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Gamma oscillations of the local field potential are organized by collective

dynamics of numerous neurons and have many functional roles in cognition

and/or attention. To mathematically and physiologically analyse relationships

between individual inhibitory neurons and macroscopic oscillations, we

derive a modification of the theta model, which possesses voltage-dependent

dynamics with appropriate synaptic interactions. Bifurcation analysis of the

corresponding Fokker–Planck equation (FPE) enables us to consider how

synaptic interactions organize collective oscillations. We also develop the

adjoint method (infinitesimal phase resetting curve) for simultaneous

equations consisting of ordinary differential equations representing synaptic

dynamics and a partial differential equation for determining the probability

distribution of the membrane potential. This method provides a macroscopic

phase response function (PRF), which gives insights into how it is modulated

by external perturbation or internal changes of parameters. We investigate the

effects of synaptic time constants and shunting inhibition on these gamma

oscillations. The sensitivity of rising and decaying time constants is analysed

in the oscillatory parameter regions; we find that these sensitivities are not

largely dependent on rate of synaptic coupling but, rather, on current and

noise intensity. Analyses of shunting inhibition reveal that it can affect both

promotion and elimination of gamma oscillations. When the macroscopic

oscillation is far from the bifurcation, shunting promotes the gamma oscil-

lations and the PRF becomes flatter as the reversal potential of the synapse

increases, indicating the insensitivity of gamma oscillations to perturbations.

By contrast, when the macroscopic oscillation is near the bifurcation, shunting

eliminates gamma oscillations and a stable firing state appears. More interest-

ingly, under appropriate balance of parameters, two branches of bifurcation

are found in our analysis of the FPE. In this case, shunting inhibition can

effect both promotion and elimination of the gamma oscillation depending

only on the reversal potential.
1. Introduction
It is known that various biological systems use collective rhythms that are com-

posed of noisy individual oscillations with their complex interactions [1–4].

Among them, local circuits in the cerebral cortex and hippocampus consist of

thousands of interacting excitatory and inhibitory neurons that together often

generate macroscopic oscillations called the local field potential (LFP). Many

recent experiments have shown that gamma oscillations (30–80 Hz) of the LFP

may play functional roles in cognition and/or attention [1,5–7]. Furthermore,

inhibitory neurons are known to be a key factor for gamma oscillations

[5,8–12], which emerge in the LFP even when individual neurons do not fire
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at every gamma cycle [13,14]. This phenomenon is sometimes

called sparse firing. Because of the difficulty of mathematical

treatments of this type of activity, much remains unknown

about the relationship between the physiological properties

of synaptic interactions and macroscopic gamma oscillations.

The relationship between external inputs (or changes of

internal state) and macroscopic response also remains unclear.

In the case of a limit cycle oscillator, the phase response

function (PRF), which is also called the infinitesimal phase

resetting curve [15], is a powerful tool for investigating

how such rhythms are modulated by external interactions

[16,17]. With respect to the PRF for population activity, theor-

etical studies have used the Fokker–Planck equation (FPE)

[18–20] to derive macroscopic PRFs and have shed light on

the theoretical relationships between the microscopic oscil-

lations and the macroscopic ones. Furthermore, a recent

experimental study determined the macroscopic PRF in a

local neuronal population in the CA3 region of the hippo-

campus [21]. Therefore, it is important to develop theoretical

frameworks including the derivation of the macroscopic

PRFs to achieve an in-depth understanding of the mathemat-

ical and physiological relationships between individual

neurons or synapses and macroscopic oscillations.

In this study, we focused on a neuron model, the so-called

theta model, which has the simplest form as well as equival-

ent dynamics to the conductance-based Class I neuron

models because it is mathematically the normal form of the

saddle-node infinite period [15]. We then derived a version

of the theta model that incorporates conductance-based

synapses, but remains tractable for numerical and mathemat-

ical analysis. The advantage of the theta model is that the

resulting FPE lies on a circle (periodic boundary conditions)

so that there are no discontinuities (as in leaky integrate-and-

fire (LIF) models). Furthermore, the continuous nature of the

system and its periodicity in phase space allow us to define a

related adjoint operator and thus compute macroscopic PRFs.

In addition, we can also use numerical continuation to study

bifurcations in the model. The model also retains the physio-

logical properties of conductance-based synapses so that

properties like shunting inhibition can be analysed.

Next, to obtain macroscopic PRFs for the neuronal population

model, the adjoint method was developed for simultaneous

equations composed of ordinary differential equations (ODEs)

for synaptic dynamics and a partial differential equation (PDE)

for determining the probability distribution of the membrane

dynamics. After confirming the validity of the proposed analyti-

cal frameworks, we focused on the case of an inhibitory

population and used the macroscopic PRFs and bifurcation dia-

grams to investigate how the synaptic rising time constant,

synaptic decaying time constant and shunting inhibition affected

the macroscopic gamma oscillations. We finally studied locking

to periodic stimuli.
2. Material and methods
2.1. Derivation of the modified theta model
We consider a homogeneous network of N ¼ 1000 inhibitory

neurons as described by the quadratic integrate-and-fire (QIF)

model. The QIF model is a representative model of Class I neur-

ons and is widely used for computational studies [22–24]. Here,

V(i)(t) denotes the potential of the ith neuron at time t. Then, the
dynamics of V(i)(t) are represented as

C
dV(i)(t)

dt
¼ gL

(V(i)(t)� VR)(V(i)(t)� VT)

VT � VR

� g(i)
syn(t)(V(i)(t)� Vsyn)þ I þ sj(i), (2:1)

where j represents stochastic fluctuations with kj(i)(t)l ¼ 0 and

kj(i)(t), j(j)(t0)l ¼ dijd(t� t0), s (mA
ffiffiffiffiffiffiffi
ms
p

cm�2) is the magnitude

of the fluctuation, C ¼ 1 mF cm22 is the membrane capacitance

and I (mA cm22) is a constant current. gL ¼ 0.1 mS cm22 is the

leak conductance and gsyn is the synaptic conductances. In

absence of synapses and external current, the firing threshold

is VT ¼ 255 mV. That is, when V(t) crosses the threshold, then

the voltage grows faster than exponentially and blows up to

infinity in a finite amount of time. At this point, V(t) is then

reset to 21 where it will then tend towards VR. The resting

potential VR is 262 mV. The reversal potential of inhibitory

synaptic currents is Vsyn ¼ 270 mV.

The dynamics of the GABAergic (GABAA) synaptic conduc-

tances g(i)
syn are second-order exponentials

trtd

d2g(i)
syn(t)

dt2
þ (tr þ td)

dg(i)
syn(t)
dt

þ g(i)
syn(t)

¼ �gsyn

X
k

d(t� t(k)), (2:2)

where t (k) is the firing time of the pre-synaptic cell, tr ¼ 0.5 ms is

a rise time and td ¼ 5 ms is a decay time [25]. To match the peak

conductance of GABA on interneurons to 6.2 nS, which is based

on the earlier model and experimental studies [25–27], we set

2.9 � 1024 cm2 as the area of a neuron [28] and thus obtained

the value �gsyn ¼ 0:138 mS cm�2: Under the condition that the

synaptic connections between neurons are random with a prob-

ability of psyn, it is known that the synaptic influence on each

neuron can be homogenized as an approximation [25]. Then,

the above equation reads as

trtd

d2gsyn(t)
dt2

þ (tr þ td)
dgsyn(t)

dt
þ gsyn(t)

¼ �gsyn psyn

XN

k¼1

d(t� t(k)): (2:3)

Here, we introduce u that satisfies the relation

V(i) ¼ VR þ VT

2
þ VT � VR

2
tan

u(i)

2
: (2:4)

Then, equation (2.1) reads as

C
du(i)

dt
¼�gL cos u(i) þ 2

VT � VR
(1þ cos u(i))(I þ sj (i))

þ gsyn

2Vsyn � VR � VT

VT � VR
(1þ cos u(i))� sin u (i)

� �
: (2:5)

We call this the modified theta model because it is a physiologi-

cally precise version of the theta model, which is well known as

a reduced model of Class I neurons [15]. It should be noted that

the conversion to the modified phase model is valid even under

strong noise or synaptic interactions because it is not derived

from a phase reduction, which is valid only in the case of

weak interactions [11,29,30], but rather by the transformation

of variables.
2.1.1. Fokker – Planck equation and macroscopic phase reduction
by the adjoint method

We developed an appropriate adjoint method for the population

of the neurons, each of which is described by the modified theta

model (equations (2.3) and (2.5)). First, we set the current I ¼ 2,

noise intensity s ¼ 2 and probability of connections psyn ¼ 0.2

as nominal values. Physiologically, I, s and psyn depend on the
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state of neurons and networks; therefore, they should be treated

more flexibly compared with other parameters. The FPE [31,32]

of the neurons and synaptic equation are described as

@P(u, t)
@t

¼� @

@u

(
1

C

"
�gLcosuþ c1(1þ cosu)(I � c1s

2

2C
sinu)

þ gsyn(t)[c2(1þ cosu)� sinu]

#
P(u, t)

)

þ c2
1s

2

2C2

@2

@u2
[(1þ cosu)2P(u, t)] (2:6)

and

d2gsyn

dt2
¼ c4

dgsyn

dt
þ c3gsyn þ c5A(t), (2:7)

where c1 ¼ 2/(VT 2 VR), c2 ¼ (2Vsyn 2 VR 2 VT)/(VT 2 VR),

c3 ¼ 21/trtd, c4 ¼ 2(tr þ td)/trtd, c5 ¼ �gsynnsyn/trtd, nsyn ¼

psyn � N ¼ 0.2 � 1000 ¼ 200 and A(t) is a firing probability of

neurons. Because A(t) is obtained by the flux at u ¼ p [18,33],

it satisfies A(t) ¼ gLP(p,t)/C.

By introducing G ¼ (g1, g2)T ¼ (gsyn, dgsyn/dt)T, the synaptic

dynamics can be re-written as

dG
dt
¼ 0 1

c3 c4

� �
Gþ 0

(c5gL/C)P(p, t)

� �
: (2:8)

The adjoint method is a useful analytical method for deriving

the PRF from a limit cycle oscillator [15]. Recently, it has been

extended to the FPE by Kawamura et al. [19,20]. In the case of

our population model (equations (2.6) and (2.7)), the adjoint

equation and the dual product for the adjoint method should

be derived as a combination of the conventional adjoint

method for ODE [15] and the adjoint method for PDE, which

was recently developed [19,20]. First, we introduce P0(u, t) and

G0(t) ¼ (g0(t), dg0(t)/dt)T as the limit cycle solution for P
and G. They are defined in the region of 0 � t , Tmacro, where

Tmacro is the period of the limit cycle oscillation.

In this article, t ¼ 0 is set so that P0(p, t ¼ 0) is the maximum

firing probability. P0 and G0 satisfy the relations

@P0

@t
¼� @

@u

(
1

C

h
�gLcosuþ c1(1þ cosu)(I � c1s

2

2C
sinu)

þ g0[c2(1þ cosu)� sinu]

#
P0

)
þ c2

1s
2

2C2

@2

@u2
[(1þ cosu)2P0] (2:9)

and

dG0

dt
¼ 0 1

c3 c4

� �
G0 þ

0
(c5gL/C)P0(p, t)

� �
: (2:10)

We then decompose P(u, t) and G as P(u, t) ¼ P0(u, t) þ Q(u, t)
and G ¼ G0 þ H with H ¼ (h1, h2)T, respectively. The linearized

equations for Q(u, t) and H are

@Q
@t
¼ � @

@u

(
1

C

"
�gLcosuþ c1(1þ cosu)(I � c1s

2

2C
sinu)

þ g0[c2(1þ cosu)� sinu]

#
Q

)

� @

@u

1

C
[c2(1þ cosu)� sinu]P0(t)

� �
h1

þ c2
1s

2

2C2

@2

@u2
[(1þ cosu)2Q] (2:11)

and
dH
dt
¼ 0 1

c3 c4

� �
H þ 0

(c5gL/C)Q(p, t)

� �
: (2:12)
These equations can be rewritten in matrix representation as

@

@t
Q
H

� �
¼ J Q

H

� �
¼ AQQ AQH

AHQ AHH

� �
Q
H

� �
, (2:13)

where

AQQQ ; � @

@u

(
1

C

"
�gLcosuþ c1(1þ cosu)(I � c1s

2

2C
sinu)

þ g0[c2(1þ cosu)� sinu]

#
Q

)

þ c2
1s

2

2C2

@2

@u2
[(1þ cosu)2Q], (2:14)

AQHH ; � @

@u

1

C
[c2(1þ cosu)� sinu

� �
P0(t) 0

0 0

2
4

3
5 h1

h2

� �
, (2:15)

AHQQ ; 0
(c5gL/C)Q(p, t)

� �
(2:16)

and AHHH ; 0 1
c3 c4

� �
h1

h2

� �
: (2:17)

The phase space of equation (2.13), C0, is the direct sum of two

subspaces of C1 and C2 as

C1 ¼ C([0, 2p)! R), (2:18)

C2 ¼ R2 (2:19)

and C0 ¼ C1 � C2 ¼
Q
H

� �����Q [ C1, H [ C2

� �
: (2:20)

Then, their dual spaces are defined as

C�1 ¼ C([0, 2p)! R), (2:21)

C�2 ¼ R2 (2:22)

and C�0 ¼ C�1 � C�2 ¼ Q� H�½ �jQ� [ C�1, H� [ C�2
� 	

: (2:23)

It can be analytically confirmed that Q H½ �T ¼
@P0/@t dG0/dt½ �T is a solution of equation (2.13).

From equation (2.13), the linear operator for this phase space

is given as

L Q
H

� �
;

@

@t
� J

� �
Q
H

� �
: (2:24)

By defining the dual product as

k Q� H�½ �, Q
H

� �
; tl ¼

ð2p

0

Q�(u, t)Q(u, t)duþH� �H, (2:25)

the adjoint operator L* is determined by the relation

k Q� H�½ �, L Q
H

� �
; tl ¼ kL� Q� H�½ �, Q

H

� �
; tl (2:26)

and the adjoint equation L� Q� H�½ � ¼ 0 is derived as

@Q�

@t
¼ � 1

C

"
�gLcosuþ c1(1þ cosu)(I � c1s

2

2C
sinu)

þ g0[c2(1þ cosu)� sinu]

#
@

@u
Q�(u, t)

� d(u� p)
c5gL

C
h�2 �

c2
1s

2

2C2
(1þ cosu)2 @

2

@u2
Q�(u, t) (2:27)

and

dH�

dt
¼ �H� 0 1

c3 c4

� �

þ
Ð 2p

0

@

@u

1

C
[c2(1þ cosu)� sinu]P0(t)

� �
Q�du 0

� �
:

(2:28)



V
 (

m
V

cm
–2

)

g sy
n 

(m
S

cm
–2

)
g sy

n 
(m

S
cm

–2
)

1000

no
. n

eu
ro

n

500

50

0

–50

0 100 200
time (ms) time (ms)

300 100 200 300

0

0.8

0.6

0.4

0.2

0

0.8

0.6

0.4

0.2

0

(b)

(a) (c)

(d )

Figure 1. (a) A typical example of the raster plot of the population of modified theta model. (b) Time course of membrane potential of one representative neuron
in (a), which is obtained by reversal transform of equation (2.4). Note that individual neurons do not fire in each gamma cycle observed in (a). (c) Time course of
the averaged synaptic conductance gsyn. (d ) Time course of gsyn obtained by the corresponding FPE. Note that the time course given by the neuronal model
population (c) and by FPE (d ) are in a good agreement. All simulations in this figure are executed with nominal values of parameters as C ¼ 1, gL ¼ 0.1,
VT ¼ 255, VR ¼ 2 62, Vsyn ¼ 2 70, tr ¼ 0.5, td ¼ 5, �gsyn ¼ 0:138, I ¼ 2, s ¼ 2 and psyn ¼ 0.2.
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We need the zero eigensolutions of the adjoint equation, Q�(0)

and H�(0) ¼ (h�1(0), h�2(0)) with the normalizing condition

k Q�(0) H�(0)


 �
,

@P0/@t
dG0/dt

� �
; tl ¼ v ¼ 2p

Tmacro
: (2:29)

In actual calculations, we integrate equations (2.27) and (2.28)

backwards in time from arbitrary initial conditions to obtain the

zero eigensolution (i.e. Q�(0) and H�(0)) of the adjoint equation,

because functional components other than the zero eigensolution

have positive eigenvalues; therefore, they eventually vanish (in

reverse time).1
2.1.2. Macroscopic phase response function
Here, we consider the macroscopic PRF. When the external per-

turbation is added to the equation of synapses, the macroscopic

PRF is simply provided by H�(0): On the other hand, when

the external perturbation is applied to all of the neurons, the

macroscopic PRF is obtained as

Zmacro Q ¼ 2pt
Tmacro

� 
¼
ð2p

0

u(u)P0(u, Q)
@

@u
Q�(0)(u, Q) du, (2:30)

where u(u) ¼ c1(1 þ cosu)/C is the sensitivity of a single neuron

to the phase u [20]. This equation provides unique insights into

how the external perturbations and/or changes of internal

states affect macroscopic properties of gamma oscillations and

will be discussed in following sections.
3. Results
In order to study the dynamics of large networks of neurons

with synaptic coupling, we have extended the so-called theta

model (a continuous version of the QIF) to incorporate con-

ductance-based synapses. We did this in order to explore

how aspects of synaptic coupling, for example shunting inhi-

bition, affect the ability of inhibitory networks to produce

population rhythms. The advantages of the theta model

over other simple spiking models are that the model is con-

tinuous and certain numerical computations are much
easier. For large numbers of neurons with random coupling,

we can reduce the system to a single PDE for the firing rate

and synaptic activity (see Material and methods). We can

thus turn the focus onto the dynamics of a deterministic

system for which there are many available tools.

3.1. Population dynamics of the modified theta models
The numerical computation results for the population of the

modified theta models (equations (2.3) and (2.5)) with nom-

inal values of parameters are shown in figure 1a,c, where

the macroscopic gamma oscillation can be observed. In

figure 1c, we plot the total synaptic conductance as a macro-

scopic version of the population dynamics. Figure 1b shows

an example of the membrane potential of a single neuron,

which is obtained by reversal transform of equation (2.4).

We can see that in this parameter set, there is sparse firing

in which the individual neurons do not fire at every

gamma cycle. We also confirmed that the numerical simu-

lation of the corresponding FPE (equations (2.6) and (2.7))

accurately matches the simulated population dynamics

(figure 1d ). Because our model does not incorporate the

effect of resetting and a refractory period, an equivalent rep-

resentation of this model with resetting and a refractory

period is discussed in the electronic supplementary material,

text S1 and figure S1.

3.2. Bifurcation diagrams of gamma oscillation
As we are looking only at an inhibitory network (with no

‘exotic’ currents like the calcium T-current), the network

needs tonic drive and feedback inhibition in order to produce

population rhythms. Thus, with no synaptic coupling or with

reduced drive, the network will produce asynchronous con-

stant in time dynamics. However, as the drive increases

and with sufficient negative feedback, a population rhythm

emerges through a loss of stability of the constant asynchro-

nous state via a Hopf bifurcation (HB). Thus, we wish to

study the stability of the constant asynchronous state as the
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drive and negative feedback change. The parameter regions

for macroscopic gamma oscillations can be identified by

bifurcation analyses of the discretized FPEs [31,34].1 We

chose the applied current, I, and the connection probability,

psyn, as two parameters of interest. We note that psyn essen-

tially sets the magnitude of the synaptic connections via the

quantity c5 in the FPE (equations (2.6) and (2.7)). By varying,

say, I with psyn fixed, we detect HBs. We then compute a two-

parameter curve of HBs as a function of the two parameters I
and psyn. Figure 2a,d shows the two-parameter curve for noise

amplitudes, s ¼ 1, 2. Below the curve (small inputs and

sparse connectivity), the constant asynchronous state is

stable and above it, there will be oscillations in gsyn and

thus any macroscopic measure of the behaviour. We also

see that the numerical computations of the modified theta

models (equations (2.3) and (2.5)) follow the bifurcation ana-

lyses and the numerical solutions of the FPE. The small

fluctuations in both the stable regions (figure 2b,e) and the

gamma oscillatory region (figure 2c,f ) are due to the finite-

size effect. We note that the curve of HBs is raised up in

the higher noise case which means that larger inputs and

more densely connected networks are needed for gamma

oscillations to emerge and overcome the stability of the

asynchronous state.

3.3. Macroscopic phase response function by the adjoint
method

The adjoint method provides a rigorous technique for the deter-

mination of the PRF and has been successfully applied to

individual neural oscillators. The PRF of an oscillating system
measures the shift in timing of the oscillation owing to a stimulus

delivered at a specified phase in the ongoing oscillation. The sol-

ution to the adjoint equation is proportional to the PRF when the

perturbations are small and, thus, the PRF is useful in determin-

ing, for example, how changes in the parameters affect the

frequency of an oscillatoror whether or not it will lock onto a per-

iodic stimulus. For the coupled PDE/ODE system in our

population model, obtaining the adjoint solution requires sol-

ving a certain linear PDE along with some normalization

requirements. We solve the linear PDE by backwards integration

(see Material and methods) and to check whether we have found

the correct solution, we need to look at an inner product that

involves both the solution to the adjoint and the population oscil-

lation. We confirmed the validity of the adjoint method

developed in this study by the dual product of the zero eigenso-

lution and its dual and comparison with the phase shift

occurring when a perturbation is applied. Figure 3a shows a

two-dimensional solution Q�(0) of the adjoint method, and

figure 3b shows one-dimensional solutions of H�(0): To check

the numerical computation, we checked to see whether

equations (2.25) and (2.29) were satisfied for each state on the

limit cycle orbit. Figure 3c shows that the sum of the two terms

corresponding to Q�(0) and H�(0) is, indeed, constant for all time.

Equation (2.30) provides a formula for the PRF of the net-

work when an identical current perturbation is applied to

every cell. Thus, we can compare this bulk PRF to the

phase shifts induced by a direct perturbation of the network

with a short current injection. Therefore, another confir-

mation of the adjoint method was performed by

comparison with PRFs by direct perturbation of the FPE

(equations (2.6) and (2.7)) and the results are shown in
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figure 4a. We applied a square wave (amplitude 50, duration

0.01 ms) current pulse to the whole population at different

points in the cycle and used this to compute the phase shift

and the approximate PRF. Both PRFs determined by the

adjoint method (with discretization of the PDE into 200 and

5000 bins) coincided with the results obtained by the direct

perturbation of the FPE, which again indicated the appropri-

ateness of the adjoint method. Similarly, the validity of h�2(0)

was confirmed by the perturbation (amplitude 2, duration

0.01 ms) to the left hand side of equation (2.7) (figure 4b).

One of the main purposes for computing the PRF is to

study the effects of coupling and periodic forcing of oscil-

latory systems. Coupling between inhibitory networks

could be studied using this method, but, as most coupling

between populations is mediated by excitatory outputs, we

will not pursue the coupled problem further. However, peri-

odic driving can also be analysed using the method and the

experimental driving of inhibitory populations is possible

[12]. Thus, to further test the utility of the adjoint method

as a means of studying populations, we applied a weak
sinusoidal current to the full population. We used current

I(t) in equation (2.6) as

I(t) ¼ I0 þ Iappsin(vappt), (3:1)

where I0 ¼ 2 and Iapp and vapp are the amplitude and fre-

quency of the sinusoidal oscillation, respectively. The region

of synchronization can be analytically estimated by the phase

coupling function obtained by convolving the periodic current

with the PRF [16,17]. The coupling function is defined as

G(F) ¼ 1

2p

ð2p

0

Zmacro(Q)sin(QþF) dQ, (3:2)

where Zmacro(Q) is the macroscopic PRF equation (2.30). G(F) is

shown in figure 4c. The maximum and the minimum value of

G indicate tolerance of frequency mismatches between vapp and

the natural frequency of gamma oscillation without oscillatory

inputs, vnat, for synchronization to a unit amplitude of oscil-

lation (i.e. Iapp¼ 1). That is, if the frequency difference is

greater or less than the magnitude of G, then 1 : 1 locking

is not possible.

Figure 4d shows the result of both the theory based on

equation (3.2) and direct simulation of the FPE. We plot the

difference between the network frequency and the forcing fre-

quency as a function of the difference between the natural

(with Iapp ¼ 0) and the forcing frequency. We can see that the

synchronized region by numerical computations matches the

analytical prediction, which is inside of the black thick lines.
3.4. Modulation of gamma oscillation by varying
synaptic time constants

We used the macroscopic PRF obtained by adjoint method to

predict the effect of changing the synaptic time constant on

the frequency of gamma oscillation.

We denote Rr(t) as the sensitivity of the small change in tr

to d2g/dt2. This sensitivity can be derived as the partial

differentiation of d2g0/dt2 by tr and turns out to be

Rr(t) ¼
1

t2
r

dg0

dt
þ 1

t2
rtd

g0 �
�gsyn nsyngL

t2
rtdC

P0(p, t): (3:3)

Therefore, the frequency changes of the macroscopic

oscillation are evaluated as

@v

@tr
¼ 1

Tmacro

ðTmacro

0

h�2(0)Rr(t) dt: (3:4)

Similarly, the influence of td on the period of the macroscopic

oscillations can be obtained by

@v

@td
¼ 1

Tmacro

ðTmacro

0

h�2(0)Rd(t) dt, (3:5)

with

Rd(t) ¼ 1

t2
d

dg0

dt
þ 1

trt
2
d

g0 �
�gsyn nsyngL

trt
2
dC

P0(p, t): (3:6)

Figure 5 shows the frequency of the macroscopic oscil-

lation with different values of tr and td obtained by

numerical computation of the population of the modified

theta model as well as those analytically predicted by the

phase reduction. The slopes of the straight lines were

obtained by equations (3.4) and (3.5) with the nominal

values of parameters (tr ¼ 0.5 and td ¼ 5). In both cases in

which tr and td were changed, the numerical computations
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matched the analytical predictions provided by the phase

reduction across almost the entire region. The discrepancy

at tr ¼ 0.1 could be due to the fact that tr is getting close to

zero where the model is singular. The plots nevertheless

show that the population PRF can be used to estimate the fre-

quency dependence on the characteristics of the synaptic

inhibition.

To capture the influence of changing tr and td on the

macroscopic frequency in a wide parameter range of

gamma oscillation, we evaluated Dvr and Dvd as

Dvr ¼
@v

@tr
j tr ¼ 0:5
td ¼ 5:0

and Dvd ¼
@v

@td
j tr ¼ 0:5
td ¼ 5:0

(3:7)

by the adjoint method when changing I and psyn with dif-

ferent values of s (figure 6a,b,d,e). We confirmed that the

signs of Dvr and Dvd were always negative over the

entire regions shown in figure 6. In addition, Dvr/Dvd

(figure 6c,f ) varies between 0.85 and 1.87. It was larger

than 1 over the almost the entire regions. However, it was

smaller than 1 with I ≃ 1 and s ¼ 1. In general, Dvr/Dvd

increased with increasing I and s, whereas it was less affected

by psyn.
3.5. Effect of shunting inhibition
Experimental evidence has shown that the GABA synapses

sometimes increase membrane potential for VR � Vsyn [35].

This phenomenon is called shunting inhibition, and it was

recently argued that it promotes macroscopic gamma oscil-

lation by improving its robustness [35]. Here, we test this

hypothesis using the FPE.

First, we numerically solved the FPE and evaluated the

maximum firing probability, the average firing probability

and v as in figure 7a,b in the range of 270 � Vsyn �255.

Increasing the maximum value of the firing probability

indicates that the amplitude of the gamma oscillation

increases, which means that the robustness of the gamma

oscillation is increased by shunting inhibition. The average

firing probability and v also increase as Vsyn increases.

These properties of shunting inhibition are the same as

those reported previously [35].

Next, we evaluated the PRFs with shunting inhibition as

shown in figure 7c. As Vsyn increases, the amplitudes of PRF

become smaller while maintaining the waveform, indicating

that the phase of the oscillation is stable and robust against

external interactions. (The larger is the PRF, the more sensi-

tive is the oscillator.) Therefore, the results of PRF also
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support the finding that shunting inhibition improves the

robustness of the gamma oscillations. The maximum value

of PRF almost remains constant in the first part of the shunt-

ing inhibition in the range of Vsyn ,262.5 mV and decreases

in the range of Vsyn .262.5 mV (figure 7d ), which differs

from the other indexes (maximum, average of firing
probability and v) that are monotonic over the entire range

of 270 � Vsyn �255.

We computed the bifurcation diagram for the FPE using

Vsyn as a parameter and changing the other parameters to

investigate whether the above effects of shunting inhibition

hold in general. Surprisingly, when we set psyn¼ 0.05, I ¼ 2,
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the gamma oscillation disappeared above Vsyn ≃ 2 69.0 mV

and a stable fixed firing state appeared (figure 8a–d). This

result means that increasing Vsyn can destroy the macroscopic

gamma oscillation, which is in contrast to the study by Vida

et al. [35]. More interestingly, when we increased the current

to I ¼ 3 with the same synaptic probability, there were

two branches of HB for the macroscopic oscillations: below

Vsyn ≃ 2 63.0 mV and above Vsyn ≃ 2 56.5 mV. Between

these bifurcations, there was a region that had a stable fixed

firing state (figure 8e–h), although the numerical computation

fluctuated near the gamma frequency because of the vicinity of

the bifurcation point and the finite-size effect. Therefore,

the effect of shunting inhibitions is largely altered by the bal-

ance of the inhibitory synapses psyn and current I. Finally,

the stable region and oscillatory region are shown in the

two-dimensional bifurcation diagram for I and Vsyn (figure 8i).
4. Discussion
In this study, we first derived a modified theta model that

possesses voltage-dependent dynamics and appropriate

forms and strengths of the synaptic interactions. These prop-

erties are not incorporated into the conventional theta model

which is the normal form for the saddle-node infinite cycle

bifurcation [15]. Unlike related integrate-and-fire models

with conductance-based synapses, the modified theta

model is continuous with no resetting. By letting the

number of neurons tend to infinity, we derived a hybrid

PDE/ODE for the coupled neurons and their synaptic

gates. The PDE for the population dynamics has simple
periodic boundary conditions, and because it is continuous,

requires no special methods for solving it. Furthermore, sol-

utions to the discretized PDE can be numerically continued

and bifurcations are easily detected using AUTO or other

packages. Thus, we were able to find the parameter regions

for macroscopic gamma oscillations and show that these

arise via a supercritical HB. We found that the macroscopic

oscillation tends to emerge with larger currents (I ), higher

rates of synaptic couplings ( psyn) and the weaker noise (s).

These results match the experimental findings that the

pharmacological activations of interneurons by agonist of

metabotropic glutamate receptors or kainate receptors

induce large amplitude gamma oscillations and the loss of

their interactions by GABAA receptor antagonist bicuculline

eliminates such inhibition-based gamma oscillations [8–10].

Thus, the analyses of the proposed model aid our under-

standing of the mechanism by which the inhibition-based

gamma oscillation arises.

Populations of neurons are subject to external pertur-

bations, so it is important to understand how perturbations

affect the population rhythm. For limit cycle oscillations,

the PRF describes how perturbations shift the timing of the

rhythm. In the limit of short, weak perturbations, the shift

in timing is described by the solution to the adjoint equation

for the linearization about the limit cycle. Here, we derived

the adjoint equation for the linearized Fokker–Planck and

synaptic equations along with the limit cycle orbit. Accurate

PRFs for the macroscopic oscillation are provided by sol-

utions to the adjoint equation. As the adjoint method for

solving a combined problem of ODE and PDE has not

been described, we successfully developed a method by
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introducing the appropriate dual product. The validity of the

derived PRFs was confirmed by the dual product of zero

eigensolution and its dual (figure 3c), by direct perturbation

of the FPE (figure 4a,b), by the region of synchronization to

oscillatory inputs (figure 4d ) and by the frequency shift

caused by changing the synaptic time constants (tr and td)

to the population of the modified theta model (figure 5a,b).

Although the PRF derived by the adjoint method is generally

used to evaluate the effect of external perturbations [16,17], in

our study, the macroscopic PRF was successfully applied

to evaluate not only the effects of external perturbations

but also how intrinsic parameter changes alter the
macroscopic oscillatory dynamics. Recent experiments have

used optogenetic tools to selectively drive subpopulations

of neurons with periodic stimuli [12,21,36]; the adjoint

method allows us to investigate the effects of such pertur-

bations on the macroscopic gamma oscillations analytically.

Many studies have used the LIF model [25,35,37] or other

neuronal models [26,38] to investigate the properties of popu-

lation rhythms. Their analyses have often been confined to

simulations of the population of individual neurons. This is

partly because the FPEs for their models require complex

boundary conditions, which makes mathematical and

numerical treatments somewhat limited. In particular, it is
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hard to perform numerical bifurcation analysis on these

PDEs. Although Brunel et al. derived the spike rate response

from the FPE to evaluate the properties of the population of

the LIF model [25,37], the resulting formulae are complicated

and also valid only in the linear regime. By contrast, the

population activity of the standard theta model is rather

easily numerically analysed because the corresponding FPE

can be treated with periodic boundary conditions and has

no discontinuities [18,31,39]. The physiological origin of the

gamma oscillations is not easy to discuss in the conventional

theta model because the synaptic activity comes through

additive currents rather than conductance-based synapses.

By contrast, the modified theta model and its analytical fra-

mework developed in this study provide mathematically

rigorous analyses for determining how collective dynamics

depend on physiologically relevant parameters. Some theor-

etical work has been done on this with regard to inhibitory

networks. Brunel et al. [25] showed that increases of the rise

(tr) and decay (td) times of GABA synapses decreased the fre-

quency of gamma oscillations and that the sensitivity of td

was much lower than that of tr. Maex et al. also demonstrated

a significant frequency decrease by increasing td [40]. Using

the adjoint method, we derived expressions for the sensitivity

of the frequency to the synaptic time constants (figure 6). Our

results, like those of previous authors, show that the fre-

quency decreases with the increase in both the synaptic

decay and the synaptic rise time. We also showed that the

ratio of the sensitivities to the time constants, Dvr/Dvd, is

smaller than 1; i.e. the changes in td affect the oscillatory

frequency more than tr, under the condition of weak current
(I ≃1) and noise (s ¼ 1). This result differs from that of

Brunel et al. [25], who focused on much higher frequency

(more than 100 Hz) states of gamma oscillation where the

slower scale of the decay time may not be as relevant.

In a pair of comprehensive papers, White et al. [41] and

Chow et al. [42] systematically explored the effects of synaptic

time constants on the firing period of individual neurons in

inhibitory networks. In their analyses, the sensitivity of the

firing period to the synaptic time constant is largely dependent

on I and it is larger when the applied current is smaller, which

is different from our finding that the macroscopic frequency

is more sensitive to the time constants when I is large

(figure 6a,b,d,e). Their result makes sense for individual neur-

ons since at low drives, the neuron is close to the bifurcation

from rest and, so, will be more sensitive to perturbations.

Our situation is different since there are two ‘competing’

factors. To better understand why our results are different

from the Chow et al. and White et al. work, the results of the

adjoint method were compared for a higher current I ¼ 4

and a lower one I ¼ 1.5 with fixed parameters of psyn¼ 0.2

and s ¼ 2. Figure 9a shows the PRFs (h�2(0)) and figure 9b
shows the firing probability of the periodic orbit with I ¼ 4

and I ¼ 1.5. The macroscopic PRF is smaller with larger I,
which would be related to the fact that the PRF of an individ-

ual neuron is smaller with larger I [43] (i.e. the individual

neuron is farther to its bifurcation point). On the other hand,

the large amplitude oscillation in firing probability is obtained

with I ¼ 4 (figure 9b), because it is far from the supercritical

HB point. From equations (3.4) and (3.5), the sensitivity of fre-

quency, @v/@tr and @v/@td, is obtained by averaging of the
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time course of h�2(0) � Rr and h�2(0) � Rd, respectively. Thus, we

show these time courses in figure 9c,d. Regardless of smaller

PRF of I ¼ 4, they have larger negative values, which leads to

high sensitivity. These larger values are caused because the

large amplitude oscillation in firing probability influences

these time courses through Rr in equation (3.3) and Rd in

equation (3.6). Thus, the high sensitivity is obtained even

though the macroscopic PRF is larger under the condition of

smaller I (figure 9c,d). We can also see that this feature is appar-

ent in the case of tr in figure 9c, which leads to large Dvr/Dvd.

From these sensitivity analyses, we see that the analyses

of firing probability allow for a more quantitative evaluation

of population activity, that would be difficult with only

numerical computations of the finite-size neuron network

[41,42]. The macroscopic PRF with its link to the microscopic

one (equation (2.30)) enables us to understand the compli-

cated relationships between microscopic structure and

macroscopic oscillatory dynamics, and it cannot be achieved

by the phase reduction of the simplified firing rate models of

neuronal population [21,44].

Other relatively minor (hence small) types of interactions

can also be taken into account as perturbations in this frame-

work. In the electronic supplementary material, we evaluated

the influence of a small number of gap junctions on the fre-

quency of oscillation and obtained good agreement between

theoretical prediction and numerical computations (see the

electronic supplementary material, text S2 and figure S2

for details).

Shunting inhibition has been experimentally shown to

promote macroscopic gamma oscillations [35]. Using weak

coupling analysis and in the strongly oscillatory regime (all

neurons fire on every cycle), the Gutkin group has shown

that shunting inhibition can destabilize the perfectly synchro-

nized state [11,30]. Our results show that the effects of

shunting are complicated and depend on other parameters in

the model. For example with lower bias currents, increasing

the reversal potential of the GABA synapse destroys the

gamma oscillation while at higher bias currents, there is only

a small interval of reversal potentials where the gamma oscil-

lations are destroyed. Thus, far from the bifurcation point

(high drive), shunting inhibition can enhance gamma but

near the bifurcation to gamma (low bias), the reduction

in inhibitory drive (increased GABA reversal) pushes the

population towards an asynchronous steady state. These

non-trivial properties are observed not only by the modified

theta model, but also by the conductance-based neuron

model (see the electronic supplementary material, text S3 and

figure S3 for details). Furthermore, it is also known that the

reversal potential is higher than the resting membrane poten-

tial in the immature brain [45]; the systematic analyses of our

model would be effective to understand the dynamics of the

immature brain.
In the sparse firing state, it is difficult to systematically

explore parameter space because the simulations must necess-

arily be long and involve many cells (in contrast to systems

where every neuron fires in each cycle). For this reason, popu-

lation models are a very useful tool as they result in PDEs that

are deterministic. The proposed model enables us to evaluate

the effect of synaptic interactions more rigorously than the con-

ventional theta model. We demonstrated that the precise

evaluation of synaptic interactions is important because the

time constants and reversal potential greatly altered macro-

scopic properties (stability, frequency and PRF) of gamma

oscillations as they are varied even within biologically plaus-

ible ranges. Thus, the proposed model and methods could be

a key technique for elucidation of the micro–macro relation-

ship of the gamma oscillation and its functional roles.

Although we restricted ourselves only to networks of inhibi-

tory neurons so as to limit the number of parameters studied,

the same methods could be used to analyse networks of excit-

atory and inhibitory neurons. Such extensions would be very

useful in the study of phase-locking of gamma across different

areas as we could then use the derived adjoint functions (PRFs)

to couple macroscopic population rhythms. Furthermore, we

believe that the adjoint method for simultaneous equations

composed of ODEs for interactions and a PDE for the prob-

ability distribution, that we have developed in this study, will

provide a useful starting point for an in-depth understanding

of various collective oscillations in biology that are composed

of individual noisy oscillators with complex interactions

including circadian oscillation in suprachiasmatic nucleus [2],

quorum-sensing bacteria [3] and somite segmentations in

vertebrate embryos [4].
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Endnotes
1The FPE is numerically integrated by the Crank–Nicolson method.
In the case of solving the adjoint equation, the Lax–Wendroff
scheme is further adopted in order to improve the precision of the
numerical integration. We basically divide the phase (2p, p] into
200 bins except for figure 3 and blue lines in figure 4a,b, in which
5000 bins are adopted for accurate computation. In figure 4a,b, the
results of 200 and 5000 bins are in good agreement, indicating that
200 bins are enough to calculate macroscopic phase response func-
tions. For the bifurcation analyses by XPPAUT, centred difference
for 100 bins is adopted and numerically integrated by CVODE [31].
This scheme preserves the total probability. Because of this conserva-
tion, there is always a zero eigenvalue. To eliminate this eigenvalue
and thus fix the mass, we reduce the dimension to 99 equations
and set, say, P1dx ¼ 1 2 dx

PN
j¼2 Pj. Here, dx ¼ 2p/100. With the

elimination of the zero eigenvalue, we can use AUTO to compute
steady states and their stability.
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