Table 1.
research team | fragment length | distance measure | prediction method | prototype number | prediction rate (%) |
---|---|---|---|---|---|
Rooman et al. | 4, 5, 6, 7 | Cα RMSD | statistical mechanics (mean force potential) | 4 | 40–47 |
Bystroff & Baker | 3–19 | sequence profiles, RMSD, MDA | profile–profile matching | 13 (later updated to 16) | 50 |
de Brevern et al. | 5 | dihedral angles | Bayesian | 16 | 34.4 |
Hunter & Subramaniam | 7 | hypercosine Cα | Bayesian | 28–16336 | 40 |
Yang & Wang | 9 | dihedral angles | sequence profile matching | 138604 | 79 |
Etchebest et al. | 5 | dihedral angles | Bayesian (simulated annealing) |
16 [153] | 49 |
Benros et al. | 11 | Cα RMSD, PB based | hybrid protein model | 120 | 51.2 |
Sander et al. | 7 | Cα distance | decision trees, SVM, random forest | 28 | 23–36 |
Dong et al. | 7 | Cα distance | ANN | 28 | 45.6 |
Dong et al. | 5 | dihedral angles | ANN | 16 [153] | 58.5 |
Zimmermann et al. | 5 | dihedral angles | SVM | 16 [153] | 61 |
Chen & Johnson | 9 | Cα distance | SVM | 800 | 72 |
Bornot et al. | 11 | Cα RMSD, PB based | hybrid protein model | 120 | 63.1 |
Rangwala et al. | 5 | dihedral angles | SVM | 16 [153] | 67 |
Yu et al. | 7–19 | dihedral angles | Bayesian | 82 | 62 |