion by more than half.
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detailed analysis of how to integrate and extend prior

models of the macaque brain and incorporate an

expanded role for proprioception to supply a more expli-

cit account of the underlying processing, and (ii) to

instantiate this analysis in a computational model of

dyadic interaction (figure 5) which, though simplified,

is able to support ontogenetic ritualization. This has
implications for future back and forth between compu-

tational neuroscience and primatology.

Irrespective of progress on our second goal, we wish to

encourage workers in cognitive neuroscience more generally

to think explicitly in terms of interacting processes within and

between brains rather than, for example, simply attributing
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functions to ‘mirror neuron systems’ without taking account

of the other brain mechanisms with which they interact.

Moreover, we advocate attention, both in experiments and

modelling, to the role of mirror systems in monitoring self-

actions (not just the actions of others), and to how the

output of mirror neurons interacts with other processes to

set goals that schedule the agent’s behaviour—including

the effect of one agent’s actions on the other.

(a) Gesture acquisition
We make two more points about the debate on gesture

acquisition in apes:

(1) Even if ontogenetic ritualization is demonstrated (see [13]

for one of the very few longitudinal studies), it yields

only a gesture generated by one ape and recognized by

another. However, there are two ‘saves’: (i) our model

suggests that ontogenetic ritualization is relatively

‘easy’. Thus, if particular praxic actions are common

across groups, then gestures obtained by ritualizing

them may be widespread. Note that this invalidates

the decision by Hobaiter & Byrne [2] to rule that any

widespread gesture cannot have emerged through onto-

genetic ritualization. (ii) We know that new praxic

actions can be acquired by apes by simple imitation—

this provides, for example, the basis for chimpanzee

‘cultures’ [44,45]. Thus, it seems plausible to suggest

that gestures, too, can spread by forms of social learning.

Showing how to model this putative process sets a near

term research goal.

(2) Hobaiter & Byrne [2] suggest that their data rule out the

need for learning, but modelling their hypothesis would

require showing how different apes refine a gestural reper-

toire in different ways within an innate ‘gestural space’.

That is, further work will need to address what contextual

variables (social, motivational and ecological) are most

important in determining differential sampling of innate

gestures. This is somewhat reminiscent of how human

infants acquire a stock of phonemes and syllabic structures

for their mother tongue (see [46] for one such model).

However, the ape focuses on a set of gestures with specific

meanings, whereas human language exhibits duality of pat-
terning: phonemes and syllables are meaningless; only

words (and other morphemes) that combine them have

meanings. Additionally, phonemes exist in some culture

surrounding the learner, whereas young apes do not

appear to produce the gestures of their mother [47], and

so learning may not be adapting towards some local

cultural standard.

(b) More elaborate gesturing behaviour
This includes sensitivity to audience comprehension and

invoking ‘semantically related’ gestures if comprehension

fails [4], gesturing in sequence bouts [5] and ‘complex’

forms of gesturing [48], suggesting that ‘iconic’ gestures

may be used in gorilla populations. Note also the suggestion

that ‘pantomime’ may be used by orangutans to demonstrate

complex notions [49]—though this seems to be more a matter

of creating a few iconic gestures than a general capacity for

pantomime as a means to create an open-ended set of novel

gestures. Elsewhere ([14], ch. 8), we are careful to spell out

the type of pantomime that we claim was exhibited by distant
ancestors subsequent to LCA-a but which marked an evol-

utionary advance over the capacities of LCA-a and which is

not available to modern apes. These and other behavioural

reports from primatologists set further challenges for

dyadic brain modelling.

(c) Localization
Not only do the FARS and MNS models described earlier

examine action generation and recognition in more detail

than offered in §4, they also include hypotheses on the ana-

tomical localization of the functions of their constituent

submodules in the macaque brain. We will need further

data on homologies between macaque and, for example,

chimpanzee brains to develop and test hypotheses on the

ape brain that are grounded in macaque neurophysiology,

and we need further data on homologies between chimpan-

zee and human brains to develop and test hypotheses on

the ape brain that are grounded in human brain imaging.

Such data support new dyadic brain simulation studies

whether for monkeys, apes or humans (and cross-species).

We note that the techniques of synthetic brain imaging [50]

and synthetic event-related potentials [51] allow compu-

tational models expressing detailed neural or schema

networks to be used to generate predictions for brain imaging

and event-related potential studies in whatever species is being

modelled. Note also our earlier discussion of comparative

results from diffusion tensor imaging [39,40]),

(d) The brain is a system of systems
Comprehensive models of action generation and action sche-

duling as well as action recognition need to be developed and
integrated along with new experimental techniques which

provide far more insights into how brain regions interact

than offered by single-cell recording or structural equation

modelling. In this way, researchers can assess the extent to

which what are treated as unitary functions are, in fact,

realized by competition and cooperation of multiple

regions—just as action recognition requires the integration

of dorsal and ventral pathways. Similarly, brain regions will

be revealed as having circuits dedicated to more or less

distinct functions.

(e) Population coding and event versus trajectory levels
A major shortcoming of our MNS models and the model of

figure 5 is that they model just a few mirror neurons, each

associated with a single action. Mirror neurons that respond

selectively to one type of action (but note: only among

those examined in a single study) are called strictly congruent,
whereas others are only broadly congruent. We argue [14] that

mirror neurons, to the extent that their activity correlates with

actions, do so as a population code: firing of a single neuron is

not a ‘yes/no’ code for whether or not a specific action is

being executed or observed; rather, each neuron expresses a

‘confidence level’ (the higher the firing rate, the greater the

confidence) that some feature of a possible action—such as

the relation of thumb to forefinger, or of wrist relative to

object—is present in the current action. We can then think

of each neuron as casting a more or less insistent ‘vote’ for

the presence of actions with that neuron’s ‘favourite fea-

ture’—but it is only the population of neurons that encodes

the current action. Future models must incorporate population
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coding in this way. Such population codes can readily exhibit

fractionation of existing actions [52] as well as the encoding of

novel actions in a way ‘yes/no’ coding cannot.

Additionally, the key point about the MNS models [26,27]

is that they are trajectory-level models which can support rec-

ognition of an action before it is completed—thus, crucially,

allowing anticipatory reaction while observing an ongoing

action. Again, the ACQ model [22] is unique in relating

mirror neurons to self-action, with an emphasis on learning

executability and desirability. The current implementation

exploits these properties in simplified form, but serves as

proof of concept for later research (hopefully involving

other groups as well as ourselves) which will address an

increasing range of data from macaque neurophysiology

and primate behaviour.

( f ) Social brain modelling
The past decade has seen increasing study of brain mechan-

isms of social interaction. For example, Phil. Trans. R. Soc. B
devoted a 2003 theme issue (compiled by C. D. Frith &

D. M. Wolpert) to ‘Decoding, imitating and influencing the

actions of others: the mechanisms of social interaction’. How-

ever, none of the articles addresses dyadic brain simulation.

Griffin & Gonzalez [53] studied ‘models of dyadic social

interaction’, but these are models for analysis of observed

dyadic interactions, not models of the brains that generate

them. The paper which comes closest to our approach is ‘A

unifying computational framework for motor control and

social interaction’ [54], but this extends the notion of forward

and inverse models to a conceptual model of a single agent
engaged in social interaction, with no modelling of brain

data. However, it is worth noting that it is closely related to

a model of mental state inference using visual control par-

ameters [55] which extends our original MNS model [26].

We see all this as offering steps towards a computational
comparative neuroprimatology [10] and its application to studies

of evolution of the human language-ready brain [14].

Funding statement. This material is based in part on work supported by
the National Science Foundation under grant no. 0924674 (M.A.A,
Principal Investigator).
Endnotes
1Here, we use the term praxic behaviour for practical interactions with
the physical environment (which can include the body of another
agent), as distinct from communicative actions.
2Haptic refers to the sense of touch and related muscle sense.
3The simulation is simplified by the fact that the python script for
each agent can read information about the current state of the
other agent from the MAYA animation script. We thus avoid the
need to simulate retinal input to each agent and consequent
visual processing to extract state information about the other. How-
ever, simulation is still required to infer the action or goal of the
other agent from the ongoing trajectory of observed state features
plus haptic input.
4More generally, recognition of another’s goals may, but need not,
lead to goal-switching in the observer, and new goals may be quite
different from the other’s, leading not to cooperation, but to
competition for example.
5For details of the latest version of the simulation, see neuroinformatics.
usc.edu/research/ape-gestural-learning.
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18. Umiltà MA, Kohler E, Gallese V, Fogassi L, Fadiga L,
Keysers C, Rizzolatti G. 2001 I know what you are
doing. A neurophysiological study. Neuron 31,
155 – 165. (doi:10.1016/S0896-6273(01)00337-3)

19. Chang SWC, Gariepy J-F, Platt ML. 2013 Neuronal
reference frames for social decisions in primate
frontal cortex. Nat. Neurosci. 16, 243 – 250. (doi:10.
1038/nn.3287)

20. Yoshida K, Saito N, Iriki A, Isoda M. 2011
Representation of others’ action by neurons
in monkey medial frontal cortex. Curr. Biol. 21,
249 – 253. (doi:10.1016/j.cub.2011.01.004)

21. Fujii N, Hihara S, Nagasaka Y, Iriki A. 2008 Social
state representation in prefrontal cortex. Soc.
Neurosci. 4, 73 – 84. (doi:10.1080/
17470910802046230)

22. Bonaiuto JJ, Arbib MA. 2010 Extending the mirror
neuron system model, II: what did I just do? A new
role for mirror neurons. Biol. Cybern. 102,
341 – 359. (doi:10.1007/s00422-010-0371-0)

23. Sutton RS, Barto AG. 1998 Reinforcement learning:
an introduction. Cambridge, MA: MIT Press.

neuroinformatics.usc.edu/research/ape-gestural-learning
neuroinformatics.usc.edu/research/ape-gestural-learning
http://dx.doi.org/10.1007/s10071-009-0213-4
http://dx.doi.org/10.1007/s10071-009-0213-4
http://dx.doi.org/10.1007/s10071-011-0409-2
http://dx.doi.org/10.1086/593015
http://dx.doi.org/10.1086/593015
http://dx.doi.org/10.1016/j.cub.2007.06.069
http://dx.doi.org/10.1016/j.cub.2007.06.069
http://dx.doi.org/10.1007/s10071-011-0416-3
http://dx.doi.org/10.1075/is.5.2.03lie
http://dx.doi.org/10.1098/rstb.2011.0044
http://dx.doi.org/10.1073/pnas.0702624104
http://dx.doi.org/10.1007/s12021-013-9182-5
http://dx.doi.org/10.1007/s10071-013-0601-7
http://dx.doi.org/10.1016/S0166-2236(98)01260-0
http://dx.doi.org/10.1016/S0166-2236(98)01260-0
http://dx.doi.org/10.1515/langcog-2013-0020
http://dx.doi.org/10.1515/langcog-2013-0020
http://dx.doi.org/10.1016/0010-0277(85)90021-6
http://dx.doi.org/10.1016/S0896-6273(01)00337-3
http://dx.doi.org/10.1038/nn.3287
http://dx.doi.org/10.1038/nn.3287
http://dx.doi.org/10.1016/j.cub.2011.01.004
http://dx.doi.org/10.1080/17470910802046230
http://dx.doi.org/10.1080/17470910802046230
http://dx.doi.org/10.1007/s00422-010-0371-0


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130414

12
24. Arbib MA, Bonaiuto JJ. 2012 Multiple levels of
spatial organization: world graphs and spatial
difference learning. Adapt. Behav. 20, 287 – 303.
(doi:10.1177/1059712312449545)

25. Fagg AH, Arbib MA. 1998 Modeling parietal-
premotor interactions in primate control of
grasping. Neural Netw. 11, 1277 – 1303. (doi:10.
1016/S0893-6080(98)00047-1)

26. Oztop E, Arbib MA. 2002 Schema design and
implementation of the grasp-related mirror neuron
system. Biol. Cybern. 87, 116 – 140. (doi:10.1007/
s00422-002-0318-1)

27. Bonaiuto JJ, Rosta E, Arbib MA. 2007 Extending the
mirror neuron system model, I: audible actions and
invisible grasps. Biol. Cybern. 96, 9 – 38. (doi:10.
1007/s00422-006-0110-8)

28. Jeannerod M, Arbib MA, Rizzolatti G, Sakata H. 1995
Grasping objects: the cortical mechanisms of
visuomotor transformation. Trends Neurosci. 18,
314 – 320. (doi:10.1016/0166-2236(95)93921-J)

29. Gallese V, Fadiga L, Fogassi L, Rizzolatti G.
1996 Action recognition in the premotor
cortex. Brain 119, 593 – 609. (doi:10.1093/brain/
119.2.593)

30. Hoff B, Arbib MA. 1991 A model of the effects of
speed, accuracy and perturbation on visually guided
reaching. In Control of arm movement in space:
neurophysiological and computational approaches
(eds R Caminiti, PB Johnson, Y Burnod), pp.
285 – 306. Heidelberg, Germany: Springer.

31. Hoff B, Arbib MA. 1993 Models of trajectory
formation and temporal interaction of reach and
grasp. J. Mot. Behav. 25, 175 – 192. (doi:10.1080/
00222895.1993.9942048)

32. Paulignan Y, Jeannerod M, MacKenzie C, Marteniuk
R. 1991 Selective perturbation of visual input during
prehension movements. 2. The effects of changing
object size. Exp. Brain Res. 87, 407 – 420. (doi:10.
1007/BF00231858)

33. Paulignan Y, MacKenzie C, Marteniuk R, Jeannerod M.
1991 Selective perturbation of visual input during
prehension movements. 1. The effects of changing
object position. Exp. Brain Res. 83, 502 – 512. (doi:10.
1007/BF00229827)
34. Keysers C, Perrett DI. 2004 The neural correlates of
social perception: a Hebbian network perspective.
Trends Cogn. Sci. 8, 501 – 507. (doi:10.1016/j.tics.
2004.09.005)

35. Tessitore G, Prevete R, Catanzariti E, Tamburrini G.
2010 From motor to sensory processing in mirror
neuron computational modelling. Biol. Cybern. 103,
471 – 485. (doi:10.1007/s00422-010-0415-5)

36. Caggiano V, Fogassi L, Rizzolatti G, Pomper JK, Thier
P, Giese MA, Casile A. 2011 View-based encoding of
actions in mirror neurons of area F5 in macaque
premotor cortex. Curr. Biol. 21, 144 – 148. (doi:10.
1016/j.cub.2010.12.022)

37. Macal CM, North MJ. 2010 Tutorial on agent-based
modelling and simulation. J. Simul. 4, 151 – 162.
(doi:110.1057/jos.2010.1053)

38. Beuls K, Steels L. 2013 Agent-based models of
strategies for the emergence and evolution of
grammatical agreement. PLoS ONE 8, e58960.
(doi:10.1371/journal.pone.0058960)

39. Hecht EE, Gutman DA, Preuss TM, Sanchez MM, Parr LA,
Rilling JK. 2013 Process versus product in social learning:
comparative diffusion tensor imaging of neural systems
for action execution – observation matching in
macaques, chimpanzees, and humans. Cereb. Cortex 23,
1014 – 1024. (doi:10.1093/cercor/bhs097)

40. Rilling JK, Glasser MF, Preuss TM, Ma X, Zhao T, Hu X,
Behrens TEJ. 2008 The evolution of the arcuate
fasciculus revealed with comparative DTI. Nat.
Neurosci. 11, 426 – 428. (doi:10.1038/nn2072)

41. Oztop E, Bradley NS, Arbib MA. 2004 Infant grasp
learning: a computational model. Exp. Brain Res.
158, 480 – 503. (doi:10.1007/s00221-004-1914-1)

42. Werbos PJ. 1990 Backpropagation through time:
what it does and how to do it. Proc. IEEE 78,
1550 – 1560. (doi:10.1109/5.58337)

43. Jeannerod M. 2005 How do we decipher others’
minds? In Who needs emotions: the brain meets the
robot (eds J-M Fellous, MA Arbib), pp. 147 – 169.
Oxford, UK: Oxford University Press.

44. Whiten A, Goodall J, McGrew C, Nishida T, Reynolds
V, Sugiyama Y, Tutin CES, Wrangham R, Boesch C.
1999 Cultures in chimpanzees. Nature 399,
682 – 685. (doi:10.1038/21415)
45. Whiten A, Hinde RA, Laland KN, Stringer CB. 2011
Culture evolves. Phil. Trans. R. Soc. B 366,
938 – 948. (doi:10.1098/rstb.2010.0372)

46. Oudeyer P-Y. 2005 The self-organization of speech
sounds. J. Theor. Biol. 233, 435 – 449. (doi:10.1016/
j.jtbi.2004.10.025)

47. Schneider C, Call J, Liebal K. 2012 Onset and early use
of gestural communication in nonhuman great apes.
Am. J. Primatol. 74, 102 – 113. (doi:10.1002/ajp.21011)

48. Perlman M, Tanner JE, King BJ. 2012 A mother
gorilla’s variable use of touch to guide her infant:
insights into iconicity and the relationship between
gesture and action. In Developments in non-human
primate gesture research (eds S Pika, K Liebal), pp.
55 – 73. Amsterdam, The Netherlands: John
Benjamins Publishing Company.

49. Russon AE, Andrews K. 2011 Orangutan pantomime:
elaborating the message. Biol. Lett. 7, 627 – 630.
(doi:10.1098/rsbl.2010.0564)

50. Arbib MA, Billard AG, Iacoboni M, Oztop E. 2000
Synthetic brain imaging: grasping, mirror neurons
and imitation. Neural Netw. 13, 975 – 997. (doi:10.
1016/S0893-6080(00)00070-8)

51. Barrès V, Simons A, Arbib MA. 2013 Synthetic
event-related potentials: a computational bridge
between neurolinguistic models and experiments.
Neural Netw. 37, 66 – 92. (doi:10.1016/j.neunet.
2012.09.021)

52. Fogassi L, Ferrari P-F, Gesierich B, Rozzi S, Chersi F,
Rizzolatti G. 2005 Parietal lobe: from action
organization to intention understanding.
Science 308, 662 – 667. (doi:10.1126/science.
1106138)

53. Griffin D, Gonzalez R. 2003 Models of dyadic
social interaction. Phil. Trans. R. Soc. Lond. B 358,
573 – 581. (doi:10.1098/rstb.2002.1263)

54. Wolpert DM, Doya K, Kawato M. 2003 A unifying
computational framework for motor control and
social interaction. Phil. Trans. R. Soc. Lond. B 358,
593 – 602. (doi:10.1098/rstb.2002.1238)

55. Oztop E, Wolpert D, Kawato M. 2005 Mental state
inference using visual control parameters. Brain Res.
Cogn. Brain Res. 22, 129 – 151. (doi:10.1016/j.
cogbrainres.2004.08.004)

http://dx.doi.org/10.1177/1059712312449545
http://dx.doi.org/10.1016/S0893-6080(98)00047-1
http://dx.doi.org/10.1016/S0893-6080(98)00047-1
http://dx.doi.org/10.1007/s00422-002-0318-1
http://dx.doi.org/10.1007/s00422-002-0318-1
http://dx.doi.org/10.1007/s00422-006-0110-8
http://dx.doi.org/10.1007/s00422-006-0110-8
http://dx.doi.org/10.1016/0166-2236(95)93921-J
http://dx.doi.org/10.1093/brain/119.2.593
http://dx.doi.org/10.1093/brain/119.2.593
http://dx.doi.org/10.1080/00222895.1993.9942048
http://dx.doi.org/10.1080/00222895.1993.9942048
http://dx.doi.org/10.1007/BF00231858
http://dx.doi.org/10.1007/BF00231858
http://dx.doi.org/10.1007/BF00229827
http://dx.doi.org/10.1007/BF00229827
http://dx.doi.org/10.1016/j.tics.2004.09.005
http://dx.doi.org/10.1016/j.tics.2004.09.005
http://dx.doi.org/10.1007/s00422-010-0415-5
http://dx.doi.org/10.1016/j.cub.2010.12.022
http://dx.doi.org/10.1016/j.cub.2010.12.022
http://dx.doi.org/110.1057/jos.2010.1053
http://dx.doi.org/10.1371/journal.pone.0058960
http://dx.doi.org/10.1093/cercor/bhs097
http://dx.doi.org/10.1038/nn2072
http://dx.doi.org/10.1007/s00221-004-1914-1
http://dx.doi.org/10.1109/5.58337
http://dx.doi.org/10.1038/21415
http://dx.doi.org/10.1098/rstb.2010.0372
http://dx.doi.org/10.1016/j.jtbi.2004.10.025
http://dx.doi.org/10.1016/j.jtbi.2004.10.025
http://dx.doi.org/10.1002/ajp.21011
http://dx.doi.org/10.1098/rsbl.2010.0564
http://dx.doi.org/10.1016/S0893-6080(00)00070-8
http://dx.doi.org/10.1016/S0893-6080(00)00070-8
http://dx.doi.org/10.1016/j.neunet.2012.09.021
http://dx.doi.org/10.1016/j.neunet.2012.09.021
http://dx.doi.org/10.1126/science.1106138
http://dx.doi.org/10.1126/science.1106138
http://dx.doi.org/10.1098/rstb.2002.1263
http://dx.doi.org/10.1098/rstb.2002.1238
http://dx.doi.org/10.1016/j.cogbrainres.2004.08.004
http://dx.doi.org/10.1016/j.cogbrainres.2004.08.004

	Dyadic brain modelling, mirror systems and the ontogenetic ritualization of ape gesture
	Ape gesture and ontogenetic ritualization
	Prior modelling as basis for a new overall model
	Prior modelling
	Dyadic brain modelling
	The overall model

	A model-based analysis of beckoning as a case study of gesture acquisition
	Child (C) reaches out, grabs and tugs on mother (M), causing M to move towards C as a response
	C reaches out and grabs M, and M moves towards C as soon as C begins to tug
	C reaches out and makes contact with M, and this is enough to get M to move towards C
	C reaches out towards M, attempting to make contact, but M responds before contact is made
	C reaches out towards M, no longer attempting to make contact, yet M still responds by moving towards C
	C 'beckons' towards M

	Methods: a reduced model and its implementation
	Results
	Discussion
	Gesture acquisition
	More elaborate gesturing behaviour
	Localization
	The brain is a system of systems
	Population coding and event versus trajectory levels
	Social brain modelling
	Funding statement

	References


