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Protein folding has been a major area of research for many years. Nonethe-

less, the mechanisms leading to the formation of an active biological fold

are still not fully apprehended. The huge amount of available sequence

and structural information provides hints to identify the putative fold for

a given sequence. Indeed, protein structures prefer a limited number of

local backbone conformations, some being characterized by preferences for

certain amino acids. These preferences largely depend on the local structural

environment. The prediction of local backbone conformations has become an

important factor to correctly identifying the global protein fold. Here, we

review the developments in the field of local structure prediction and

especially their implication in protein fold recognition.
1. Introduction
A detailed understanding of the function of a protein can be achieved by study-

ing its three-dimensional structure. Insights into the molecular details of protein

interactions and enzyme activities are obtained from the three-dimensional

structure and the impact of protein structure-based drug design in pharma-

ceutical development has been impressive [1–3]. Although significant

advances have been made in the field of experimental structure determination

[4,5], the difficulty and cost associated with this limit the rate at which protein

structures are solved. The sequence information, on the other hand, has grown

immensely with the help of high-throughput sequencing techniques [6–11].

The huge gap between the sequence and structure space is formed by sequences

whose three-dimensional structures are unknown.

Computational approaches provide effective ways for filling this gap. The

methods used for structural annotation assign a probable three-dimensional

fold for a given sequence. Applications of computational structure modelling

have been enormous [12]. The modelled structures are useful in studying

protein–protein [13] and protein–ligand interactions [12–14]. They are also

used as search models in experimental structure determination [15] and for

characterizing structures of huge assemblies [16–18]. Computational model-

based drug design [19,20] and studies for understanding protein dynamics

based on modelled structures [12,21,22] have been successful. Large-scale pro-

teome-wide structural annotation studies have also been designed upon

computational approaches for fold identification [23,24].

Modelling protein structures based on a template fold (comparative/

homology modelling) is so far the most reliable technique for generating

three-dimensional structure for a given sequence [25]. The most critical step in

comparative modelling is the identification of the correct template fold. The poss-

ible number of protein folds are estimated to be limited in number and the

currently available structures can cover most of it [26,27]. The ability to relate

sequences to the correct folds forms the basis for protein fold recognition. The sim-

plest means for deriving structural information is by direct comparison with other

related sequences with known structures [28–30] (figure 1a). The tertiary
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Figure 1. ‘Homology’ detection with variation in sequence identity. (a) Schematic demonstrating the use of sequence comparison for detecting structural homology.
The sequence alignments are indicated with ‘X’ representing any amino acid. Same amino acids at equivalent positions are highlighted in red, similar ones are in
green. At sequence identity levels above 30% (i), simple sequence alignments are largely sufficient to detect similar folds. Below this similarity threshold, the
alignments are less accurate and thus less efficient in detecting genuine relationships. (ii) Between 20 and 30%, the correct fold is not often detected as
the top hit. (iii) At very low sequence identities, simple sequence alignments are not very useful. (b) Variation of structural similarity (quantified in terms of
GDT_TS score) [31] with change in sequence identity. Even at low sequence identities (less than 30%, highlighted in grey background) significant structural
similarity could be observed. (Online version in colour.)
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structure of a protein is highly conserved across different

species, when compared with its sequence [32]. Figure 1b
shows the direct relationship existing between structural simi-

larity in terms of global distance test (GDT) [31] and sequence

identity. This analysis has been performed on a randomly

chosen subset of about 500 SCOP domain, which were structu-

rally aligned [33,34] with iPBA superimposition method

[35,36]. Thus, if the sequence similarity (usually quantified as

the percentage amino acid identity) is high, the structures are

likely to be similar. Comparative modelling can generate

reliable structural models (1–3 Å root mean squared deviation

(RMSD) with the real structure), especially when the sequence

identity is above 30% [25,37] (figure 1a(i)).

Nonetheless, the sequences of homologous protein struc-

tures can diverge beyond the point where pairwise sequence
comparison methods fail. Figure 1a highlights the success in

detecting the correct fold declines with decrease in sequence

identity. The match between the sequence of interest (target)

and the known folds is obtained as an alignment of

sequences. Below 30% sequence identity (twilight zone,

figure 1a(ii)), the accuracy of alignments falls significantly

which results in a low sensitivity in fold recognition. At

very low sequence identities (below 15%, figure 1a(iii)), the

sequence alignments are not very informative. The values

provided in the figure are just indicative of the sequence iden-

tity ranges, and no fixed thresholds have been characterized

[38]. The lectin superfamily is a classic example of this case

where the sequence identities fall below 10% but they are

known to adopt a jelly-roll-sugar binding fold [39], and a

random alignment is expected to have about 12% identity.
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In this review, we focus mainly on the scenario where

the target has only remote homology with a protein of known

fold (template). In such cases, aclear understanding of the associ-

ation of amino acid sequences with the three-dimensional

structure (sequence–structure relationship) is the key factor in

determining the success to recognize correct folds. Firstly, a gen-

eral outline of the methods for fold recognition based on the

detection of remote homology is presented. Then the role of

local structure prediction in fold recognition is emphasized,

followed by a discussion on the importance of careful extraction

of sequence–structure relationships.
J.R.Soc.Interface
11:20131147
2. Fold recognition by remote similarity
detection

In the absence of closely related proteins of known structure,

it is difficult to assign the correct fold using simple sequence

alignments (figure 1a). Additional information is required

to enhance the sensitivity to detect more distant relationships.

The knowledge on the evolutionary and structural cons-

traints associated with the target sequence forms the major

contributing factor in detecting distant relationships.

2.1. Evolutionary information: profile – profile
alignments

The protein sequence databases nowadays contain homolo-

gous sequences from different species. A multiple sequence

alignment (MSA) can be used to trace the extent of evolution-

ary divergence among the related sequences. As against a

single sequence, MSA consists of information about amino

acid propensities at each position in the sequence which

characterizes a sequence ‘profile’. This information is highly

valuable in differentiating conserved and variable positions,

and these position-specific amino acid propensities are more

effective in identifying a protein that is evolutionarily related

to this group. Thus, the use of MSAs as sequence profiles

has a huge impact on homology detection (figure 2a,b) [40,41].

A sequence profile is often described as a position-specific

scoring matrix (PSSM), which holds information on amino acid

propensities for each position in the sequence, derived based

on an MSA. PSI-BLAST and RPS-BLAST [42,43] are widely

used sensitive PSSM-based search algorithms for remote hom-

ology detection. The search for related sequences is usually

carried out iteratively where the profile (PSSM) gets updated

at each step with new sequence information. These new

sequences, which can be termed as ‘intermediates’, could

also be used as new targets to trace the linkage to the distant

homologue [44,45]. Recently, a method named HangOut has

been proposed to improve the sensitivity of PSI-BLAST

searches especially for domains with long insertions [46].

Several approaches have been proposed to improve the

search for related proteins based on sequence profiles. An

MSA can be used to generate hidden Markov models

(HMMs), which can also be used as efficient search tools

[47–50]. HMM-based profile comparison tools are reported

to have a higher accuracy than PSSM-based methods

[45,51]. To improve the accuracy of profiles generated, effi-

cient methods that can weigh conserved sequence regions

have also been developed [52–56]. Amino acid substitution

probabilities that drive the alignment scores are influenced

by the local structural [57] or sequence neighbourhood
[58,59] in the protein. CSI-BLAST [60] uses mutation prob-

abilities from context-specific profiles based on 13-residue

windows while DELTA-BLAST [61] incorporates frequencies

from longer profiles corresponding to conserved domain

sequences [62]. Two iterations of CSI-BLAST [60] are more

sensitive than five iterations of PSI-BLAST, whereas

DELTA-BLAST [61] is more sensitive than both CS-BLAST

and PSI-BLAST in detecting relatively similar and remote

homologues. Profile–profile comparison methods that opti-

mize local alignments are also reported to be more effective

in remote homology detection [55,63,64].

Fast and efficient HMM profile-based iterative search

approaches similar to PSI-BLAST marked further advance-

ments in this field. JACKHMMER [65] relies on a series of

database filtering steps to reduce search time, whereas

HHBLITS implements HMM–HMM comparisons with

approximation of profile columns using 219 extended alpha-

bets [66]. The sensitivity of HHBLITS in detecting remote

homologues was about 50–100% more than that of PSI-BLAST.

Increasing amount of evidence of sequence permutations,

duplications or fusion events [67–69] raises the need for

developing methods that can detect homologues indepen-

dent of the sequence order. A classic example is the methyl

transferase family where gene fusion and permutation events

are observed in the evolutionary process resulting

in differences in substrate recognition and catalytic activity

[70,71]. Interesting developments have also been made in

this direction. A few alignment-free techniques were devel-

oped for this purpose [72,73], while the majority of methods

that employ sequence-order-independent comparisons are

optimized for multi-domain proteins [74–77].

However, at a sequence identity well below 20%, the

chances of detecting true templates even with profile-based

approaches remain low [78]. It is possible that the fold which

the sequence adopts is already known but the sequence-

based searches fail to trace such relationship. Such cases

could be addressed if one can verify whether this protein

sequence is compatible with any of the available protein folds.

The question is how to derive this compatibility with known

folds, given a sequence target.
2.2. Structure information: fold recognition
by threading

Two proteins sharing the same fold could have diverged signifi-

cantly in terms of sequence and it is often difficult to detect

the relationship based on sequence- or profile-based methods.

Some well-known examples of these are the oligonucleotide/

oligosaccharide binding fold, cupins, TIM barrels, serine

proteases, etc. Hence it becomes necessary to relate target

sequence with the known folds. To assess the fit of a sequence

on a template protein fold, it is necessary to quantify the

preference for amino acids to occur in the structural environment

of the template. This measure can enable us to generate an align-

ment between the sequence and the template structure

(threading). Two major strategies have been used to score the

sequence–structure compatibility.
2.2.1. Threading based on global potentials
The more direct approach would be to fit each residue from

the query sequence onto each position in the template back-

bone and check whether it is energetically compatible
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Figure 2. Different strategies for protein fold recognition. The fold space is highlighted by the blue background and the lengths of the black arrows joining the target
sequence (space) and fold space give an idea of the distance of relationship. (a) Close relationships are often detected by simple sequence alignment techniques.
(b) Addition of evolutionary information using sequence profiles derived from MSAs helps in detecting more distantly related folds. When the sequence-based alignments
are not informative, sequence – structure matching needs to be carried out. (c) The target sequence can be threaded on to the known folds to check the compatibility. The
compatibility is usually quantified based on the global interaction or energy potential. Obtaining an optimal alignment between the sequence and a fold is however
difficult and computationally quite expensive. (d ) The other alternative is to carry out prediction of different structural features like local backbone conformation, solvent
accessibility or contact order and then matching the predicted features with that found in the known fold. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20131147

4

(figure 2c). The energy could be quantified as pairwise inter-

action potentials [79,80] or solvation energy [81] which were

used by many of the earlier methods for fold identification

[82–84]. The non-local regions of the target residue could

have significant difference when compared with that of the

template. This means that the equivalent regions (or residues)

have to be known a priori to calculate the compatibility score.

Hence the target–template alignment has to be generated in

advance and this makes the problem extremely hard.

An easier solution is the ‘frozen approximation’ [81],

where each residue in the target is scored against the struc-

tural environment formed by the neighbouring template

residues. However, as mentioned earlier, the target and the

template often have different environments involving vari-

ation in the amino acid residues. Hence this method is

frequently prone to accumulate errors that affect the final esti-

mation of compatibility. Approximate solutions to identify
residue neighbours could be derived using Monte Carlo

simulations [85] or double-dynamic programming [83]. The

divide-and-conquer approach used in Prospect [86] aims to

solve several sub-structure alignments and integrate them

in an optimal way. The complexity associated with fold

identification purely based on global interaction potentials

was alleviated by combining local structural information

[87] and the local structural context is observed to have the

major role in obtaining an optimal template alignment [88].
2.2.2. Threading based on local scoring functions
The second category of methods adopts a more localized

approach for quantifying the compatibility of the target

sequence on a template. They score the preference for each resi-

due to occur in a local environment of the template structure.

The preference for an amino acid to occur in a local structural
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environment can be referred to as the sequence–structure

relationship. As mentioned earlier, several structural features

can be used to describe the local structural environment of a

protein. The most commonly used features are secondary

structure, solvent accessibility, residue depth, backbone con-

formation, potential for hydrogen bonding or hydrophobic

interactions [57,89]. A combination of some or all of these

features can define one local environment. The issue is to

choose the right set of features and weigh each feature

to derive the combination.

Two different ways in which the preference of an amino

acid for a local structural environment can be calculated

are: (i) the amino acid preferences associated with a local

structural environment can be extracted as a one- to three-

dimensional substitution matrix which gives the score for

assigning each amino acid in this environment [57,90–92].

These methods are based on the premise that the amino

acid substitution patterns vary based on their structural

environments [57]. (ii) The other strategy adopted by most

of the recent methods is to predict the structural features separ-

ately based on the target sequence and then combine the

predictions carefully to search for related structures (figure 2d)

[93]. The use of predicted local structural features as strings

can bring down the problem of sequence–structure compari-

son to that of a sequence–sequence comparison. As in the

case of classical sequence alignment procedures, dynamic pro-

gramming algorithm can be used to achieve this task [94].

Recognition of protein folds based on predicted local structural

features is competitive with methods that consider non-local

structural details [95–98].

The efficiency of different profile comparison methods is

coupled with the predicted structural information to improve

the quality of profile-based fold recognition [54,95,99–106].

The successful approaches for fold recognition use profile

comparisons to obtain a limited set of alignments which are

then evaluated and refined using the energy-based potentials

[101,102,107,108]. An interesting recent observation is that the

accuracy of fold recognition improves with the use of artifi-

cially evolved sequences compatible with the template folds

[109]. These sequences are optimized to stabilize a given

structure by simulated annealing based on a variety of poten-

tials, similar to those commonly used in protein threading.

In the following sections, we discuss the developments in

the field of local structure prediction which has been the most

essential component of prediction-based threading methods.
2.2.2.1. Secondary structure prediction
The protein backbone prefers mainly a limited number of

stable conformations constrained by the backbone dihedral

angles and hydrogen bonds. The two important regularities

seen in the local conformation of the backbone constitute

a-helices and b-strands [110]. The rest of the backbone is

usually considered as coils which represent that not assigned

to one of these two conformations. These three states (helix,

strand and coil) constitute the classical definition of secondary

structures. This description has been used either to comp-

lement sequence-based searches or to identify the best

structural relative from the results of sequence-based searches.

It has been a strategic step in most of the fold recognition

approaches [89,95,108, 111,112]. The fold recognition method-

ologies like PHYRE [95], MUSTER [113], SPARKS [114] and

SP5 [105] incorporate methods for predicting secondary
structure of the target sequence and then comparing that

with the secondary structure assigned for the templates.

Efficient machine learning methods like artificial neural

networks (ANNs) [115] or support vector machines (SVMs)

[116] are being developed to predict secondary structure

from a protein sequence. They are trained to learn the

amino acid preferences associated with different secondary

structures and make predictions for new sequences. Most of

the successful and recent approaches use the information

on amino acid propensities derived from sequence profiles

[115,117–122]. The use of multiple sequences (as a profile)

adds details on amino acid variability at each position in

the sequence. Studying the association of relatively large

fragments of about 15–20 residues with a secondary struc-

tural state helped to incorporate the effect of long-range

interactions to a certain extent [123].

It must be noted that ‘the machine learning algorithms pre-

dict what they learn’. The secondary structure assignments for

known structures are made using a non-redundant dataset of

protein structures and then the sequence association with each

secondary structural unit is learnt. There are several methods

available for assigning secondary structures, based on local

backbone dihedral angles or hydrogen bonds. It is interesting

to note that the assignments made by different methods do

not agree to a significant extent [124–126]. Figure 3 presents

the comparison of secondary structure assigned based on the

three-dimensional structure of methyglyoxal synthase [127]

with that of predictions made by different methods. The ambi-

guities are generally seen in predicting the short repetitive

structures and especially boundaries of secondary structures.

The underlying cause is that the capping regions do not necess-

arily follow the same rules set for defining the backbone

conformation of helices and strands [132].

Taking into account the variation of secondary structure

assignments among different conformations of the same

structure (inherent flexibility) and between close structural

homologues, a theoretical limit of 88% was proposed for sec-

ondary structure prediction accuracy [123]. The most popular

and not very recent methods like PSIPRED [115], PROF

[122,123] and SSPRO [130] could already achieve a prediction

accuracy close to 80%. PHD [129] and PSIPRED [115] use two

levels of neural network predictions where the initial predic-

tions are refined at the second step. SSPRO [130] implements

a recursive single neural network instead of multiple layers.

The use of dual layer SVMs also gave performance compar-

able to these methods [116,119]. A few improvements or

alternative methods have been proposed in the last few

years [116–118,120,121,131,133–136] but the increase in pre-

diction accuracy is minimal. Use of consensus approaches

based on the results of multiple predictions [133,136] gave

accuracy above 80%. The use of a dictionary of words of

amino acid stretches associated with a secondary structure

state also resulted in predictions comparable to the best

machine learning methods available [137].

A recent assessment of available secondary structure

prediction methods suggests that a prediction accuracy of

about 82% could be reached [138]. The exposed coils were

predicted higher than helices and strands. The accuracies of

prediction for residues in 310 helices and b-bridges were

less than 50% and 48%, respectively [138]. Complement-

ing profile–profile comparisons with predicted secondary

structure resulted in a significant improvement in the effi-

ciency of fold recognition [95,108,139,140]. The prediction of
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Figure 3. Comparison of secondary structure prediction methods. For a recently solved structure of methylglyoxal synthase [PDB ID 2X8W] [127], the assigned
secondary structure by (a) DSSP [128] and predicted ones are shown. The a-helices are shown in red, b-strands in yellow and coils in green. Different secondary
structure prediction methods are shown: (b) PSIPRED [115], (c) PROF [129], (d ) SSPRO [130] and (e) YASPIN [131]. The predictions are also shown as sequence
alignment in ( f ). Helices, strands and coils are indicated by H, E and C, respectively. (Online version in colour.)
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non-local structural details mainly based on the predicted

local features has also reported some success. The prediction

of protein contact order which reflects the average length of

sequence separating contacting residues, with the aid of pre-

dicted secondary structure information is reported to achieve

a correlation of about 0.85 [141].

2.2.2.2. Beyond secondary structures
In the absence of reasonable sequence similarity, the second-

ary structure prediction makes a huge contribution to remote

homology detection. However, proteins with similar second-

ary structure topology need not necessarily have the same

tertiary fold. Figure 4 gives an example of one such case

where a wrong fold is chosen purely based on the similarity

in secondary structure. This is often true for proteins with

repeating secondary structural elements, i.e. helix or strand

repeats. The three-state secondary structural information

(helix, sheet and coil) does not give precise details of the

backbone conformation for the complete protein backbone

[111]. More than 50% of the residues in the available protein

structures are assigned to the coil state which by defini-

tion corresponds to irregular backbone conformations. The

loss of information caused by considering such a large

majority of residues as coils is a main contributor to the

recognition of wrong folds [112,144].
On the contrary, the coil state is not strictly irregular. Next

to helices and strands, turns characterize another frequent

regularity in the protein backbone [145]. b-Turns account for

about 25% of the residues in proteins [146]. Other favourable

local structures involve PolyProline II helices [147], hairpin

loops, corner motifs, b-bulges, etc. [148]. Most of these repeat-

ing units are associated with strong sequence–structure

relationships. Thus, a major portion of protein backbone can

be associated with repeating local structural elements.

Attempts have been made to generate a minimum set of

local backbone conformations, a combination of which can

be used to represent most or all of the protein backbone con-

formation. A set of prototypes of local structures that can be

used to approximately define the conformation of a protein

backbone is called as a structural alphabet (SA) [149]. The

number and size of these fragments vary depending on the

approach used. Apart from their use in modelling, structural

alignment and functional analysis, these libraries also help to

extract precise information on the amino acid preferences

associated with local structures.

Several approaches have been developed for the pre-

diction of local structures based on fragment libraries

[150–157]. The underlying methods used for prediction are

based on both probabilistic [150,153,158] and machine learn-

ing algorithms [152,159–162]. Bystroff and Baker generated a
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Figure 4. Going beyond three-state secondary structure. The structures related to methylglyoxal synthase (a) [PDB ID 2X8W] are identified purely based on the
secondary structure, using SSEA server [142]. A different fold (b) (Response Regulator, PDB ID 1M5T) [143] was obtained as a top hit based on the secondary
structure content. The secondary structure alignment (c) shows that the structures are close based on the secondary structure; however, the folds are different.
The equivalent helices and strands are highlighted in the same colour in the two structures (a,b). A more precise description of the backbone conformation
was obtained using PB (d ). The assignment of PB instead of the three-state secondary structures highlights many differences between the two structures,
which were otherwise masked by the secondary structure definition. The segments assigned as coils (indicated by ‘C’) are highlighted in red in the PB alignment.
Other differences in the regular secondary structures are in blue. (Online version in colour.)
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library by clustering frequently observed short sequence pat-

terns (I-sites) in protein structures. An efficient local structure

prediction method was developed based on this library

[150,163]. As the number of prototypes increase, the predic-

tion accuracy was found to be lower. However, the regions

predicted with high confidence add fine details on structural

motifs and local backbone conformation. The use of second-

ary structure information is proved to improve the accuracy

of local structure prediction. However, the repetitive struc-

tures are sometimes over-predicted in place of other local

conformations [164].

Protein blocks (PBs) are a widely used SA composed of 16

pentapeptide conformations characterized by the series of

backbone dihedral angles [153]. These conformations are

characterized by strong sequence–structure relationships

determined by the high predictability. Figure 4d gives an

example of two different protein folds having the same sec-

ondary structure topology. It highlights that the PB

description is more informative when compared to the

three-state secondary structure, especially for the coil regions.
It also underlines the significance of precise local structural

information in fold recognition. A series of methods have

been tested for the prediction of PBs from sequence data.

Bayesian prediction models gave an accuracy ranging from

34 to 48% [153,164–166]. Dual layer ANNs and SVMs

improved the prediction rate to about 58.5% [159], 61%

[167] and 67% [160]. Combining information on secondary

structure and solvent accessibility further enhanced the pre-

diction rate of PBs [168]. Longer fragments based on PBs

were predicted with better accuracy [166,169]. Frequen-

tly observed 11 residue fragments described based on the

dihedrals were predicted with a significant accuracy of

about 63% using SVMs [170]. Prediction of structural flexi-

bility based on local structure preferences has also been

successful [171]. Table 1 gives a list of popular and more

recent methods for local structure prediction, based on

fragment libraries.

In recent years, a few attempts have been carried

out to predict the w/c backbone dihedral angles associated

with each residue, based on the preferences observed in the



Table 1. Fragment-based local structure prediction methods. The table gives the list of methods for predicting local backbone conformation based on a library
of fragments ( prototypes). The length, number of prototypes and the distance measure used to generate the library are also mentioned. The reported prediction
rates from the original publication are also listed. MDA, maximum deviation in torsion angles; ANN, artificial neural networks; SVM, support vector machines.

research team
fragment
length distance measure prediction method

prototype
number

prediction
rate (%)

Rooman et al. 4, 5, 6, 7 Ca RMSD statistical mechanics

(mean force potential)

4 40 – 47

Bystroff & Baker 3 – 19 sequence profiles,

RMSD, MDA

profile – profile matching 13 (later updated

to 16)

50

de Brevern et al. 5 dihedral angles Bayesian 16 34.4

Hunter & Subramaniam 7 hypercosine Ca Bayesian 28 – 16336 40

Yang & Wang 9 dihedral angles sequence profile

matching

138604 79

Etchebest et al. 5 dihedral angles Bayesian

(simulated annealing)

16 [153] 49

Benros et al. 11 Ca RMSD, PB based hybrid protein model 120 51.2

Sander et al. 7 Ca distance decision trees, SVM,

random forest

28 23 – 36

Dong et al. 7 Ca distance ANN 28 45.6

Dong et al. 5 dihedral angles ANN 16 [153] 58.5

Zimmermann et al. 5 dihedral angles SVM 16 [153] 61

Chen & Johnson 9 Ca distance SVM 800 72

Bornot et al. 11 Ca RMSD, PB based hybrid protein model 120 63.1

Rangwala et al. 5 dihedral angles SVM 16 [153] 67

Yu et al. 7 – 19 dihedral angles Bayesian 82 62
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Ramachandran map [172]. The highly preferred regions of

dihedral angle pairs define the predicted classes. Both

ANN- and SVM-based predictions [173,174] have been car-

ried out, with a special focus on the coil regions. Prediction

accuracy of above 80% was reported. Another approach pre-

dicting the probable dihedral angle associated with the coil

residues has been developed [175]. The favoured dihedral

region in the Ramachandran plot was divided into bins

(30 � 30) and the probability of occurrence in these bins is

predicted. Significant improvement could be achieved over

random prediction and about 80% accuracy is reported for

the prediction of the top 20 populated bins. Prediction of

dihedral angles also helped in improving the accuracy of sec-

ondary structure prediction [135]. In this approach based on

SVMs, an accuracy of prediction of about 54–57% was

obtained by clustering the w/c space into seven regions

based on the population distribution.

Absolute values of w and c angles are also predicted by

several methods mainly based on ANNs [176–178]. Predicted

secondary structure and/or solvent accessibility were com-

bined with the sequence or profile information, as inputs for

these learning methods. The ANGLOR method [177] was

assessed to provide an error of 288 and 468 for the w and c

dihedral angles, respectively. These values were reduced to

228 and 368 with the improved Real-SPINE method [179].

Local structure prediction beyond the three-state secondary

structures has been shown to improve recognition of remote

homologues [180]. Prediction of absolute values of the dihedral
angles has been incorporated in many recent fold recognition

tools [105,113]. More than 5% increase in efficiency of detection

of homologous folds was reported, with the addition of

dihedral angle predictions [105]. A recent study also demon-

strated that the use of local structure preference information

significantly improves the quality of fold recognition [181].
2.2.3. Fragment-based fold recognition
The local regions of strong sequence–structure relationships

are extracted as fragments and are assembled to generate

the fold. The recognition of related folds by I-TASSER is

mainly based on a profile–profile alignment method [98].

The efficiency of the profile search (see §2.1) is enhanced by

the addition of secondary structure information. Various

strategies involving HMMs [182], PSI-BLAST profiles [42],

global [29] and local [30] dynamic programming algorithms

are employed in the profile-based search of I-TASSER. The

continuous fragments aligned with regions of multiple tem-

plates are reassembled into complete models [183]. The

unaligned regions without structurally similar segments in

the template are built by ab initio modelling, i.e. generating

structural models based on physico-chemical and mechanical

properties, without the use of a template [184].

In the absence of a template of similar fold, the target

protein could still have local structural motifs observed in

the available protein structures [185]. Though a homologous

fold cannot be identified reliably, a probable model could be
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generated from a collection of such local motifs. This forms

the basis of ROSETTA that generates models from fragments

compatible with the sequence [186–188].

Hybrid template-based approaches associate fragment

conformations for the sequence and detect distant fold simi-

larities based on the fragment similarities. BBSP (building

blocks structure predictor) [189] is one such algorithm that

gave better accuracy when compared with COMPASS [190],

HHpred [51] and PHYRE2 [95] on a dataset of 100 targets.

Local backbone conformations from fragments are also

used along with coarse-grained force fields to yield an

energy optimized final model [191].

The generation of models by the combination of frag-

ments is a remarkable development which can also enhance

de novo structure prediction. SAs or local structure libraries

can contribute significantly in this aspect and several model-

ling approaches based on such fragment libraries have been

developed [163,192–196]. A combination of fragment assem-

bly and lattice-based folding has been adopted to achieve fast

conformational sampling and refine the models generated

[108,197,198].

The length of fragments and the fragment insertion length

can be chosen separately for different structural class of pro-

teins; the a-helical proteins are modelled better with large

fragment lengths and insertion size, whereas b-strand-rich

proteins require shorter fragment insertions [199].
2.2.4. Refining local structure prediction
As mentioned earlier, the residue preferences for a local

structure are strongly influenced by the structural environ-

ment [57,200–204]. Thus, the prediction of local structures

could be enhanced with the information of other structural

features. As the amino acid preferences for secondary struc-

tures differ between buried and solvent-exposed regions of

protein structure [205–207], solvent accessibility is some-

times predicted prior to secondary structure prediction

[205]. Addition of accessibility information resulted in the

improvement of some probabilistic secondary structure pre-

diction methods [208]. It was also reported that the use of

residue-specific accessibility cut-offs and multi-state accessi-

bilities improves the prediction of secondary structures.

Discarding active site residues with functional constraints

from the learning set also resulted in an improvement in

the sensitivity of one- to three-dimensional substitution

tables with representing amino acid preferences for local

structural environments [209].

The stability of a local structural fragment might be deter-

mined by interactions not necessarily constrained within the

fragment [203,210–212]. Such cases reflect weak sequence–

structure relationships. Considering long sequence windows

(15–20 residues) for prediction of local structures helps to

include the effects of non-local interactions to a large extent

[123]. However, the accuracy of local structure prediction is

still limited by the inability to include long-range interactions

[213,214]. A systematic identification of weak signals of

sequence–structure relationships can help in refining the

local structure prediction methodologies. Studies on chame-

leon sequences characterized by locally unstable structures

have been carried out to explore such weak relationships

[200,215]. Prediction of local regions of flexibility is gaining

equal importance [216,217] and the use of flexibility infor-

mation can aid in refining the available fold recognition
protocols by complementing the local conformation

predictions. Figure 5 highlights the high confidence pre-

dictions of secondary structures, flexible and disordered

regions on glutamate mutase [218]. Structural dynamic pro-

files may also be used as another feature that can be used

for fold detection.

2.2.5. In search of specificities
The knowledge of sequence–sequence and sequence–structure

relationships is gained on the premise that it is applicable to all

proteins. Even though this is often true, some specificities have

also been identified among certain sets of proteins.

The amino acid composition varies between different pro-

teomes. Depending on the organism, the variation could be

sometimes quite significant such that the standard substi-

tution matrices may fail to find the right homologues.

Based on this perspective, substitution matrices adjusted for

the background composition are derived [221]. These

matrices are reported to be quite efficient in detecting homol-

ogues from the species. Species-specific variations are also

observed with respect to amino acid propensities for local

protein structures [222]. This observation is quite interesting

and the specificities could be exploited in improving the accu-

racy of approaches for local structure prediction. A study

conducted in this direction showed promising results with

Plasmodium falciparum, Arabidopsis thaliana and Saccharomyces
cerevisiae [223]. Considering the compositions corresponding

to both query and template improves profile comparisons

[224]. The amino acid preferences for local structures also

show variations among different structural classes of proteins

[225]. These specific preferences could be carefully exploited

to enhance the accuracy of local structure prediction. The

information on the specific amino acid preferences has been

used to develop fold recognition approaches dedicated for

specific classes of proteins [226,227].

2.3. Some successful methods
In order to assess the performance of different methods for

protein structure prediction, Moult and co-workers intro-

duced a public experiment called critical assessment of

techniques for protein structure prediction (CASP). The par-

ticipants are provided with protein sequences for which the

structures have not been released. The I-TASSER server

[108] gave the best performance in the recent CASP assess-

ments (CASP 8, 9 and 10) of fold prediction servers [228].

The other servers in the top category were Robetta [186],

Quark [229], HHpred [140], pmodeller [230], RAPTOR [87],

pro-sp3 TASSER [231] and FALCON [232].

HHpred uses a novel HMM-based profile comparison

method with enhanced accuracy by incorporating infor-

mation on predicted secondary structure [51]. FALCON

employs a fragment-HMM approach [232] where both the

preferred dihedral angles of each residue and sequence–

structure relationships from fragment libraries are integrated

to predict structural models for a sequence.

It has become a common strategy to combine different pre-

dicted structural features along with amino acid sequences

to improve the accuracy of profile-based fold detection

[55,106,177,181,233]. Weighted matching of multiple profiles

(sequence and structural features) has also been employed to

enhance the accuracy of recognizing homologous folds

[105,234].



(a) (b)

Figure 5. Prediction of local conformational rigidity and flexibility. Structure of glutamate mutase [PDB ID: 1CCW, chain B] [218] (a) highlighting the predicted
secondary structures [219]: helices (red) and strands (yellow), flexible regions [217] ( pink) and a discordant helix with high strand propensity (brown, highlighted
within the dotted circle) [215]. (b) The flexible regions predicted ( probability . 0.5 and confidence . 10) by PredyFlexy method [216] ( pink) and the predicted
disordered region [220] is shown in blue (highlighted within the dotted circles). (Online version in colour.)
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2.3.1. Combining different approaches
One of the main limitations of the available fold recognition

procedures is that they often fail to pick the correct template

as the top hit. However in most cases, the right fold occurs

among the top 10 or 20 hits [235]. The specificity can be

improved by assessing the results of several different

methods. This idea has led to the development of many

meta-servers which run different fold recognition approaches

and report the probable folds based on a consensus approach

[98,183,236–241]. They also integrate methods for prediction

of local structural features and scoring functions to assess and

refine the results.

Hybrid methods generate models by combining struc-

tures of multiple templates which are either a set of initial

predicted models or those obtained from different fold recog-

nition methods [89,198,231,242–245]. Pro-sp3-TASSSER

[231] is one such method that identifies template fold

based on PROSPECTOR [102] and SP3 [106]. They also

involve realignment of target–template in the uncertain

regions [197,246,247]. Pcons [230,248] generates structural

models based on the target–template alignments generated

by different approaches and has been quite competitive in

the recent CASP experiments. Nevertheless, a consensus

approach may also suppress the true result, if only one of

the underlying methods is successful [249].

The recent IntFOLD-TS approach [250] is one of these

successful consensus methods; it integrates multiple sequence–

structure alignments from methods such as SP3 [106], SPARKS

[114], HHsearch [140] and COMA [251] and generates many

models with multiple and single templates and scores them.

The combination of these methods resulted in a better accu-

racy in generating models for 117 CASP targets when

compared with the component methods individually. eTh-

read [252] is another meta-threading approach that uses a

combination of 10 methods and generates consensus align-

ments using machine learning techniques. This approach is

reported to be more sensitive than any of the component

methods and nearly 50% of the models were of high quality

(TMscore . 0.5) [253].
3. Conclusion
The favourable local backbone conformations and the associ-

ated amino acid preferences can be carefully extracted to

predict the conformation of a new sequence. Several methods

for the efficient prediction of local backbone conforma-

tions have been proposed in recent years. It is becoming

increasingly clear that these methods can contribute signifi-

cantly to improve the accuracy of identifying related folds.

Careful extraction of sequence–structure relationships is

important for reducing the extent of false predictions. The

knowledge of preferred local conformations is also used in

generating structural models by the assembly of fragments.

Strong signals of sequence–structure preferences need

to discriminate from weak associations like chameleon

sequences, flexible and disordered regions. The use of pre-

dicted flexibility profiles of a protein structure may also

add to the accuracy of recognizing correct folds. The

sequence–structure relationships learnt can be further refined

based on specific proteomes or based on the structural class

of proteins. Preliminary studies with available data point

towards an improvement in prediction accuracy with such

dataset-specific learning. Hence an efficient integration of

local structural preferences with the global features helps sig-

nificantly in our efforts for recognizing the fold that an amino

acid sequence will adopt.
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