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Stem cells receive numerous cues from their associated substrate that help to

govern their behaviour. However, identification of influential substrate

characteristics poses difficulties because of their complex nature. In this

study, we developed an integrated experimental and systems level modelling

approach to investigate and identify specific substrate features influencing

differentiation of mouse embryonic stem cells (mESCs) on a model fibrous

substrate, fibrin. We synthesized a range of fibrin gels by varying fibrinogen

and thrombin concentrations, which led to a range of substrate stiffness and

microstructure. mESCs were cultured on each of these gels, and characteriz-

ation of the differentiated cells revealed a strong influence of substrate

modulation on gene expression patterning. To identify specific substrate fea-

tures influencing differentiation, the substrate microstructure was quantified

by image analysis and correlated with stem cell gene expression patterns

using a statistical model. Significant correlations were observed between

differentiation and microstructure features, specifically fibre alignment. Fur-

thermore, this relationship occurred in a lineage-specific manner towards

endoderm. This systems level approach allows for identification of specific

substrate features from a complex material which are influential to cellular be-

haviour. Such analysis may be effective in guiding the design of scaffolds with

specific properties for tissue engineering applications.
1. Introduction
Embryonic stem cells (ESCs) have the potential to be used in many therapeutic

applications owing to their unlimited self-renewal capacity and ability to differ-

entiate into cells of any of the three germ layers (endoderm, mesoderm and

ectoderm) [1,2]. These germ layers can subsequently give rise to cells of every

tissue type in the body, including pancreatic, hepatic and lung from endoderm,

bone, blood and muscle from mesoderm as well as neural and epidermal from

ectoderm (reviewed in [3]). Both self-renewal and differentiation of stem cells

can be modulated by careful manipulation of the cellular microenvironment.

ESCs are extremely sensitive to their surrounding microenvironment and are

influenced by the perturbations caused by changes in the chemical composition

of the immediate solution environment as well as the physico-chemical changes

brought about by the substrate in direct contact with the ESCs.

While soluble cues are predominantly used to modulate stem cell fate, more

recently cues from the underlying substrate have also been shown to have a sig-

nificant role in stem cell fate commitment. Numerous aspects of the stem cell

niche can influence the cues from the substrate, including extracellular matrix

(ECM) and substrate topology (reviewed in [4,5]). Crucial cues from the under-

lying substrate which are increasingly gaining importance, particularly in the
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area of stem cells, are the physical properties of the substrate,

in particular, substrate mechanical properties [6]. Numerous

materials have been used as stem cell substrates to investigate

how modulation of mechanical properties affects cellular

response [7–9]. In our earlier studies, using the natural

polymer fibrin, we have observed that the fibrin fabrication

condition affects ESC differentiation during germ layer com-

mitment [10]. In addition, we have studied the effect of

alginate substrates on differentiation. In this system, our results

indicated that while mesoderm and ectoderm germ layers

responded weakly to substrate stiffness in the chosen range

(300–1500 Pa), endoderm markers were strongly responsive,

with softer substrates upregulating the endoderm-specific

markers [11].

Substrate microstructural features have been shown to be

influential in guiding cellular behaviour [12–14]. Synthetic

substrates have been extensively used as platforms to study

this behaviour, with studies also being performed on the con-

trol of their microstructure [15–18]. While synthetic substrates

allow for precise and controlled microstructure manipulation,

parallel studies in natural substrates, such as fibrin, become dif-

ficult owing to their heterogeneous and complex nature [19,20].

In addition, such studies become challenging using a purely

experimental approach for several reasons. Primarily, it is

difficult to determine a cause–effect relationship by systemati-

cally perturbing a single physical parameter of the substrate

microenvironment while keeping the other parameters invar-

iant. Hence, a rigorous systems analysis is needed to draw

meaningful conclusions regarding the effect of a complex

microstructure on cellular response.

In this paper, we have developed a systems level method-

ology to identify and isolate contributing substrate features

from a complex microenvironment affecting the first stage of

cellular differentiation, that to the germ layers. This is achieved

by integrating substrate image processing and microstructure

quantification with gene expression analysis in a statistical

modelling platform to identify (i) specific substrate features

contributing towards differentiation and (ii) preferential

lineage commitment arising from the substrate interaction.

The developed methodology allows the segregation of the

effect of macroscopic and microscopic properties of the

complex fibrous network in inducing stem cell differentia-

tion. More importantly, the quantitative approach has the

potential to provide an understanding of the relative impor-

tance of the contributing substrate attributes towards a

specific cellular behaviour.

In this paper, we have applied our methodology to fibrin

substrates to investigate the influence of their microstructure

as an insoluble cue inducing stem cell differentiation. Fibrin

serves as an ideal substrate platform because its microstructu-

ral features can be easily modified by appropriate modification

of the fabrication conditions [21]. Such modification also

affects the substrate macroscopic property of stiffness, thereby

providing a means to investigate the relative importance of

macroscopic stiffness and microscopic architecture as cues to

which the cells respond. Twelve different fibrin gels were syn-

thesized by varying fibrinogen and thrombin concentration.

Mouse embryonic stem cells (mESCs) were cultured on each

of these gels and analysed for the extent of differentiation by

quantifying pluripotency and germ layer markers with quan-

titative polymerase chain reaction (qRT-PCR). The network

topology of the fibrin gels was then characterized by analysing

the electron micrographs of the gels with an image processing
algorithm [22]. The complete network topology, which

included nine different microstructural attributes, was quanti-

fied, and a subset of these features which were most important

in describing the conditions and their variability was identified

via principal component analysis (PCA). The mechanical

response of the gels was also measured by both rheology

and atomic force microscopy (AFM). The relationship between

these explanatory variables (stiffness and microstructural fea-

tures) and differentiation was then modelled via a second-

order polynomial. Inclusion of all explanatory variables into

the model would require an immense dataset, which is often

impractical to obtain in the stem cell system. We therefore

used a combinatorial approach to analyse two-dimensional

subsets of the feature space at a time, with the important

relationships being determined through significance tests.

Overall, it was shown that for the presented class of fibrous sub-

strates, the contribution of substrate microstructure to mESC

differentiation was stronger than that of macroscopic stiffness.

Furthermore, it was found that fibrous microstructural features

had a strong influence on ESC differentiation to endoderm

lineage, with fibre alignment being the most influential.
2. Material and methods
2.1. Fibrin gel fabrication, mouse embryonic stem cell

differentiation and gene expression quantification
Culture of mESCs on fibrin gels with subsequent gene expression

quantification was reported previously [10]. In brief, 12 different

fibrin gels were fabricated by adjusting the fibrinogen concen-

tration (1, 2, 4 and 8 mg ml21 fibrinogen) and fibrinogen to

thrombin ratios (1.25, 2.5 and 10 mg fibrinogen U21 thrombin).

Each of these gels was used as a substrate for mESC differentiation

for both two- and three-dimensional culture. For the former, cells

were seeded onto the preformed fibrin gel, whereas for the

latter, cells were embedded in the gel by suspending them in

the fibrinogen before polymerization ensued. For both two- and

three-dimensional cultures, the cells were cultured for a total of

4 days in Dulbecco’s modified Eagle medium (Cellgro) sup-

plemented with 10% fetal bovine serum (Cellgro). At the end of

4 days of differentiation, cells were harvested, and gene expression

was analysed for 16 specific germ layer and pluripotency markers

with qRT-PCR on a Stratagene MX3005P (Agilent). Primer

sequences used for the analysis, and the genes’ associated germ

layer, are shown in table 1. Gene expression data were reported

as fold change values calculated herein as 22DDct, where ct

values are first normalized to the house-keeping gene b-actin,

and then to the control (undifferentiated cells).

2.2. Gel stiffness measurements
To assess the mechanical response of the different fibrin gels,

stiffness measurements were taken via two different methods:

AFM and rheology. AFM nanoindentation measurements were

performed using an MFP-3D atomic force microscope (Asylum

Research). For all measurements, a glass borosilicate sphere

(diameter 15.9 mm; Thermo Scientific) was attached to the tip

of a commercially available silicon nitride cantilever with a

spring constant (k) of approximately 0.1 N m21 (Bruker). A ther-

mal fluctuation method was used for calibrating the cantilever

stiffness [23]. The stiffness of each fibrin gel was then investi-

gated by nanoindentation with indentations made at randomly

chosen locations considering approximately n ¼ 16 force inden-

tation curves at three locations on the fibrin gel [24–26]. The

stiffness modulus was determined by applying the Sneddon

model to nanoindentation curves from corresponding gels



Table 1. Primer sequences used during PCR analysis of differentiation.

gene left sequence right sequence

house-keeping b-actin cagcagttggttggagca tgggagggtgagggactt

endoderm sox17 atccaaccagcccactga acaccacggaggaaatgg

afp ctctggcgatgggtgttt aactggaagggtgggaca

hnf4 catcgtcaagcctccctct ccctcagcacacggtttt

foxa2 gttaaagtatgctgggagccg cgcccacataggatgacatg

cxcr4 cgggatgaaaacgtccattt atgaccaggatcaccaatcca

gata4 ggcccctcattaagcctcag caggacctgctggcgtctta

ttr ttcacagccaacgactctgg ggcaagatcctggtcctcct

mesoderm brachyury T aagaacggcaggaggatg gcgagtctgggtggatgta

fgf8 acggcaaaggcaaggact tgaagggcgggtagttga

gsc gcaccgcaccatcttca tcgcttctgtcgtctcca

ectoderm nestin ggaggatgtggtggaggat ttcccgtctgctctggtt

fgf5 ttcaagcagtccgagcaa taggcacagcagagggatg

bmp4 atctggtctccgtccctga cgctccgaatggcacta

pluripotency rex1 aaggtcatccacggcaca tgggagtcatcgcttggt

oct4 ggagaagtgggtggaggaa gctgattggcgatgtgag

sox2 ctggactgcgaactggaga ttggatgggattggtggt
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[24,25,27,28]. Curve fitting of the sample indentation depth with

the force applied was conducted for a spherical tip model using

the following equation relating the force ( f ) and the sample

indentation size (d ):

f ¼ 4

3

E
1� y2

ffiffiffiffi
R
p

d
3=2

, (2:1)

where E is Young’s modulus, R is the radius of the spherical

indenter and n is Poisson’s ratio. The sample indentation (d ) is

calculated as follows:

d ¼ (z� z0)� d, (2:2)

where z0 is the initial indentation contact point, z is the position

of the piezoelectric cantilever and d is the cantilever deflection.

Poisson’s ratio was approximated to be 0.5 for all experiments.

Curves were fitted to small indentation in comparison with the

thickness of the samples. The apparent Young’s modulus was

obtained by fitting the force–indentation curves to equations

(2.1) and (2.2) with the initial deflection point and Young’s

modulus (E) as the fitting parameters [29].

Rheological measurements are discussed in detail in

Jaramillo et al. [10]. In brief, fibrin was allowed to gel on glass

slides and submersed in differentiation medium. The slides

were then secured to the Peltier cell of a stress-controlled rhe-

ometer (TA Instruments AR2000), and the gels subjected to an

oscillatory strain, with the stress required to achieve the strain

being determined. The storage modulus was then determined

from these data.

2.3. Fibre network imaging and microstructural
characterization

To determine the microscopic structural characteristics of the

fibrin, the gels were analysed by scanning electron microscopy

(SEM). First, excess water was removed from the fabricated

fibrin gels through serial ethanol dilutions. The ethanol was

removed while preserving the fibrin structure through critical

point drying with CO2. Samples were then sputter coated with
palladium on a 108 auto sputter coater (Cressington) with sub-

sequent imaging on a Philips XL30 field emission gun SEM (FEI

Company). Three different images were taken for each fabrication

condition, selected at random points on the gel.

To characterize the SEM images, an image-based structural

analysis algorithm, which has been previously implemented

and described [22], was used. In brief, a cascade of image

processing steps, including local thresholding segmentation,

morphological processing and Delaunay triangulation, was

adopted to identify and associate an artificial struts and nodes

network to the real material fibre network. This approach has

been qualitatively and quantitatively demonstrated [22] and

adopted on a variety of engineered constructs [15,30,31]. Nine

different fibrin gel topological attributes were quantified: pore

size, fibre node density (node being determined by the intersec-

tion of two or more fibres; density being nodes per unit area),

connectivity (number of fibres per node), pore orientation, fibre

orientation, pore aspect ratio, fibre length (length between

nodes), fibre diameter and bulk porosity. The pore and fibre

orientation are reported as an index. The orientation index (OI)

provides a measure of how an angular distribution is concen-

trated around a specific direction. The fibre index is calculated as

Pn
i¼1 cos2(ui)

n
, (2:3)

where n represents the number of fibre segments and u represents

the angle between the segment and assumed alignment direction

[22]. This formulation offers a dimensionless number ranging

from 0.5 for purely isotropic structures characterized by a

random angular distribution to 1 for a set of objects oriented paral-

lel to a specific direction. Therefore, this fibre OI gives a measure of

fibre alignment in the system. For pore orientation, an ellipse was

associated with each pore, and the major axis was considered to cal-

culate a single pore angle with respect to the horizontal direction.

For those features which were not scalars (e.g. fibre diameter

output being a histogram of the diameters of all fibres in a given

image), the mean value was taken. All results reported herein are



start

regression on
gene i, condition j,
and feature space

combo m

good fit?

yes

significant
correlation

insignificant
correlation

no

no

no

yes

yes

yes
end

i = i + 1

j = j + 1

m = m + 1

i = = total no.
genes?

j = = total no.
conditions?

m = = total no. 
feature space

combos?

no

F-test
overall regression p-value £ 0.05?

Figure 1. Flow diagram of regression and screening methodology to deter-
mine significance.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140009

4
from analyses using the mean data. This image analysis was

performed on the three separate images taken.

Once the fibre network topology was quantified with the

image processing algorithm, a PCA was performed on the

data. This analysis created a new set of orthogonal variables

each being a linear combination of the microstructural features,

and allowing the elucidation of how system variance was

distributed. PCA was performed in Matlab (Mathworks).

2.4. Predictive model, regression and statistical analysis
To describe the relationship between stiffness and the response

variable (gene expression), two different approaches were used.

First, the strength of the linear relationship was quantified via

calculating the Pearson product–moment correlation coefficient.

In the second approach, a second-order polynomial was used,

modelled as

y ¼ b0 þ b1xþ b2x2, (2:4)

which was able to capture linear as well as nonlinear effects.

Equation (2.4) was used to model stiffness (x) versus gene

expression levels (y), and was therefore one-dimensional in the

feature space (k ¼ 1, where k is feature space dimensionality).

The various microstructural features were expected to exhi-

bit cooperative influence towards cell behaviour. Incorporating

these into one regression model to analyse the cooperative

influence of all parameters would introduce a large number

of variables which would not be feasible to estimate with

the limited availability of data points. We addressed this

restriction via a combinatorial approach in which two micro-

structural features were analysed per regression. This model

was therefore a two-dimensional (k ¼ 2) second-order poly-

nomial, shown in equation (2.5). In equation (2.5), y is the

gene expression and xi is the ith feature. This regression

model was analysed for each combination of features; as

there were nine features that were quantified, a total of 36

combinations were analysed:

y ¼ b1,0 þ b1,1x1 þ b1,2x2
1 þ b1,3x2 þ b1,4x2

2 þ b1,5x1x2

y ¼ b2,0 þ b2,1x1 þ b2,2x2
1 þ b2,3x3 þ b2,4x2

3 þ b2,5x1x3

..

.

y ¼ b36,0 þ b36,1x9 þ b36,2x2
9 þ b36,3x10 þ b36,4x2

10 þ b36,5x9x10:

2
66664

3
77775

(2:5)

Using the above model, regression was performed to esti-

mate the unknown coefficients (b) by fitting the model to the

experimental data (y) (Matlab, Mathworks). The experimental

inputs (stiffness or microstructural feature values) were standar-

dized by centring (by the mean) and scaling (by the s.d.). Once

the regression was performed, statistical tests were carried out

to check significance of the overall correlation ( p � 0.05, based

on the F-distribution). This analysis was done for each gene

(16) and for each condition (two- and three-dimensional),

giving a total of 64 regressions using equation (2.4) (16 genes �
2 conditions � 2 stiffness datasets; AFM and rheometry) and

1152 regressions using equation (2.5) (16 genes � 2 conditions �
36 feature space combinations). The flow diagram of this

screening method is shown in figure 1.
3. Results
3.1. Fibrin gel stiffness and mouse embryonic stem cell

differentiation
Fibrin was fabricated under 12 different conditions by vary-

ing the amounts of fibrinogen and thrombin. The stiffness

of the fibrin gels at each of the 12 fabrication conditions as
determined by AFM and rheometry is shown in figure 2.

The overall trend observed was that the stiffness increased

with increased fibrinogen and thrombin. mESCs were

cultured in the synthesized gels both on the gels (two-dimen-

sional condition) or embedded in the gels (three-dimensional

condition). After 4 days of culture, the cells were analysed for

pluripotent and germ layer gene expression. Day 4 was

chosen as an appropriate time point to harvest the cells,

because the first stage of differentiation normally involves a

4–6 day protocol [32,33]. At this point, the cells are com-

mitted to a specific germ layer, and further differentiation

to subsequent developmental stages can commence. In our

previous study, we thoroughly characterized the behaviour

of the mESC on these substrates [10]. In this study, we are

investigating specific features of the substrate which are influ-

encing differentiation. This requires a thorough, quantitative

and sensitive characterization of the differentiated cells,

which we perform by qPCR. Figure 3 presents a heat map

to compare the expression levels of representative pluripo-

tency and germ layer (endoderm, mesoderm and ectoderm)

markers at different fibrin gel fabrication conditions, for

both two- and three-dimensional cultures. For each row

(gene), the expression values are normalized by the gene’s

maximum level. The greater the dependency of gene

expression on fabrication condition, the greater the colour

variation. While it is observed that most genes are affected

to some extent by varying fibrin gel conditions, it seems as

if the endoderm gene expression levels change more strongly.

In the two-dimensional condition (figure 3a), the general

trend seems to be higher expression for ectoderm and
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pluripotency genes with conditions fabricated with more fibri-

nogen. Interestingly, this trend seems to be reversed in the

three-dimensional condition (figure 3b). From this figure, it is

difficult to discern clear trends for the endoderm and meso-

derm genes. A more analytical approach was therefore taken

to determine possible relationships between fabrication con-

ditions and gene expression. In order to quantitatively

analyse the effect of stiffness on differentiation patterning,

the strength of the linear relationship between AFM/rheome-

try measurements and gene expression was determined via

the Pearson product–moment correlation coefficient. Table 2

reports the significance values of the correlation coefficients

which represent how significant this linear correlation was.

Most genes did not show a statistically significant linear corre-

lation between substrate stiffness (either AFM or rheometry

measurements) and expression levels. Of the few significant

relationships, the majority are for pluripotency genes: OCT4
and REX. Very few of the germ layer markers showed a

strong linear correlation with substrate stiffness. In order to

examine the presence of nonlinear correlations, second-order

polynomial regression (equation (2.4)) was implemented, and

the significance values of the overall regression were deter-

mined (table 2). Still, only a few genes showed significance

with the quadratic model (those genes which showed signifi-

cance in the linear model); this alludes to the possibility that
other features of the fibrin substrates, other than stiffness,

might have a stronger influence on differentiation.
3.2. Microstructural features of fibrin gels
Fibrin substrates are highly fibrous in nature, and because the

cells are directly interacting with the substrate microstructure,

we hypothesized the fibrin microstructural features to be influ-

ential in directing cell fate. In order to analyse this further, we

first examined the network topology of the synthesized sub-

strates from SEM images. Representative SEM images of gels

fabricated at three different conditions are shown in figure

4a–c. These conditions represent a wide range of stiffness

and resulting differentiation behaviour (figure 4d,e). Even a

qualitative comparison revealed differences in the substrate

microstructure. In order to accurately determine the differences

in the microstructural topology between the fabrication con-

ditions, the fibrous gel characteristics needed to be quantified.

The above-described image processing algorithm [22] was

applied to the SEM images of all fibrin conditions (three

images per gel condition) with the output being quantification

of the fibrin topology. Figure 4f–i shows the algorithm output

of six fibrous attributes for the gel conditions shown in figure

4a–c. There are clearly significant differences in the fibrous fea-

tures between the three conditions. An interesting observation

was that the microstructural features and macroscopic proper-

ties are not necessarily linearly related. For example, the gels

fabricated under the first two conditions in figure 4 gave simi-

lar stiffness (d). However, microscopic comparison of these

two gels shows differences in pore size and fibre length

(figure 4a,b,f,h). Gene expression resulting from culture on

these two gels is also different, supporting the hypothesis

that factors other than stiffness might be more influential in

guiding differentiation. Examination of gels at a higher stiffness

(figure 4c) also showed microstructural differences from the

softer gels, but these differences vary depending on the type

of feature and fabrication condition, further demonstrating

the complexity of the system.

To quantify the entire microstructural topology, the image

processing algorithm was applied to the SEM images of all 12

gel conditions. Figure 5a displays the fibrous network, ident-

ified by the algorithm, for a representative image. The

algorithm does an excellent job identifying the individual

fibres and their connections. Two representative topological

attribute histograms generated from this identification are

shown in figure 5b,c for fibre diameter and pore area, respect-

ively. This image and quantification reveal differences in the

distribution of these two fibre network features: fibre diameter

was approximately normally distributed; pore distribution,

while dominant in a narrow range of small pores, still con-

tained numerous outliers of large area. Nine different

attributes were likewise quantified for three different images

of all the 12 gel conditions to characterize the network, as out-

lined in the Material and methods section. How these

attributes change with varying fibrin fabrication conditions is

represented in figure 5d–i, where the data represent averages

over three representative images.

These attributes were further analysed by PCA in order to

quantitatively determine the microstructural features more

sensitive to the gel fabrication conditions. This data reduction

technique, performed via singular value decomposition of

the data, leads to generation of orthogonal variables and sub-

sequent identification of those which maximize data variance
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(first principal components). The resulting biplot (figure 6)

shows the contributions of each of these features towards

the first and second principal components. By projecting

the feature vector values onto the x-axis, one can determine

the importance of the features to the first component,

which is responsible for most of the system variability. The

most influential features are the ones which show the largest

projection magnitude. Considering 0.1 as a lower threshold,

features which contribute the least to feature space variability

were identified to be pore angle OI and pore aspect ratio,

which were excluded from subsequent analyses. The more

influential features which were retained for subsequent

analysis were fibre length, fibre diameter, pore size, node

density, porosity, connectivity and fibre OI (fibre alignment).

3.3. Correlating microstructural features and
differentiation

Having identified the dominant microstructural features sensi-

tive to the gel fabrication conditions, the next task was to

analyse the gene expression data with respect to the gel
microstructure, and to determine whether specific genes were

strongly correlated with this feature space. Incorporating all

dominant microstructural features into the correlation would

require an immense dataset. To use a limited dataset, this corre-

lation was determined by performing a regression analysis for

each of the 16 genes against a two-dimensional second-order

polynomial (equation (2.5)), considering combinations of

two dominant features at a time (independent variables, x1

and x2). The analysis was repeated for both the two- and

three-dimensional culture conditions (see figure 1 for algor-

ithm). The output of each regression was a set of best-fit

polynomial coefficients and the corresponding regression sur-

face. Shown in figure 7 is an example of two significant

correlations relating FOXA2 (figure 7a) and SOX17 (figure 7b)

gene expression to fibre length and diameter. The feature

space is in its centred and scaled form, transformed as such

for the regression analysis. As shown in both surfaces, a mini-

mum seems to occur. Highest expression is achieved when

fibre length is high and diameter low, or vice versa. The

power of this analysis lies in the possibility of using the micro-

structural information to aid in the design of materials which



Table 2. p-Values for correlation coefficients and second-order polynomial regressions for the relationship of fibrin gel elasticity and gene expression. Values calculated
for both two- (2D) and three-dimensional (3D) conditions, with significance ( p � 0.05) denoted by an asterisk. Elasticity measured by both AFM and rheology.

AFM rheology

correlation coefficient second-order
regression

correlation coefficient second-order regression

gene 2D 3D 2D 3D 2D 3D 2D 3D

rex1 0.5764 0.0154* 0.5416 0.0441* 0.1789 0.0014* 0.4237 0.0009*

oct4 0.0025* 0.1859 0.013* 0.4369 0.0024* 0.0069* 0.0104* 0.004*

sox2 0.7729 0.2198 0.9585 0.4786 0.1792 0.1476 0.1633 0.1344

brach 0.3321 0.8619 0.6304 0.9858 0.3488 0.6504 0.6336 0.4936

fgf8 0.6048 0.5994 0.8363 0.6928 0.1277 0.0993 0.3332 0.196

gsc 0.3124 0.2509 0.5681 0.5108 0.3411 0.0123* 0.3902 0.0031*

sox17 0.8181 0.1321 0.9675 0.3229 0.9162 0.1 0.8771 0.1656

afp 0.8672 0.7262 0.6726 0.9156 0.3994 0.2465 0.4794 0.2559

hnf4 0.3911 0.6683 0.5988 0.7135 0.1876 0.1441 0.4382 0.2854

fgf5 0.084 0.859 0.1139 0.9826 0.0582 0.3938 0.0732 0.6853

bmp4 0.1864 0.3583 0.1239 0.5809 0.6757 0.0488* 0.8429 0.0241*

cxcr4 0.1007 0.0932 0.2799 0.241 0.0046* 0.0152* 0.0054* 0.0443*

foxa2 0.4988 0.3423 0.5617 0.6138 0.5383 0.1514 0.5406 0.221

nest 0.1452 0.8587 0.3616 0.8613 0.7292 0.9013 0.517 0.8961

ttr 0.343 0.9349 0.4852 0.5058 0.0157* 0.7881 0.0055* 0.9612

gata4 0.2656 0.6815 0.471 0.9 0.3861 0.4862 0.3054 0.4164
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guide stem cells towards desired phenotype fates. By isolating

important features of the fibrin substrate and determining

how they affect cellular behaviour during mechanical differen-

tiation induction, one can try to mimic these features and

recapitulate this substrate topology on prospective future syn-

thetic induction substrates, rather than relying on a ‘guess-

and-check’ method.

A screening procedure was next implemented to isolate the

most significant correlations and parameters. As stated in §2,

1152 regressions resulted from the nine different feature space,

two gel condition and 16 gene combinations. However, in

order to isolate the effect of important microstructural features,

only combinations of the seven influential features identified by

PCA were considered for the feature space. Therefore, for each

gene, 21 regressions per condition (two- and three-dimensional)

were analysed. Out of these regressions, significance was ana-

lysed by determining the p-value of the overall regression.

The resulting p-value for 42 regressions (21� 2 conditions) for

each gene is shown in figure 8a. In the figure, each point

represents each individual regression and the resulting signi-

ficance levels (y-axis). Those correlations which have an

overall p-value � 0.05 were considered significant. These signifi-

cant regressions are recorded in table 3 (and the electronic

supplementary material, table S1), which records the micro-

structural feature combinations which showed strong

relationships to specific genes. Figure 8b displays the number

of correlations per gene with p-value � 0.05. As shown, gene

expression levels of REX1, BRACHYURY and BMP4 do not

show any strong relationships with microstructural features.

The genes of AFP, FOXA2 and GATA4 show the strongest
relationship with microstructural features, having the highest

number of significant correlations with the features space (12,

11 and 8 significant correlations, respectively).

3.4. Germ layer specificity in response to microstructural
features

Next, we systematically investigated whether any specific

germ layers showed a stronger response to the microstructu-

ral feature space. From the screened significant correlations

(table 3 and electronic supplementary material, table S1), the

gene markers were segregated, and the results compiled,

based on germ layer (table 1). Figure 9a shows the compiled

results of the combined two- and three-dimensional conditions;

overwhelmingly, genes from the endoderm lineage showed

more significant correlations with microstructural features than

those of mesoderm, ectoderm and pluripotency. Figure 9

shows that the average number of significant regressions per

gene for endoderm is at least 2.8-fold higher than the other

markers. These data suggest that while the examined microstruc-

tural features govern differentiation to some extent for several

phenotypes, this effect is much stronger for endodermal genes.

Endoderm, being identified as the lineage which was most

significantly affected by fibrin gel microstructure, was further

analysed to determine if any specific microstructural feature(s)

were most prominent in guiding differentiation behaviour.

The regressions against endodermal gene expression which

were found to be significant were first tallied. Of these signifi-

cant correlations, the microstructural features present in the

regressed equations were analysed for frequency of occurrence.
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Various fibrin fibrous attributes for the three gels quantified by the image processing algorithm. In (d – i), x-axis labels represent fibrin gels fabricated under different
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This can be done by analysing table 3 (and the electronic sup-

plementary material, table S1) for only endoderm genes, and

determining the frequency of occurrence of each microstruc-

tural feature. These results are compiled in figure 9b. All of

the features identified by PCA occurred to some extent

in guiding endoderm differentiation, as they were all present

to some degree in the significant correlations. However,

figure 9b shows that fibre alignment (represented by the fibre

OI) was the most important, as it appeared most frequently,

greater than 50% more often than any of the other features.

4. Discussion
The most common method to drive ESC differentiation is

through chemical cues [34–36]. Recently, however, substrate

properties have been reported to modulate cellular behav-

iour, including elasticity and fibrous characteristics [6,37].

However, identification of specific physical cues in a complex

substrate which are most influential in guiding cellular be-

haviour still remains a challenge. In this report, we have

developed a systems level approach to guide this identifi-

cation and applied it to analyse the effect of fibrin substrate

microstructure on ESC differentiation without the use of

any chemical cues. The highly fibrous nature of fibrin and
the ease with which its fibrous topology can be adjusted

make it amenable to investigation of cell–substrate behaviour

[21,38]. The fibrous microstructure of fibrin consists of var-

ious attributes with which cells are likely to interact,

including fibre diameter and orientation [37,39]. Analysis of

such complex interactions and identification of dominant

attributes governing cellular behaviour require an inte-

grated experimental and mathematical approach. This was

accomplished with a systems level approach incorporating

experimental, statistical, and image processing techniques in

the analysis. Differentiation was quantified by PCR, and the

relationship between differentiation and stiffness/microstruc-

tural features determined through a combinatorial statistical

modelling approach. This combinatorial approach enabled

the utilization of the complete microstructural feature space

in the correlation analysis even with limited experimen-

tal data. Through this screening method, we were able to

elucidate the relative strength of the correlations.

Fibrin is becoming increasingly popular as cellular scaf-

folds, and is known to support cell survival, growth and

differentiation [40,41], with its biodegradable nature making

it appealing for possible transplantation applications [21,42].

Fibrin has been studied as a scaffold for mESC-derived progeni-

tor cells [43,44], and shows promise for future regenerative
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therapies, as has been shown by fibrin/mESC in vivo studies

using rats [45] and engineered therapeutic protein delivery

vehicles [46]. With more techniques being reported on the

modification and control of fibrin substrate properties [47,48],
it may be possible to tailor fibrin substrates to guide cellular be-

haviour, thereby improving its therapeutic uses. This potential

could be realized to a larger extent if more information was

available on how the substrate affects cellular behaviour.

Through the current approach, we offer a platform to advance

this understanding.

In this study, we have shown that during mESC differen-

tiation on fibrin substrates, the microstructural characteristics

of the substrate show stronger correlations with differentiation

patterning of mESC than stiffness alone. We first tested the

relationship of the latter by changing fibrinogen and thrombin

amounts to create fibrin gels of varying stiffness, each of which

being used to induce differentiation. Increasing fibrinogen and

thrombin increased the stiffness of the fibrin substrate, an effect

which corresponds to previous reports [38]. Although a trend

was qualitatively observed between fibrin stiffness and differ-

entiation (figure 3), a statistically significant correlation was not

present between these two variables ( p . 0.05) for the majority

of the genes. In addition to stiffness, microstructural features

also differed between substrate fabrication conditions (repre-

sentative images shown in figure 4); we therefore attempted

to quantify the fibrin network topology and investigate

whether certain microstructural attributes are important in

phenotype commitment. While limited research has focused

on analysing the relationship between network topology and

cellular behaviour, it is particularly important when consider-

ing the scale of the interactions: the fibre microstructural

features identified herein are on the micrometre scale. These
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features are on the same scale as cellular components, and

therefore can facilitate scaffold–cell interactions. Prior studies

have examined substrate microstructure and how microcharac-

teristics affect behaviour of cells [37,39,49]; however, these
studies have typically focused on a few isolated microcharac-

teristics. We chose to perform a more exhaustive analysis by

screening for nine different topological features, and further

expand on the research area by interrogating the effect of



Table 3. p-values for the significant ( p � 0.05) second-order polynomial
regressions relating two microstructural features to gene expression, two-
dimensional gel condition.

gene feature 1 feature 2
regression
p-value

sox2 porosity connectivity 0.0339

fgf8 porosity connectivity 0.0208

gsc fibre diameter fibre OI 0.0478

nestin porosity fibre OI 0.0449

sox17 pore size fibre OI 0.0117

sox17 node density fibre OI 0.0044

sox17 fibre diameter fibre OI 0.0059

afp pore size fibre OI 0.0303

afp node density fibre OI 0.0028

afp fibre diameter fibre OI 0.0039

afp fibre length fibre OI 0.0022

foxa2 pore size fibre length 0.012

foxa2 pore size fibre OI 0.0425

foxa2 node density fibre length 0.0476

foxa2 node density fibre OI 0.0272

foxa2 fibre diameter fibre length 0.0078

foxa2 fibre diameter fibre OI 0.0348

foxa2 porosity fibre length 0.0346

ttr pore size fibre OI 0.0041

ttr node density fibre OI 0.0216
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these features on stem cell phenotype commitment. It should

be noted that the current method is applicable to fibrous

network topology, and would not be amenable to more amor-

phous substrates, although other characterization approaches

[50,51] might be useful when identifying fibre orientation

and angle distribution in amorphous materials.

Screening for significant correlations between micro-

structural features and gene expression was performed via a

second-order polynomial regression. Developing correlations

and mathematical models between these variables, although

more complex, was advantageous over simple comparison

for numerous reasons. While comparison can give statistical

differences between conditions, mathematical correlations

can give a better understanding of how the observed variable

changes with the features space. Furthermore, optimization

can be performed on the model to yield possible optimal

responses. Ideally, this polynomial would include all features,

with reduction of terms and subsequent selection of influential

features being performed by such techniques as ridge

regression, lasso or backward stepwise selection [52]. How-

ever, because of the limited amount of data, combinations of

two features were selected at a time. It is important to note

that a proper design of experiments (e.g. central composite

design) can enable more information to be extracted from

the system via response surface methodology [53] (for an

example of the use of this technique for investigating cell–

substrate interactions, see [54]). This would entail performing

experiments at precise points in the microstructure feature

space. Because of the nature of our system, the microstructural
features could not be precisely controlled, and therefore a

design of experiments analysis was not feasible. Furthermore,

exact information on the individual parameters is difficult

to extract because of possible collinearity of the features

(figure 6). However, these restrictions do not prevent the

significance level of the overall correlation (using the second-

order polynomial model) from being obtained and from

being used to determine whether the microstructural features

are strongly correlated to gene expression.

The response between substrate characteristics and differ-

entiation was taken to be a second-order polynomial. If a

different form, for instance sigmoidal, existed between the

variables, it is possible that the current model would not

identify the correlation as significant, even if a strong

relationship was present. However, specific functional

forms of a response are usually only considered when

theory dictates that specific behaviour. When little theoretical

information is known, as is the case with the current system,

polynomial models are most often used, and are very appro-

priate to capture first-order, second-order and interaction

behaviour. It should also be noted that for those microstruc-

tural features giving a range of values per image as opposed

to a single value (e.g. fibre diameter versus bulk porosity), the

mean of this range was used in the polynomial model. If the

whole of the data were to be used (using the whole histogram

as explanatory variable values in the correlation), more soph-

isticated methods would have to be used, which is not in the

scope of this work.
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In the presented system of mESCs on fibrin gels, micro-

structural features exhibited a strong correlation with

differentiation, while that with stiffness was relatively

weak. This is in contrast to studies which have shown that

substrate stiffness influences differentiation [6,7,9,54–58].

Most of these studies, however, use synthetic polymer sub-

strates that do not exhibit a discernable microstructure.

Indeed, in a previous study, we have also shown that in the

system of mESCs on alginate gel, differentiation does seem

to be a function of the alginate stiffness [11]. However, this

polymer is much more amorphous in nature, and does not

have a fibrous microstructure. Furthermore, alginate is inert,

and does not directly interact with the cells. In contrast to

these studies, this study has used a fibrous fibrin substrate

with which the cells directly interact, and hence are likely

to be more sensitive to the microstructure.

The relationship between gene expression patterning

and microstructural features was determined to be lineage-

specific. The endoderm germ layer most strongly correlated

with fibrin microstructural topology, with the pluripotency,

mesoderm and ectoderm germ layer phenotypes being

less responsive to substrate modulation. More specifically,

the endoderm genes of AFP and FOXA2 exhibited the

most responsiveness to the fibrin microstructure, showing

significant responses to the features in both two- and three-

dimensional culture conditions. It is interesting to observe

that while the downstream endoderm genes of GATA4 and

HNF4 showed significant correlation with the fibrin topo-

logy, this is only present in the three-dimensional case and

not the two-dimensional case. Further comparison of the

different conditions shows that more significant correlations

are present in the three-dimensional condition than two-

dimensional. The fibrin gel was expected to have less

interaction with the cells under two-dimensional conditions

when compared with three-dimensional where the cells are

completely embedded in the substrate. Therefore, the topo-

logical features of the fibrin could influence cell behaviour to

a lesser extent on the two-dimensional gels, explaining the

fewer significant correlations. While the current analysis

shows that these specific genes were most strongly affected

by network topology, a more rigorous analysis is needed to

show co-regulation. This, for example, could be achieved

through biclustering, which we have previously used to deter-

mine co-regulation across fibrin conditions [59], but could

potentially be applied to microstructural features.

This work focused on comparing the effect of different

fibrin substrate cues on mESC differentiation. Because fibrin

is biodegradable, temporal changes in the substrate, in

addition to degradation products, could influence differen-

tiation. However, this study was performed for a relatively

short time period of 4 days, and while some fibrin gel degra-

dation was observed, it was not significant and only becomes

somewhat visible towards the very end of the differentiation

protocol. Furthermore, this degradation was similar in all of

the synthesis conditions, and would therefore not affect

the correlation results significantly. In addition to substrate

characteristics, the cellular niche is comprised of other factors,

including ECM [60] and varying amounts of fibrin-bound

thrombin [61,62]. While these other factors might influence

cellular behaviour to some extent, because of the strong

correlation found between microstructural features and differ-

entiation, we feel that, in the current system, this relationship is

the most influential. There are also media-related factors,
including diffusion of ligands and growth factors to the cells,

which would affect differentiation. However, because the

medium is the same between conditions, differences in these

factors would be a function of microstructure. For instance,

the diffusion of soluble factors to the cells would be a function

of fibrin porosity. Therefore, the microstructural features are

the independent variables in this system, although their

effect on the cells could be considered through modulation

of associated factors. The described screening approach and

utilization of the image processing algorithm did not require

selection of these microstructural features to analyse, but

allowed the testing of correlations involving the complete

fibrous network topology. Specific features identified to be

influencing differentiation are fibre alignment, node density,

fibre length, pore size, fibre diameter, porosity and connec-

tivity, of which fibre alignment was by far the most

influential. Interestingly, other investigators have also shown

that certain of these features affect cellular behaviour, albeit

in different systems and in different ways. Fibre alignment

has been shown to be important for Schwann cell migration

and neurite outgrowth [63]. The proliferation and morphology

of osteoprogenitor cells seem to be affected by fibre diameter,

whereas differentiation is not [39]. Fibre diameter and orien-

tation have been shown to affect fibroblast morphology, but

not proliferation [37]. Herbert et al. [49] studied the system of

dorsal root ganglia on fibrin gels, and postulated that neurite

behaviour was governed more by the fibrin density rather

than the number of fibrin bundles or bundle diameter. While

these studies showed that fibrous microcharacteristics are

important in guiding cellular behaviour, the present report is

the first systematic study to analyse the effect of fibrin fibre

network topology on mESC differentiation.

The proposed systems level analysis offers a rigorous plat-

form to identify and quantify cause–effect relationships.

However, it does not provide any mechanistic information of

the relationship. Such mechanistic studies have been reported

in other systems. Mukhatyar et al. [63] investigated the effect of

fibre alignment on Schwann cell migration and neurite out-

growth, and determined that more aligned fibres promote

fibronectin adsorption which, in turn, influences these two cellu-

lar behaviours. Dalby et al. [64] demonstrated the importance of

nano-topology on mesenchymal stem cell differentiation: sub-

strate nanoscale disorder promoted bone mineral production,

with this behaviour postulated to be governed by adhesion for-

mation. Trappmann et al. showed that, in a collagen–polymer

substrate system, polydimethylsiloxane substrate stiffness did

not affect epidermal or mesenchymal stem cell fate, whereas

the stiffness of polyacrylamide did. It was revealed that in poly-

acrylamide changes in porosity with stiffness led to changes in

collagen anchoring points, which, in turn, affected differen-

tiation [65]. In addition, specific integrins have been identified

which interact with substrate microstructure to affect cellular be-

haviour, including the a2b1 integrin during osteoblastic

differentiation on titanium substrates [66]. More studies such

as these, focusing on the mESC–fibrin system, will be needed

to extract how the aforementioned microstructural features

affect differentiation patterning.
5. Conclusion
In this study, we have developed a systems level modelling

approach to investigate the contributions of various
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microstructural cues towards the differentiation patterning of

mESCs. A fibrin substrate amenable to fibre and elasticity

manipulation was used together with an integrated exper-

imental and mathematical analysis. The combinatorial

treatment and statistical analysis of the complex feature

space allowed for investigation of the relative influence of

individual fibrous features on ESC differentiation without

the need for one-at-a-time variable perturbations or large

datasets. Interestingly, it was found that in this system of

spontaneous mESC differentiation on fibrin gel substrates,

the correlation between fibrin stiffness and gene expression

was relatively weak. On the other hand, the correlation

between gene expression patterning and microstructural

features was strong, with fibre alignment being the most

influential feature. These features preferably induced
differentiation of mESCs to endodermal lineage, with the

majority of significant correlations involving the endoderm

genes FOXA2 and AFP. This information could aid in the

design of materials with a preferred microstructure to more

effectively guide lineage-specific stem cell differentiation.

Furthermore, the generic procedure outlined herein should

be applicable to any stem cell system which is cultured on

a fibrous substrate.
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