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The evolution of complex traits requires the accumulation of multiple

mutations, which can be disadvantageous, neutral or advantageous relative

to the wild-type. We study two spatial (two-dimensional) models of fitness

valley crossing (the constant-population Moran process and the non-constant-

population contact process), varying the number of loci involved and the

degree of mixing. We find that spatial interactions accelerate the crossing of

fitness valleys in the Moran process in the context of neutral and disadvanta-

geous intermediate mutants because of the formation of mutant islands that

increase the lifespan of mutant lineages. By contrast, in the contact process,

spatial structure can accelerate or delay the emergence of the complex trait,

and there can even be an optimal degree of mixing that maximizes the rate

of evolution. For advantageous intermediate mutants, spatial interactions

always delay the evolution of complex traits, in both the Moran and contact

processes. The role of the mutant islands here is the opposite: instead of pro-

tecting, they constrict the growth of mutants. We conclude that the laws of

population growth can be crucial for the effect of spatial interactions on the

rate of evolution, and we relate the two processes explored here to different

biological situations.
1. Introduction
Complex traits can depend on the interactions between several different genetic

loci [1]. In this context, the evolution of advantageous phenotypes can require

the accumulation of several mutations within one individual. Each of these

mutations is usually assumed to be neutral or deleterious (but in general can

also be assumed to be slightly advantageous). Therefore, in order to attain the

advantageous type, evolution has to cross a fitness plateau if the partial mutants

are neutral compared with the wild-type, a fitness valley if they are deleterious

[1–3] or a ‘fitness foothill’ if the intermediate mutants are slightly advantageous.

This can apply to several biological situations, a few examples of which are as

follows. Biological activity often requires the interactions between different pro-

teins within cells, and the availability of only a subset of the components either

does not lead to a fitness advantage or results in a fitness disadvantage. Well-

known examples are signalling mechanisms that regulate cell proliferation and

differentiation [4]. Another example is the aberrant growth of cancer cells,

which can require multiple mutational hits [5], each of which can be neutral or dis-

advantageous compared with healthy cells in the tissue. The escape of pathogens

from immune responses within hosts can incur fitness costs [6,7], and an advan-

tage can only be achieved once the pathogen has escaped a number of different

immune responses that simultaneously attack the infectious agent [8]. Commu-

nities of microorganisms, such as biofilms, build support structures that can be

dependent on the interactions between different gene products [9].

Scenarios where intermediate mutants are slightly advantageous compared

with the wild-type, and the complex trait is even more advantageous (evolution-

ary foothills), are also common in nature. An interesting example is the evolution

of p53 loss, leading to accelerated and uncontrolled cell growth and the formation

of tumours [10]. While complete loss of p53 function has been mainly attributed to

an inactivation of both copies of the gene, a dominant negative effect has also been

documented, in which a single mutated copy of the gene can reduce overall p53
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function to a certain degree through disruption of p53 tetramer

formation, which is required for function [10].

The accumulation of multiple mutations within an individ-

ual required to attain a fitness advantage can be a long

process, and understanding the rate at which fitness plateaus/

valleys/foothills are crossed is important for determining

the feasibility of specific evolutionary processes within realistic

time frames. While recombination can bring together multiple

mutations within an organism [11], evolution in asexual popu-

lations strictly depends on the sequential accumulation of

mutations within a lineage. This can occur by two basic mechan-

isms [3]. (i) Sequential fixation is a series of transitions where

consecutive intermediate mutants (with 1, 2, etc., sites mutated)

become fixated in the population, until the final, advantageous

phenotype is finally generated. (ii) Stochastic tunnelling [12,13]

is the creation of an advantageous trait without a prior fixation

of intermediate mutants. In this process, intermediate mutants

exist transientlyat relatively low numbers, and the advantageous

type is created in their midst. If more than two mutations need to

be accumulated to gain a fitness advantage, then a combination

of these processes can also occur which includes fixation of

some intermediate mutants, and a tunnelling process that

skips the fixation of the rest of the mutational steps.

The rate at which the fitness valley is crossed, and thus the

time until the advantageous phenotype emerges, has been ana-

lysed mathematically for different assumptions [2,3,12–21].

The rate of tunnelling was first calculated in [12] and then in

[13]. Avery detailed theory of fitness valley crossing by asexual

populations is presented in [3]. In all these papers, the assump-

tion of mean-field or mass action was used where the spatial

locations of individuals were not taken into account. In this

paper, we ask how spatial interactions might change the

dynamics of fitness valley crossing.

The first spatial generalization of this problem was studied

theoretically in [22], where a one-dimensional spatial Moran

process was considered. It was found that the rate of tunnelling

is higher in the model with nearest-neighbour interactions,

compared with the mass-action model. Similar results were

found for two- and three-dimensional models [20,21], and the

effect of migration on these evolutionary processes was studied

in [23]. All of this work considered Moran processes, which are

birth–death processes in a constant population. In particular,

these models assume that the death of an individual is

immediately balanced by the birth of another, thus not allowing

for variation in the population size or for empty space.

In addition, these models were studied in the context of two

sites that need to be mutated in order to attain the advanta-

geous trait, and only the situation of the nearest-neighbour

interactions was considered.

This paper explores the role of spatial interactions for

the rate at which fitness valleys are crossed more generally,

comparing different population growth processes in two

dimensions. In addition to the Moran process, we also consider

a different type of model, called the contact process, where the

population size is determined by the birth and death rates and

where it is possible to have empty, unoccupied space. This

relaxes the very rigid requirement of a microscopic balance

between births and deaths in the Moran model. The Moran

process can be considered as a limiting case of the contact pro-

cess where the division rates are extremely high compared with

death rates. In this paper, we examine the dynamics for differ-

ent numbers of sites that need to be mutated to attain the

advantageous phenotype, and explore the whole range of
spatial restriction, from the nearest-neighbour model to the

mass-action (homogeneously mixing) scenario. We examine

the cases of disadvantageous, neutral and advantageous

intermediate mutations.

It turns out that the effects of spatial structure on the rate

of evolution in these models are not straightforward.

— In the Moran process, spatial interactions speed up the

evolution of the complex trait for neutral and disadvanta-

geous intermediate mutants, consistent with previous work

[20–22].

— For advantageous intermediate mutants in the Moran

process, spatial interactions slow down the evolution of

the complex trait. This is the opposite effect of space

compared with the case of neutral and disadvantageous

intermediate mutants.

— In the contact process for neutral and disadvantageous

intermediate mutants, spatial interactions can either accel-

erate or slow down the rate of evolution, depending on

the mutation rate. It is also possible to have an intermedi-

ate optimal interaction radius (between mass-action and

nearest-neighbour interactions), which minimizes the

time until the advantageous trait emerges.

— For advantageous intermediate mutants in the contact

process, spatial interactions speed up the evolution of

the complex trait, even more so than in the Moran process.

The two types of models (the Moran and the contact pro-

cesses) correspond to different biological scenarios, which

we discuss.
2. The Moran (constant population) process
We first consider the Moran process, as this allows a greater

degree of mathematical insight. We will restrict our attention

to a process in a two-dimensional square grid of size N, with

periodic boundary conditions. In this process, individuals die

at random, independently of their phenotype, and are immedi-

ately replaced by the progeny of one of the nearby individuals,

selected randomly from the square neighbourhood of a fixed

size, M. The probability to be selected for reproduction is pro-

portional to the fitness of each phenotype, and mutations

happen with a given probability for each out of m sites upon

reproduction. Back-mutations are not taken into account.

Figure 1a shows an example of a mutation diagram for m ¼ 3

sites. The population size stays constant (equal to N) after

each update, and there are no empty spots on the grid.

We investigate the role of spatial interactions by varying the

neighbourhood size where the individuals can place their off-

spring. If, for a given individual, the neighbourhood only

includes the eight surrounding spots on the square grid, this

corresponds to the nearest-neighbour situation, or a ‘radius 1

neighbourhood’. If the neighbourhood is as big as the

whole population, then this is a mass-action (homogeneously

mixing) system. An example of a neighbourhood of radius 2

is shown in figure 1b. The question we ask is how the rate of

m-hit mutant production depends on the neighbourhood size.

2.1. Spatial structure accelerates evolution
Numerical simulations of this process are presented in figure 2,

assuming that two loci need to be mutated to acquire the advan-

tageous phenotypes (m ¼ 2). There, for each neighbourhood
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Figure 1. The simulation set-up. (a) The combinatorial mutation diagram for m ¼ 3 sites. (b) The concept of neighbourhood, illustrated with the neighbourhoods
of radius 2. (c) The patch model: the population is split into n patches. At each update, an individual is removed at random from a random patch, and is replaced by
an offspring of another individual, chosen from the same patch according it its fitness.
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Figure 2. Effect of the neighbourhood radius on the time at which the m-hit mutant arises in the Moran process. (a) The average time of emergence for four
neighbourhood radii: 1, 2, 10 and 50. Averages are based on at least 105 iterations of the simulation. The chosen parameters were: grid size N ¼ 50 � 50, m ¼ 2,
intermediate mutants were neutral, u ¼ 1024. (b) Histograms showing the distribution of outcomes, corresponding to the data presented in part (a). For the sake
of simplicity, only two radii are compared: 1 and 50. (c) Same type of histogram, but with u ¼ 1025, showing a greater difference. (Online version in colour.)
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size, we ran the process at least 105 times, stopping when

the m-hit mutant was generated, and recording the waiting

times. An example of mean waiting times as a function of

the neighbourhood radius is shown in figure 2a. The exact

distribution of waiting times for different neighbourhood

sizes is shown in the form of histograms in figure 2b,c. We

can see that, even if the differences in the mean waiting times

between the homogeneously mixing and the nearest-neighbour

model are smaller than the widths of the distributions,

these distributions are clearly distinct, and the means are

significantly different (with the p-value in both the t-test and

Mann–Whitney U-test less than 10210). In fact, for the examples

presented in figure 2b,c, the sample size of only 2500 and 1000
points, respectively, consistently yields p-values smaller than

0.05 for the Mann–Whitney U-test.

We observe (figure 2a) that the waiting times increase

monotonically with the neighbourhood size. We can see

that the waiting times reach saturation and stop changing

after the neighbourhood size reaches a certain value (of the

order M � NlnN21/2 [24]), where the system is effectively

mass action. On the other hand, tight spatial interactions

(small values of M ) lead to a faster m-hit mutant produc-

tion. The results hold for both neutral and disadvantageous

intermediate mutants. An intuitive explanation for this

phenomenon that was proposed in [22] evokes the concept

of mutant islands. Under mass-action rules, all types are
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Figure 3. Spatial configuration of the Moran process for the case of (a) mass
action and (b) a neighbourhood radius of 1. In the presence of spatial struc-
ture, islands of intermediate mutants are observed. The chosen parameters
were: grid size ¼ 50, m ¼ 2, intermediate mutants were neutral, u ¼
1024. (Online version in colour.)
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mixed randomly (figure 3a). On the other hand, if reproduc-

tion is allowed only within a small neighbourhood, then

spatial structures tend to form, where the nearby individuals

are likely to have identical genotypes (figure 3b). For

example, in the case of m ¼ 2, where one-hit mutants are neu-

tral or disadvantageous, once a one-hit mutant is generated,

its clone (if it has a chance to form) will be located in the

vicinity of the original de novo mutation. It can be argued

that such localized clones are, on average, longer-lived than

spatially dispersed clones. This is because a dead mutant is

more likely to be replaced by the progeny of another

mutant than a wild-type individual, if most of its neighbours

are mutants. In turn, longer-lived clones of intermediate

mutants are more likely to produce m-hit mutants, which

speeds up the process of m-hit mutant generation.

How tight the mutant islands are depends on the neigh-

bourhood size. For very small neighbourhoods, the dynamics

are the most localized, and the islands are more pronounced

than in systems with larger neighbourhood sizes.

Note that our results do not depend on the particular grid

sizes chosen. Grid sizes that are significantly larger than those

chosen in our illustrations are computationally very costly. In

the electronic supplementary material (section 4), we show

that the same trends are observed in a 200 � 200 grid as in a

50 � 50 grid.
2.2. Dependence on parameters
The extent to which spatial structure accelerates the emergence

of the m-hit mutant depends on parameters. In particular, it

depends on the mutation rate, because this parameter influ-

ences the importance of mutant islands for the emergence of

the complex phenotype. Figure 4 shows the relative mean wait-

ing time for the homogeneously mixing system compared with

that for the nearest-neighbour system, for different mutation

rates. For each mutation rate, we calculated the mean waiting

time for the m-hit mutants in the mass-action model, and

divided it by the mean waiting time in the nearest-neighbour

setting. This ratio was plotted for several different values

of the mutation rate, u. Figure 4a,c,e corresponds to neutral

intermediate mutants, and figure 4b,d to disadvantageous

mutants. We can see a common pattern, where, for very high

mutation rates, the spatial interactions do not have much influ-

ence on the rate of m-hit mutant generation (the ratio of waiting

times is close to 1). For intermediate mutation rates, the
spatially restricted systems produce mutants significantly

faster (the ratio greater than 1). Then, for low mutation rates,

the difference between spatial and non-spatial systems either

stops changing with u (for disadvantageous intermediate

mutants) or it decreases (for neutral intermediate mutants).

As is clear from this summary, the mutation rate is a crucial

parameter that dictates the behaviour of the system. In the fol-

lowing, we describe in detail and explain the dynamics in the

different regimes, i.e. for high, intermediate and low mutation

rates. These categories are defined relative to other parameters,

as explained below. The boundaries separating the catego-

ries are calculated analytically, and these calculations are

illustrated by numerical examples.

(i) High mutation rates
For relatively large mutation rates, the difference between the

spatial and mass-action systems is very small. This is because,

for very high mutation rates, new mutants are produced very

frequently, and are accumulated mostly by de novo production

rather than by mutant reproduction (this regime corresponds

to neutral semi-deterministic tunnels of [3]). In this case, the

role of mutant islands is negligible, and the waiting time is

not changed by the neighbourhood size. Figure 5a shows a

typical time series of mutant generation for high mutation

rates. We can see that intermediate mutants are generated con-

stantly and experience a steady climb. This behaviour is similar

to the behaviour of advantageous mutants. The presence of

a one-way mutation process at a high rate effectively makes

neutral mutants behave like advantageous mutants.

This behaviour is observed if the mutation rate is significan-

tly larger than a threshold, u(1)
c : This threshold for the case of m¼

2 can be determined from the work of [3,12]: u(1)
c ¼ 1/N

for neutral intermediate mutants when j1� rj �
ffiffiffi
u
p

, and

u(1)
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2/Np
p

(1� r) for disadvantageous mutants.

To illustrate these formulae, we applied them to specific

cases. For the parameter values in figure 4, we obtain

u(1)
c � 10�2 for both neutral and disadvantageous cases with

N ¼ 10 � 10 (figure 4a,b), and it is u(1)
c ¼ 4� 10�4 and

u(1)
c ¼ 1:6� 10�3 for neutral and disadvantageous cases,

respectively, with N ¼ 50 � 50 (figure 4c,d). We can see that

the bounds obtained analytically indeed correspond to the

change in the behaviour observed numerically.

(ii) Intermediate mutation rates
As the mutation rates become smaller than u(1)

c , the accelerating

role of space in m-hit mutant generation becomes more pro-

nounced, because de novo mutant generation is less frequent

now, and the mutant island effect becomes more important.

Figure 5b,c shows typical time series in this regime, where

the m-hit mutant is formed by stochastic tunnelling, with no

intermediate mutants reaching fixation.

(iii) Low mutation rates
For even smaller values of u, there is another change in behav-

iour. This time the system behaves differently for neutral and

disadvantageous intermediate mutants. These are considered

in turn.

Neutral intermediate mutants. In the case of neutral inter-

mediate mutants, when u� u(2,neut)
c (which is defined later),

the role of space is again diminished (figure 4a,e); figure 4c
does not show this regime, because simulations for lower

mutation rates for the given parameter values are exceedingly
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Figure 4. Time to emergence of m-hit mutant in the Moran process. Compared are mass action relative to extreme spatial restriction, where the neighbourhood
radius is 1. The time to emergence for radius ¼ 1 was set to unity, and the time observed for mass action was scaled accordingly. This number is plotted against
the mutation rate, u. (a) m ¼ 2, grid size N ¼ 10 � 10, neutral intermediate mutants. (b) m ¼ 2, N ¼ 10 � 10, intermediate mutants have 10% fitness cost.
(c) m ¼ 2, N ¼ 50 � 50, neutral intermediate mutants. (d ) m ¼ 2, N ¼ 50 � 50, intermediate mutants have 10% fitness cost. (e) m ¼ 4, N ¼ 50 � 50,
neutral intermediate mutants.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140014

5

long. We can see that the difference between the spatial and

non-spatial model for very low mutation rates is smaller than

that for intermediate mutation rates. The explanation again is

given by the time series (figure 5d). For very small mutation

rates, sequential fixation takes place for one or more consecu-

tive mutants. The reason is that it is unlikely to mutate the

next locus before the preceding mutant has reached fixation.

The total waiting time now consists of two parts: the time

waiting for fixation (one or more) and the time waiting for tun-

nelling through the rest of the intermediate mutations. While

the tunnelling rate is accelerated by spatial constraints, fixation

events take somewhat longer in the nearest-neighbour model

compared with mass action, simply because the spread of

mutants happens via ‘surface growth’, where the expansion

can take place only at the outside rim of the mutant island,

compared with the bulk growth of the mass-action model.

The two effects act in the opposite ways, and we can see that

the mass-action waiting time for such small mutation rates is

not too different from that of the nearest-neighbour model.

The threshold value u(2,neut)
c is derived in the electronic

supplementary material, section 1. In the symmetric case
where all the mutation rates are the same and given by u, the

expression for u(2,neut)
c is given by u(2,neut)

c ¼ N�(2m�1=2m�1�1): In

particular, for m ¼ 2, we simply have u(2,neut)
c ¼ 1/N2: For the

parameters in figure 4, we have u(2,neut)
c ¼ 10�4 for N ¼ 10

and m ¼ 2 (figure 4a), u(2,neut)
c ¼ 1:6� 10�7 for N ¼ 50

and m ¼ 2 (figure 4c) and u(2,neut)
c ¼ 1:3� 10�4 for N ¼ 50

and m ¼ 4 (figure 4e). Again, we observe a good agreement

of the analytical expressions and the observations.

Disadvantageous intermediate mutants. In the case where

r , 1 and j1� rj �
ffiffiffi
u
p

, fixation of intermediate mutants is

very unlikely. There, the difference between spatial and

non-spatial rates of m-hit mutant production does not

decrease for small values of u, but it merely stops increasing.

In other words, starting from some threshold value, u(2,dis)
c ,

decreasing u does not lead to further growth in the ratio

of waiting times. This threshold value can be estimated if

we impose the condition that the time scale of new mutant

production (given by 1/(Nu)) is significantly larger than

a typical lifespan of a disadvantageous mutant (given

approximately by 1/(1 2 r); see [11]). We then have the

value u(2,dis)
c ¼ 1� r/N, which corresponds to values 1023
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and 4 � 1025 for N ¼ 10 � 10 and N ¼ 50 � 50 with r ¼ 0.9,

respectively; see figure 4b,d.
2.3. Summary of the mutation rate studies
As explained above, the range of mutation rates, u, splits into

three qualitatively different regions, depending on whether

spatial structures accelerate evolution. The boundaries between

these regions are defined by particularly concise expressions for

the Moran process in the case of m ¼ 2. There, the range of

mutation rates for which space accelerates evolution is given by

1

N2
� u� 1

N
for neutral mutants, j1� rj �

ffiffiffi
u
p

, (2:1)
and

1� r
N
� u� 1� rffiffiffiffi

N
p for disadv:mutants,

j1� rj �
ffiffiffi
u
p

, r , 1: (2:2)

These three regions are similar to the three regimes in [25],

where evolutionary mutant dynamics was studied in the con-

text of two mutations leading to the inactivation of tumour

suppressor genes in cancer. Small, intermediate and large

populations were identified, which were characterized by

different types of mutant dynamics. The population size was

determined relative to the fixed mutation rates, and the

bounds coincide with the ones in equation (2.1).
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Our results are a particular example of the general notion

that the evolutionary processes change qualitatively depend-

ing on the mutation rate (in relation to other parameters). For

example, in [26,27], evolutionary games were studied in finite

populations. For very small mutation rates, the dynamics can

be approximated by a Markov chain on pure states; the small-

ness of u may differ depending on the game. In particular, for

a coexistence game, where the best reply to any strategy is the

opposite strategy, the threshold value of u is very small:

u� N�1=2e�N : Interestingly, for all other games, it is suffi-

cient if the mutation satisfies u� (N ln N)�1: The right

inequality in equation (2.1) belongs to that category (but the

condition is weaker because it is a necessary condition for a

particular ‘game’).

2.4. Analogy with a patch model
In order to gain analytical insights into the spatially restricted

models, we use an auxiliary system, which can help us quan-

tify the idea of mutant island formation. From our study of

the spatially restricted Moran process, we saw that the for-

mation of clusters of intermediate mutants facilitates the

generation of m-hit mutants, because tight clusters have a

longer life expectancy than disperse sets of mutants. Let us

take the idea of mutant islands to its extreme, and assume

that the islands (of the size of the neighbourhood) cannot

be invaded by the offspring of individuals from the outside.

This brings us to the patch model, which is built by the

fragmentation of the original Moran process.

Suppose that there are n separate patches of size M ¼ N/n
(figure 1c). As before, an individual is randomly removed

(from a randomly chosen patch), and is replaced by the

offspring of an individual in the same patch. As before, repro-

duction happens proportional to the individuals’ fitness. In

the case where n ¼ 1 and M ¼ N, this model is exactly iden-

tical to the mass-action Moran process. For n . 1, the patch

model with patches of size M is used to inform us qualitat-

ively about the behaviour of the Moran process with

neighbourhood size M.

For such fragmented systems, we can calculate an

approximation to the mean time of m-hit mutant generation

in the case where m ¼ 2; see the electronic supplementary

material, section 2. For example, for neutral intermediate

mutants, an explicit formula can be obtained and involves

the hypergeometric function

kTl ¼M
Z

1

u0
þ n 2

2 F1(1, 1� n; B, A)

C

� �
, (2:3)

where m ¼ e�1=(N
ffiffiffiffi
u1
p

), and we further denoted

Z ¼ 1þ mM
ffiffiffiffiffi
u0
p

, A ¼ 1

Z�Mu1/u0
, B ¼ 2� AnZ,

C ¼ nu0Z(n� 1)þNu1:

9>=
>;
(2:4)

For neutral or disadvantageous intermediate mutants, the

following approximations can be derived:

1

kTl
� u0(r0!1

M þ mR0), R0 � r0!1
M or R0 � r0!1

M ,
u1, R0 � r0!1

M :

�
(2:5)

Here R0 is the tunnelling rate starting from the population

of wild-type individuals, r0!1
M is the fixation probability

of one-hit mutants starting from M 2 1 wild-type indivi-

duals and 1 one-hit mutant, and m ¼ exp(� (u0r
0!1)/R0).
We observe that, for both neutral and disadvantageous

cases, equation (2.1) kTl is an increasing function of the patch

size M, and equation (2.2) the dependence of kTl on M becomes

negligible for large mutation rates (u1 � 1/M): The first of

these observations corresponds to the role of patches (or

mutant islands) in the creation of m-hit mutants, which was

described above in the context of the Moran process. The

second observation helps us explain why the role of space is

negligible for high mutation rates, as described above.
3. The contact process
Next, we consider a model that is arguably more realistic than

the Moran process described above. In the Moran process, each

death is immediately followed by a reproduction event, which

makes the model analytically tractable, but imposes a very

rigid constraint on the timing of events. In what follows, we

describe a model that is more widely used in ecological and

evolutionary simulations, and which is a type of a contact

process studied in different contexts [28].

In a square two-dimensional grid of size N, nodes can be

unoccupied or occupied with cells of different types. Each

time step consists of vN elementary updates, where v is the

mean density of individuals and vN is the total number of occu-

pied sites. At each elementary update, we pick an individual at

random. With probability 0 , D , 1, this individual is

removed, and with probability L ¼ 1 2 D, it attempts repro-

duction. Reproduction proceeds as follows. A random site

in the neighbourhood of size M of this individual is picked,

and, if it is occupied, the reproduction is aborted, and the

update is complete. If the site is empty, the offspring (possibly

with a mutation) of the individual is placed at the site, which

completes the update. The Moran process, described earlier

in this paper, can be considered the limit of the contact process

where L� D (except the time steps proceed uniformly in our

version of the Moran process, and they happen with expo-

nentially distributed time steps in this limit of the contact

process). In the case where L� D, the grid is completely

filled with live cells at all times, and the dynamics are driven

by the death events, each of which is immediately followed

by a division event.

Another connection of the contact process with the Moran

process (under general values of L and D) is presented in

the electronic supplementary material, section 3, where we

show that the mass-action (M ¼ N ) version of the contact pro-

cess can be expressed as a Moran process. The spatially

restricted version of this model, however, exhibits somewhat

different properties.
3.1. The steady-state density of cells
Before we explore the question of the rate of fitness valley cross-

ing in the contact process, we need to gain an understanding of

the model’s basic properties. It turns out that the presence of

unoccupied spots in the contact process leads to the formation

of certain macroscopic structures, which in turn influence the

course of evolutionary dynamics.

Let us set the mutation rates to zero and simply observe

the spatio-temporal behaviour of individuals on the grid.

Let us suppose that L . D. In the mass-action model, the pro-

cess reaches a quasi-stationary state where the individuals are
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Figure 6. Spatial configuration of the contact process model for the case of (a) mass action and a neighbourhood radius of 1 (b). Grey depicts empty space. Wild-
types are shown in dark (red), and one-hit mutants in light (cyan) colouring. In the presence of spatial structure, islands of intermediate mutants are observed.
Individuals are not evenly distributed, but form macroscopic structures. The chosen parameters were: grid size 50 � 50, m ¼ 2, intermediate mutants were neutral,
u ¼ 1024, L/D ¼ 3. (Online version in colour.)
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distributed around the grid with the equilibrium density of

nm:a: ¼ 1�D
L

, (3:1)

(the subscript m.a. refers to ‘mass action’). That is, there are

typically N(1 2 D/L) individuals, they are distributed uni-

formly throughout the grid, with the probability of each

site to be occupied given by nm.a.. This result can be derived

very easily by assuming a uniform distribution of individuals

and equating the probability of death with the probability of

successful reproduction.

Things are significantly more complicated in a spatially

restricted model (M , N ). In this case, it is known that the

probability of reproduction L has to be greater than a

threshold value, Lc . D, for the system to reach the quasi-

steady state, but the exact value of Lc is not theoretically

known. Also, the equilibrium density has not been calculated

(apart from the limiting values as M! N [24]). In the regime

of interest, where M� N, no estimates of the equilibrium

density are available.

The complication comes from the macroscopic structures

forming in the system in the case of spatially restricted inter-

actions (figure 6). In figure 7, we show numerically obtained

steady-state numbers of individuals as a function of the

neighbourhood size, M. We can see that the resulting density

is lower than the mass-action density nm.a.. An attempt to

describe this behaviour was made by the pair approximation

method, which takes local interactions into account by con-

sidering pair correlations of neighbouring sites [29,30].

Unfortunately, this approximation crudely underestimates

the difference between the spatial behaviour and the

mass-action behaviour.

To capture the spatial effects more effectively, we studied

the numerically generated quantity (1 2 v)L/D as a function

of the neighbourhood size, M. For the mass-action system,

this quantity is simply 1. For the spatially structured

system, this quantity grows as M decreases. We note that

this quantity is very well described by a simple inverse func-

tion of M, which yielded the following empirical formula:

n(M) ¼ 1�D=L 1þ c
M

� �
: (3:2)

Here, the quantity c does not depend on M (but it appears to

depend on the parameter D/L; for example, c � 4 for D/L ¼ 1/3
and c � 4.5 for D/L ¼ 1/2). This formula is demonstrated in

figure 7, where it is plotted against simulations.

Next, we investigated the ‘local’ density of individuals, by

measuring the number of occupied spots in the neighbour-

hood of each individual, averaged over all the individuals.

This gave rise to an empirical formula for local density,

nloc(M) ¼ 1�D=L 1þ c1

M

� �a� �
, (3:3)

where c1 and a do not depend on M (with c1� 1.6 and a � 0.9

both for D/L ¼ 1/3 and D/L ¼ 1/2). This formula is also

demonstrated in figure 7, where it is plotted against simulations.

We observe the following two important trends:

(1) The density in the vicinity of an occupied spot is greater

than the mean density. The distribution of cells throughout

the grid is no longer uniform, and the probability of find-

ing an occupied site in the vicinity of a given individual is

higher than the mean density. This is a quantification of the

clustering effect, which can also be observed by simply

examining a typical spatial distribution of individuals in

a spatially structured system (figure 6b).

(2) The mean number of individuals and the mean number

of neighbours of an individual both increase with
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the neighbourhood size, M, and approach N(1 2 D/L) as

M! N (the mass-action limit). This can be viewed as a

direct consequence of macroscopic structures. For smaller

values of M, the density becomes non-uniform, with the

local density higher than the average density. This

makes individuals land on other occupied spots and

thus reduces the number of successful events per time

step. The number of successful divisions at equilibrium

must be matched by the deaths, which are proportional

to the total population. Therefore, the total population in

spatial systems must be lowered compared with the

mass-action system.

The importance of these trends for our evolutionary

question becomes clear once we realize that the equilibrium

number of individuals as well as the number of neighbours

of a given individual define the time scale of the contact

process. This is explained below, after we talk about the

empirical observations for this model.

3.2. Complex effects of spatial structure
The effect of spatial structure on the waiting time for the emer-

gence of the m-hit mutant is more complicated than that in the

Moran process model. In the current setting, spatial structure

can either accelerate or delay the generation of the m-hit

mutant, depending on parameters. In some cases, there is an

optimal neighbourhood size that maximizes the rate of emer-

gence of the m-hit mutant. That is, evolution works fastest for

intermediate-range interactions. Figure 8 presents some typical

results. In figure 8, for a given mutation rate u, we calculated

the mean waiting time for the m-hit mutant emergence for sev-

eral neighbourhood radii, and divided it by the mean waiting

time for the nearest-neighbour scenario (the radius 1 neighbour-

hood model). These relative mean waiting times were plotted as

functions of the neighbourhood radius, for different mutation

rates. In figure 8a and figure 8b, we have m ¼ 2 and the

intermediate mutants are neutral and disadvantageous, respect-

ively. In figure 8c, we have m¼ 4 with neutral intermediate

mutations. We can see that the waiting time decays monotoni-

cally with the neighbourhood radius, e.g. for u¼ 1022 in

figure 8a,b and u ¼ 1023 in figure 8a. It increases monotonically

for u ¼ 1025 in figure 8a,b and for u¼ 1024 in figure 8b,c. The

waiting time as a function of the neighbourhood radius experi-

ences an intermediate minimum for u¼ 1024 in figure 8a, for

u ¼ 1023 in figure 8b,c, and for u¼ 1022 in figure 8c.

Again, note that our results do not depend on the particular

grid sizes chosen. A grid size was chosen that was sufficiently

large to avoid likely spontaneous stochastic population extinc-

tions, yet not too large to render computer simulations too

costly. In the electronic supplementary material (section 4),

we show that the same trends are observed in a 200 � 200

grid as in a 50 � 50 grid.

To explain this complicated behaviour, we note that there are

two different mechanisms that govern the spatio-temporal

dynamics of m-hit mutant generation.

(1) The formation of mutant islands is facilitated by tight spatial

interactions (figure 6). This is exactly the same trend as

observed and explained in the context of the Moran

model and the patch model, and it results in the increase

of the tunnelling rate for the nearest-neighbour model.

(2) In contrast to the Moran model, the population develop-

ment over time in the contact process is non-uniform and
is defined by the equilibrium number of individuals. For

smaller values of M, the total number of individuals is

smaller, and thus the total number of events is also

lower. Therefore, the rate of evolution (measured, for

example, by the rate of tunnelling) for the mass-action

model is faster than for the nearest-neighbour model.

Combining the two opposite effects, we can describe the

mean time of fitness valley crossing as

kTMoranl
1

n
, (3:4)

where kTMoranl grows with M and 1/n decays with M. Under

some parameter regimes, the resulting function can be shown

to possess an intermediate minimum, which corresponds to

the evolutionary optimum for the fitness valley crossing. It

can also be a monotonically increasing or decreasing function

of M, depending on the parameters.
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3.3. Parameter dependencies
The mutation rate is an important parameter in determin-

ing the exact effect of spatial structure on the rate at which

the m-hit mutant is generated. Figure 8 shows the effect

of spatial structure on the time it takes to generate the

m-hit mutant, for different mutation rates. We observe

the following patterns:

— For large mutation rates, the crossing of the fitness valley

happens the fastest in the mass-action model, because the

tunnelling rate is largely independent of the neighbour-

hood size (as we learned in the Moran process), and the

time scale of the events, t, is faster for mass action, as

explained in the previous section.

— For intermediate mutation rates, the two trends trade off

and the mean time for fitness valley crossing experiences

a minimum for intermediate values of M.

— For small mutation rates, spatial structure decreases the

time until the m-hit mutant emerges. Evolution occurs

slowest for the mass-action scenario and fastest for the

nearest-neighbour scenario. As the mutation rate decreases

the magnitude of this effect rises.

— However, if the mutation rate is decreased below a

threshold, the m-hit mutants are not generated by tunnel-

ling anymore. Instead, sequential fixation of intermediate

mutants occurs. While the nearest-neighbour model still

allows for fastest evolution, the effect is less pronounced

in this parameter region.

The evolutionary pathways are shown as time series in

figure 5e–h, demonstrating evolution through tunnelling for

lower mutation rates, and through sequential fixation

for higher mutation rates.

The difference in the rate of evolution in the spatially

restricted and the mass-action scenarios is generally smaller

than that for the Moran process (figure 8 compared with

figure 4). The reason is that in the contact process the forces

that accelerate evolution in a spatial setting are offset by the

slower dynamics inherent in the spatial situation, where

growth involves the formation of macroscopic structures. In

general, the maximal difference between the spatial and

mass-action settings did not exceed 15–20% in our simu-

lations. Hence, the difference is less pronounced than in the

Moran process model, where a difference of up to 40–50%
was observed between nearest-neighbour and mass-action

settings for disadvantageous intermediate mutants.
4. Advantageous intermediate mutants
The analysis so far concentrated on situations where intermedi-

ate mutants are either neutral or disadvantageous, and similar

patterns were observed for the two cases. Here, we investigate

the evolutionary dynamics assuming that intermediate

mutants are advantageous compared with the wild-type, and

that the m-hit mutant is even more advantageous. Results are

qualitatively similar for the Moran process (figure 9a) and the

contact process (figure 9b). In these plots, for each mutation

rate, we calculated the mean waiting time for the m-hit mutants

in the mass-action model, and divided it by the mean waiting

time in the nearest-neighbour setting. We can see that, in sharp

contrast to the patterns seen for neutral and disadvantageous

mutants, for advantageous intermediate mutants nearest-

neighbour interactions always slow down the emergence of

the m-hit mutant (figure 9). The degree to which this happens

depends on the mutation rate, u (in relation to other system

parameters). The effect is highest for intermediate mutation

rates, and the difference is small for low and high mutation

rates. Below, we describe the observed patterns for the

Moran process, and give explanations.

4.1. High mutation rates
Advantageous intermediate mutants are selected for and

grow (almost) deterministically rather than drifting. For

very high mutation rates, the production of the intermediate

mutants by de novo mutations from wild-type also contrib-

utes to this growth, and in fact is the dominant force as

long as uN � 1 (figure 10a). As explored in the previous sec-

tions, mutant growth by production from wild-type is not

influenced by the spatial configuration, explaining the small

difference between the spatial and mass-action simulations

for high mutation rates. For the parameters in figure 9a, we

can see that the difference between the mass action and the

nearest-neighbour model is small for u� 4� 10�4.

4.2. Intermediate mutation rates
In this regime, replication rather than de novo production of

the intermediate mutants drives growth. The production of
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m-hit mutants in this regime typically happens by tunnelling

(figure 10b). As seen in figure 9, for intermediate mutation

rates, systems with spatial structure produce m-hit mutants

slower than the mass-action model. The reason for that, inter-

estingly, is the existence of mutant islands. Advantageous

intermediate mutants in the spatial systems tend to expand,

but they can do so only by growing on the outer rims

of the mutant islands (the so-called surface growth; [31]).

On the contrary, in the mass-action systems, the mutants

experience a bulk growth, leading to a faster (exponential)

expansion. The existence of mutant islands served to acceler-

ate the production of m-hit mutants for the neutral and

disadvantageous case, because of their protective role. For

advantageous intermediate mutants, these islands constrain

the growth, slowing down the evolution compared with the

mass-action system.
4.3. Low mutation rates
For very low mutation rates, fixation of the intermediate

mutant often occurs before the generation of the m-hit

mutant (figure 10c). As explored above, this reduces the

influence of the neighbourhood radius on the rate of evol-

ution, explaining the reduced difference at low mutation

rates. This happens when the characteristic fixation time,

ur0!1, becomes comparable to the tunnelling rate (which

for m ¼ 2 is given by u(1� 1/rþ (u/r(r� 1))) [32] in the

case of advantageous mutations). It is easy to show that

the effect of sequential fixation becomes dominant if

u� (r� 1)2 (which for the parameters in figure 9 gives the

estimate u� 10�4).
In the contact process (figure 9b), the same effects take

place as described above for the Moran process. The differ-

ence is that, in the contact process, there is an additional

effect whereby the dynamics in the mass-action model

always happens faster than in the spatially restricted systems.

As explained before, this happens because of the uniform dis-

tribution of individuals across the grid in the mass-action

model, which increases the probability of successful repro-

duction events. Because this effect combines in a positive

way with the effects described for the Moran process, the

overall effect in the contact process is more significant than

in the Moran process. In the contact process, we observe

that the evolution happens faster in the mass-action system

across all mutation rates, with the effect being the strongest

for the intermediate values of u.
5. Discussion
The evolution of complex phenotypes and the crossing of fit-

ness valleys are important evolutionary processes that occur

in a variety of populations and organisms [1]. Much of our

understanding of the evolutionary dynamics of complex

traits has resulted from the analysis of mathematical and

population genetic models. Many environments and popu-

lation interactions are characterized by spatial structure,

which is known to influence the outcome of population

dynamics in a variety of settings [33]. Here, we extended pre-

vious analyses which have studied the role of spatial

interactions for the rate at which complex traits evolve

[20–22]. A biologically very important message is that the
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effect of spatial structure on the rate of evolution can crucially

depend on assumed population growth laws. This is especially

true for neutral and disadvantageous intermediate mutants.

For the Moran process, spatial restriction accelerates the evol-

ution of the complex trait. For the contact process, spatial

restriction can monotonically accelerate or slow down the

rate of evolution, or an intermediate level of spatial restriction

can optimize the rate of evolution. Which result is observed

depends on parameters, most importantly the rate at which

mutations are accumulated. In contrast to neutral and inter-

mediate mutations, spatial restriction always delays the

emergence of complex traits if intermediate mutants are advan-

tageous, in both the Moran and the contact process. All these

trends are summarized in the schematic in figure 11.

In the following, we discuss how our results can provide

insights into specific biological questions.
5.1. Somatic evolution in tissue
The Moran process is thought to be a good model for the

accumulation of mutations in healthy tissue cells that can

lead to the generation of cancer [12,13,22,34–38]. Uncontrolled

cell growth and cancer development typically require the

sequential accumulation of several mutations, and intermedi-

ate genotypes can suffer a fitness cost. For example, the

inactivation of tumour suppressor genes is crucial in the devel-

opment of many cancers. Two copies of a tumour suppressor

gene need to be inactivated in order for the cell to lose the

function mediated by the gene. Inactivation of the tumour sup-

pressor gene can occur through the loss of genetic material by

various forms of deletions. If only one copy has been lost
(e.g. by a loss-of-chromosome event), other genes can also be

lost, leading to a fitness disadvantage of the cell compared

with the wild-type. When the second copy of the tumour sup-

pressor gene has been deleted, however, the cell experiences a

fitness advantage, because it can now break out of homeostatic

control. The assumptions of the Moran model correspond well

to the evolutionary dynamics that occur in healthy tissue.

Healthy tissue is tightly regulated by feedback factors, such

that the number and density of cells remains constant over

time, with all the available tissue space filled with cells [39].

Most tissue in the human body exhibits strong spatial structure.

Interestingly, our theory suggests that this can minimize the

time until a certain number of mutations have accumulated

in a cell, and this could reduce the time to cancer. At the

same time, however, extensive cell migration occurs in many

tissues, and migration has been shown to lead to similar prop-

erties as mass action [23]. In addition, it has recently been

shown that a hierarchical organization of cell lineages can sig-

nificantly reduce the rate of double-hit mutant generation [40].

Thus, it is possible that while strong spatial structure is necess-

ary for tissue function for other reasons, patterns of cell

organization and cell migration have evolved in order to coun-

ter the tumour-promoting effect of spatial structure. Our

theory adds to the understanding of the relationship between

tissue structure/architecture, rates of evolution and the risk

of cancer development.
5.2. Sedentary versus planktonic lifestyles of microbes
While the Moran process is good description of highly regu-

lated tissue growth where space is packed with cells, it is
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probably a less accurate description of many ecological sys-

tems, where not all space of a habitat is occupied by

organisms. Instead, there is likely to be a certain spatial distri-

bution of individuals, with the occurrence of empty space. This

situation probably applies to free living organisms, for example

microbial communities. This scenario is more accurately

described by the contact process. As mentioned above, the

effect of space on the rate of evolution of complex traits in a con-

tact process is different from that in the Moran process. Space

can both accelerate or slow down the rate of evolution,

or there can be an optimal degree of spatial restriction that

maximizes the rate of evolution. How fast microbial popu-

lations can adapt by crossing fitness valleys is probably an

important force that drives their evolution. An interesting ques-

tion to consider in the light of our results is the evolution of

sedentary versus planktonic life styles in microbes [41]. Seden-

tary growth is characterized by strong spatial restrictions,

whereas planktonic growth is characterized by a strong

degree of mixing. According to our analysis, sedentary

growth could be favoured if mutation rates are relatively low.

This is because, in this case, populations that show distinct

spatial structure can adapt faster through accelerated crossing

of fitness valleys than populations that mix well. If, however,

mutation rates are higher, evolution is faster under mass

action than under spatial restrictions. Therefore, for such bac-

teria, selection could favour a planktonic life style. Our model

gives rise to a hypothesis that can be tested by experiment,

although factors other than the rate of fitness valley crossing

are likely to also influence the evolutionary outcome.
5.3. Implications for biotechnological processes
Our work also has commercial applications in the field of bio-

technology. As pointed out by Frean et al. [42], evolution is

used in biotechnology in both directed and non-directed exper-

iments in order to achieve particular endpoints, for example

the generation of catalytically efficient enzymes. If the evol-

utionary processes required to achieve the desired endpoint

involve the accumulation of more than one mutation, then

our analysis provides a framework to determine optimal

spatial cell population structures that can be used to yield the

desired results fastest.
5.4. Population growth laws and experiments
As discussed above, of particular importance for the effect of

space on the rate of evolution are the laws according to

which populations grow in spatially restricted settings. It is

currently not possible to say whether the Moran and contact

processes presented here are sufficiently realistic descriptions

of spatial growth in experimental or natural populations.

Indeed, different alternatives to the contact process have been

studied, which also capture the assumption that populations

are not as tightly regulated as in the Moran process. One

alternative model is the branching process [43,44]. This process

has been extensively explored in evolutionary applications,

including mathematical oncology [45,46], and interesting

analytical results regarding mutation processes have been

obtained [47]. We chose the contact process because it allows

for an easy inclusion of different degrees of spatial structure.

In a more general setting, the notion that population

growth laws have an important effect on rates of evolution

has also been pointed out in different contexts [42,48].

These studies showed that the probability of mutant fixation

can be increased by specific spatial structures compared with

well-mixed systems. A particular example is the so-called star

graph structure, which enhances the fixation probability

of advantageous mutants, while it reduces the fixation

probability of disadvantageous mutants.

Therefore, to gain insights into the rates of evolution in the

specific populations and systems, the population growth laws

have to be determined experimentally. In order to do so, new

experiments will have to be performed, which involve the

tracking of both the number of individuals as well as the spatial

patterns that develop over time. Cell cultures or experiments

with microorganisms which can be fluorescently labelled

[31,49] would be a suitable system to examine this. Indeed, it

is likely that spatial population growth is characterized by

different laws in different settings, and that the effect on the

rate of fitness valley crossing varies across different spatial

population growth laws. This can be investigated by further

computational models, but the next step is to obtain more

experimental information about spatial population growth

laws in different organisms and different settings. Our study

provides the motivation and the guide for such future

experimental work.
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