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A dose and time response Markov model
for the in-host dynamics of infection with
intracellular bacteria following inhalation:
with application to Francisella tularensis

R. M. Wood, J. R. Egan and I. M. Hall

Bioterrorism and Emerging Disease Analysis, Microbial Risk Assessment and Behavioural Science,
Public Health England, Porton Down SP4 0JG, UK

In a novel approach, the standard birth–death process is extended to in-

corporate a fundamental mechanism undergone by intracellular bacteria,

phagocytosis. The model accounts for stochastic interaction between bacteria

and cells of the immune system and heterogeneity in susceptibility to infection

of individual hosts within a population. Model output is the dose–response

relation and the dose-dependent distribution of time until response, where

response is the onset of symptoms. The model is thereafter parametrized

with respect to the highly virulent Schu S4 strain of Francisella tularensis, in

the first such study to consider a biologically plausible mathematical model

for early human infection with this bacterium. Results indicate a median infec-

tious dose of about 23 organisms, which is higher than previously thought,

and an average incubation period of between 3 and 7 days depending on

dose. The distribution of incubation periods is right-skewed up to about 100

organisms and symmetric for larger doses. Moreover, there are some interest-

ing parallels to the hypotheses of some of the classical dose–response models,

such as independent action (single-hit model) and individual effective dose

(probit model). The findings of this study support experimental evidence

and postulations from other investigations that response is, in fact, influenced

by both in-host and between-host variability.
1. Introduction
Following a covert release of hazardous biological material, whether naturally

occurring or terrorist-related, there will be a need by public health authorities

to characterize the extent of the hazard in order to minimize the number of casual-

ties. This is especially the case if illness is severe and prophylactic medical

countermeasures are needed to be deployed. Thus, it is critical to have an evi-

dence-based assessment of the dose and time response relationship in

individuals to understand the impact of a biological release on a population.

Mathematical models can be valuable tools in the analysis of dose and time

response relationships, because there is typically insufficient experimental evi-

dence to inform understanding across all doses of interest, potentially helping

to characterize uncertainty in experimental results. However, the reliability of any

estimation is critically dependent on the model used, and its suitability in represent-

ing the biological phenomena related to the pathogen in question. The earliest efforts

were at the beginning of the twentieth century, and concern a hypothesis that

response (i.e. illness or death) occurs in an individual only if the exposed dose is

greater than an innate tolerance level. Irwin [1] refers to the least dose required for

response as the individual effective dose. In order to appreciate the observed variability

in host response for different levels of dose, the tolerance levels of individuals are

assumed to be distributed throughout a population, typically by the lognormal

distribution [1,2] (i.e. the commonly referred to probit model of dose–response).

Other distributions can also be used—for example, the Weibull distribution [3].
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Rather than assuming that hosts react differently to infec-

tion, the single-hit model [4] assumes that individuals are

homogeneous, but the in-host biological mechanisms are sto-

chastic, and not deterministic [5], processes. The hypothesis

of the single-hit model is that bacteria act independently—

independent action—and that each of the bacteria has a

chance of alone invoking response (say phit). For a dose of

size k, the probability of response, PR, is therefore PR(k) ¼ 1 2

(1 2 phit)
k. Thus, the dose–response relation can be recast as

the exponential distribution function,

PR(k) ¼ 1� e�bk, (1:1)

with b ¼ 2log(1 2 phit) (indeed b � phit when phit is small). A

crucial difference between independent action and individual

effective dose is in the way in which the bacteria are perceived

to interact; maximum synergism between bacteria in the latter

(because the size of the dose alone dictates outcome), contrast

with none in the former (because bacteria act independently).

Time until response can be incorporated within the expo-

nential dose–response model by defining b in equation (1.1)

as a function of time and not as a constant. Functions that

have been used to this end are the distribution functions of

the exponential, Weibull, lognormal and gamma distributions

[6,7]. These distributions are commonly fitted to incubation

period data for a broad spectrum of infectious diseases, such

as AIDS [8], Creutzfeldt–Jakob disease [9], severe acute respir-

atory syndrome [10] and Legionnaires’ disease [11]. For

example, if the exponential distribution function is used, then

PR(k, t) ¼ 1� e�b(1�e�pt)k, (1:2)

where t is the time post-exposure and p is the shape parameter.

This approach has been used to model infectious diseases

caused by various intracellular bacteria (i.e. those that replicate

within cells), including Francisella tularensis. In [7], the expo-

nential dose–response relation (equation (1.1)) is fitted to

monkey tularaemia data with the aforementioned distribution

functions used for time until death. Although the authors state

that their analysis serves to model the in vivo bacterial kinetics,
there is a limited appreciation of the biological mechanisms

at play, and the distributions are selected only on their ability

to approximate the data. While the authors acknowledge the

single-hit interpretation of the exponential dose–response

relation, they do not discuss what might constitute a ‘hit’, or

the appropriateness of a hit-type model for this bacterium.

A mechanistic interpretation of the exponential dose–

response relation has been considered for anthrax. Brookmeyer

et al. model the inhalation of (toxin-producing) Bacillus anthacis
spores in humans under the assumption that the hit required to

provoke illness constitutes a spore germinating before being

cleared from the lung [6]. They therefore interpret b through

the competing risks of spore clearance (rate m) and germination

(rate l) such that b ¼ l/(l þ m). It is assumed that the

time from exposure to germination is exponentially distributed,

giving rise to a relation equivalent to equation (1.2). But before

symptoms occur, the germinated bacterium must multiply

in order to produce toxins, the time for which is (also) assu-

med to be exponentially distributed. Thus, the final relation,

PR(k, t), is given by the convolution of equation (1.2) and an

exponential distribution.

A different approach that also has an appreciation of bio-

logical mechanisms is introduced in [12]. Here, the number

of bacteria grow exponentially at a given rate, g . 0, until a

threshold, M, is reached, at which point response is said to
occur. If bacterial growth is due to bacterial division (at rate

l . 0) and death (at rate m . 0), then g ¼ l 2 m can

be interpreted as the net growth rate. This gives rise to the

birth–death process—a special case of a continuous-time

Markov chain. Here, the state of the system represents the

number of bacteria, which can be increased by one through a

birth (bacterium divides) and decreased by one through a

death (bacterium killed). There is an absorbing barrier at zero

(resolution of infection) and at the threshold, M[N (response).

The Markov chain for this process is depicted in figure 1a.

A deterministic solution of the birth–death process for

time until response is obtained by solving dB/dt ¼ gB
with B(0) ¼ k, where B(t) is the number of bacteria at time t.
This yields

gtM ¼ log (M)� log (k), (1:3)

where tM is the (dose-dependent) time until response. Equation

(1.3) is used in [13] to provide the mean to the lognormal distri-

bution the authors use to represent the incubation period of

inhalational tularaemia in humans, albeit with no biological

interpretation (note that the authors also fit the exponential

dose–response relation (equation (1.1)) in a separate approach).

A stochastic solution to the birth–death process is presented in

[14,15] (with Poisson-distributed initial dose). In both studies, it

is assumed that M .. k, and results are provided for the dose–

response relation (found to be exponential, i.e. equation (1.1))

and the dose-dependent distributions of time until response.

A stochastic solution that does not make such an asymptotic

assumption is provided in the electronic supplementary

material, A, by means of a matrix-analytic approach.

While the birth–death process provides a mechanistic model

capable of representing the stochasticity with respect to the in-

host dynamics, it fails in providing a representation of the

inherent variability relating to the heterogeneity of individuals.

Furthermore, the birth–death process may be an appropriate

model for bacteria that replicate extracellularly (such as

Streptococcus pyogenes and Escherichiacoli [16]) but it is not suitable

for intracellular bacteria that reproduce within cells (such as

Bacillus anthracis, Legionella pneumophila and Salmonella enterica).

In this study, the standard birth–death process is extended

to take account of these limitations; incorporating host hetero-

geneity as well as the fundamental mechanism undergone by

intracellular bacteria—phagocytosis. In particular, this model

is concerned with non-toxin-producing obligate intracellular

bacteria (which replicate solely within host cells) as opposed

to facultative bacteria (which also reproduce in the extracellular

environment). To illustrate the benefits of these inclusions in

approximating dose–response and time until response, the

model is applied to F. tularensis as an example.

This bacterium is selected for two reasons. First, it is of con-

cern as a potential weapon of bioterrorism [17] and is the only

non-toxin-producing obligate intracellular bacterium to appear

on the Centers for Disease Control and Prevention list of cat-

egory A bioagents [18]. Second, it has seen very little research

with regard to dose–response modelling, with a literature

search revealing only three such studies [3,7,13]. However, in

none of these studies is a mechanistically derived model pre-

sented which appreciates the biological mechanisms at play.

Furthermore, in [3], only dose–response is investigated with

no consideration of time until response, and in [7] death,

rather than illness, is considered and the model is parametrized

for monkeys and not humans. The most severe form of the

disease is pneumonic (or respiratory) tularaemia, which is
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caused by inhalation of aerosolized particles [19]. Of interest to

this study is the Schu S4 strain [20] of the highly virulent tular-
ensis subspecies [17,21]. While this intracellular organism is

considered facultative in vitro, it is thought to be obligate

in vivo [21,22].
2. Material and methods
2.1. The model
The following birth–death–survival process is assumed for a

particular threshold, M[N. First, the host inhales a quantity of

organisms all of which are transported to the extracellular

space within the lung (forthwith referred to as the lung-space).

Here, they are predated upon by cells of the immune system

that can kill the bacteria directly (by degrading the membrane)

or through a process called phagocytosis, whereby phagocytic

cells (such as macrophages, monocytes, neutrophils and dendri-

tic cells) engulf the bacteria. However, upon phagocytosis,

obligate intracellular bacteria can evade the antimicrobial

defences and reproduce within the phagocyte. Following this

intracellular proliferation, a phagocyte dies, releasing its contents

into the lung-space. Thus, three events are possible: death (killing

of bacteria) with rate m . 0, survival (phagocytosis of bacteria

not resulting in bacterial death) with rate a . 0 and birth (release

of G[N bacteria from a bacteria-containing phagocyte) with rate

l . 0. Response is said to occur when the number of extracellular

bacteria in the lung-space reaches the threshold, M. Conversely,

infection is said to have resolved when the number of extracellu-

lar bacteria and bacteria-containing phagocytes both reach zero.
This can be modelled as a continuous-time two-dimensional

Markov chain; a stochastic process, X ¼ fX(t); t � 0g, in which

the state of the system is the double X ¼ fT,Pg, where T ¼ B þ
P denotes the total number of extracellular bacteria, B[N, and

bacteria-containing phagocytes, P[N. The Markov chain for

this process is depicted in figure 1b with, as an example, G ¼ 3

bacteria released upon phagocyte death. Note that the initial

state is fk, 0g.
A deterministic solution of this process is obtained by solving

dB/dt ¼ lGP2(m þ a)B and dP/dt ¼ aB2lP with B(0) ¼ k and

P(0) ¼ 0 which yields

B(k, t; a, m, l, G) ¼ k
rþ r

((rþ l)ert þ (r� l)e�rt) (2:1)

and

P(k, t; a, m, l, G) ¼ ak
rþ r

(ert � e�rt), (2:2)

where r ¼ (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l� a� m)2 þ 4alG

q
� (aþ mþ l))=2 and r ¼ a þ

m þ l þ r. Because r . 0, the second exponential term in equation

(2.1) is always decaying. Thus, there can only be bacterial growth

when r . 0, i.e. when aG . m þ a. Given a particular threshold,

M, response occurs at time

tM(k; a, m, l, G, M) ¼ {t � 0 jB(k, t; a, m, l, G) ¼M} (2:3)

which, if the decaying term in equation (2.1) is small, has an

asymptotic solution,

tM(k; a, m, l, G, M) � log½(rþ rÞ/ðrþ l)� þ log (M)� log (k)

r
:

(2:4)



repeat for (no. runs) {

repeat until (B = P = 0 or B ≥ M) {

t = 0; B = k; P = 0

tbirth = exprnd(lP); tdeath = exprnd(mB); tsurvival = exprnd(aB)

if (tbirth < tdeath , tsurvival) {B = B + G; P = P – 1; t = t + tbirth}

if (tdeath < tbirth , tsurvival) {B = B – 1; P = P; t = t + tdeath}

if (tsurvival < tbirth , tdeath) {B = B – 1; P = P +1; t = t + tsurvival}

}

}

save [t, B, P]

Figure 2. Pseudo-code to calculate the stochastic solution of the birth –
death – survival model through the discrete-event simulation approach.

Table 1. Summary of parameter values.

parameter notation value units

birth rate l 0.0241 per hour

number of

bacteria

released

G 358 organisms

death rate m 3 per hour

survival rate a 0.0939 per hour

threshold M lognormal:

m ¼ 26.2,

s ¼ 6.05

log-hours
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Note this is of a similar structure to that of the birth–death model

(equation (1.3)).

To obtain a stochastic solution, a matrix-analytic approach

for the standard birth–death model is developed (the electronic

supplementary material, A) and extended (the electronic sup-

plementary material, B) yielding results for the probability of

response and distribution of time until response for a particular

threshold, M. In addition, a numerical solution is considered by

means of discrete-event simulation (pseudo-code in figure 2).

This approach serves to represent exactly the Markov model

described above and provides equivalent results to the analytical

approach (given, of course, a sufficient number of runs). An

advantage of this is that host heterogeneity can be conveniently

incorporated by sampling the threshold M from an appropriate

distribution at each run of the simulation (an idea mentioned,

but not adopted, in the birth–death model of [23] and in the

simple bacterial growth model of [24]). Incorporating host hetero-

geneity (individual effective dose) alongside stochasticity with

respect to bacteria–cell dynamics (individual action) has support

from the in vivo studies [25,26], from which it is claimed that

neither component of variability is alone sufficient to explain

experimental results.

2.2. Parametrization
The birth–death–survival model is now parametrized for

F. tularensis, with response characterized by the onset of symp-

toms. The derivation of estimates, summarized in table 1, is

detailed as follows.

2.2.1. Birth rate (l)
The reciprocal of the birth rate (i.e. rate of release of bacteria from

phagocyte) is the mean time until bacterial release, which is

associated with cell death [27]. In an in vitro study [28], human

macrophages are infected with Schu S4. The authors find that

at 16 h there is no evidence of cytopathogenicity and at 24 and

32 h, 8% and 25% of infected cells are unhealthy. Because cell

death is governed by non-instantaneous processes [19], defining

an actual time of death in such a study would not be possible.

Here, the mean time until phagocyte death is taken as the time

at which 50% of cells are unhealthy. However, such information

is not expressly provided in [28], and so a value is estimated by

fitting a distribution to the data that is available (by maximum

likelihood). Because the final stages of the intracellular life

cycle are poorly understood [29], the choice of distribution is

not motivated by the biological mechanisms involved, but

purely by goodness of fit. A lognormal distribution function

(with log-mean 3.72 and log-standard deviation 0.385) is found

to provide the best approximation to these data (by log-

likelihood value) when evaluated alongside a gamma, Weibull

and log–logistic distribution. With this distribution, a median

time of 41.5 h (figure 3a) is found (2.5% of cells are unhealthy
by 19.5 h and 97.5% unhealthy by 88.2 h); the reciprocal of

which is the birth rate, i.e. l ¼ 0.0241 per hour.

2.2.2 Number of bacteria released (G)
Lindemann et al. [28] measure the total number of Schu S4 bac-

teria, bt, in cultured human macrophages at predefined times,

t [ {1, 8, 16, 24, 48} hours, post-infection. As it is assumed that

each macrophage engulfs a single bacterium and that there is

no growth within the first hour (because it takes 1 h for phagoso-

mal escape [28]) then, on average, the number of bacteria per cell

is b
_

t ¼ bt/b1. A logistic function is fitted to these data in order to

capture the natural exponential growth of bacteria coupled with

the stagnating effect of depleting nutrients. If g(t) is the total bac-

teria at time t, and C is the carrying capacity of the cell then, with

the conditions g(1) ¼ 1 and lim
t!1

g(t) ¼ C,

g(t; C, v) ¼
1, 0 � t , 1
C

1þ (C� 1)e�v(t�1)
, t � 1

8<
: (2:5)

where v is the growth parameter. Formula (2.5) (with t � 1) is

fitted to the data (figure 3b) by nonlinear least squares yielding

C ¼ 384 and v ¼ 0.212. The number of bacteria released upon

cell death (at time l21) is calculated through equation (2.5) as

G ¼ g(l21) � 358 (dotted line).

Because exponential growth occurs between ts¼ 1 h and

te¼ 24 h, then using the formula g(t) ¼ g(1).2t/d, the doubling

time, d, is deduced as

d ¼ T log 2

log F
, (2:6)

where F ¼ g(te)/g(ts) is the fold increase and T ¼ te2 ts. Using

equation (2.6), the intracellular doubling time is found to be 3.50 h.

2.2.3 Survival rate (a) and death rate (m)
These parameters cannot be directly deduced from the literature

because they are dependent on a number of complex biological pro-

cesses governed by the innate [34–36] and later, adaptive immune

response [27,37–39]. Instead, they are estimated by fitting the for-

mula for extracellular bacterial load over time of the deterministic

birth–death–survival model (equation (2.1)) to in vivo data for

infection with Schu S4 [30,31] (figure 3c). In these studies, monkeys

are exposed to a high initial aerosol dose (600 000 and 3 000 000,

respectively) and are sacrificed at predetermined times of up to

72 h. In both experiments, extensive morbidity (and in one case,

mortality) is observed at 3 days, which is consistent with a short

incubation period being associated with high challenge doses in

monkeys exposed to type A F. tularensis [40]. To ensure that only

the period of time until illness is considered, the result at 72 h is

excluded for both studies. The model is fitted to the remaining
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data by nonlinear least squares (simultaneously, across both

datasets) with a logarithmic transformation on the number of extra-

cellular bacteria, such that log(B/k) ¼ u þ rtþ log(1 þ e2(rþr)tþw),

where u¼ log(r þ l) 2 log(r þ r) and w¼ log(r 2 l) 2 log(r þ l).

The corresponding estimators of survival rate and death rate are

a¼ 0.0939 per hour and m ¼ 3 per hour, respectively. Note that

the effective doubling time of the number of extracellular bacteria

in the lung for the exponential growth phase is calculated as 3.47 h

(cf. intracellular doubling time).
2.2.4. Threshold (M )
The final step in the parametrization of the model is the determina-

tion of an appropriate distribution for the number of extracellular

bacteria within the lung-space required for illness. Because this

could not be expressly inferred from the literature, it is deduced

by fitting a number of distributions to estimations of the extracellu-

lar bacterial load at the time of illness onset. These are obtained by

using the deterministic solution of the birth–death–survival model

for extracellular bacteria over time (equation (2.1)) with data from

studies in which humans are exposed to aerosolized Schu S4, and

inhaled dose and incubation period are explicitly recorded. To

this end, the datasets of [32,33] are used, which each contain 16

subjects. The lognormal distribution (m̂ ¼ 26:2, ŝ ¼ 6:05 log-

hours) is found to provide the best fit to these data (figure 3d) by

maximum likelihood.
3. Results
The results are produced using the discrete-event simulation

approach outlined in Material and methods. While an analyti-

cal solution has been formulated (see electronic supplementary

material B), it is not used due to computational feasibility

issues associated with the substantial threshold found for

F. tularensis. The programming language R has been used in

the computation of these results.
3.1. Dose – response
A median infectious dose of 22–23 organisms is deduced from

the dose–response relation (figure 4 blue curve). This result is

verified from the matrix-analytic approach (the electronic sup-

plementary material, B), with M set equal to 500 (a value large

enough such that response is inevitable if reached—i.e. a ‘point

of no return’—see later). In order to assess the validity of the

model, results are also plotted from a number of experimental

studies involving human infection with aerosolized Schu S4

[32,33,41–44] (in [42], the inoculum is aged prior to delivery).

Note that none of these data has been used within the para-

metrization of the model. Also included are a number of

dose–response relations that have been produced in other
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Figure 5. Time until response of the deterministic solution of the model (red
line), the stochastic solution of the model (blue lines), the stochastic solution
of the model with fixed threshold (green lines), and another obtained in the
literature [13] for comparison. Data from a number of relevant studies
[32,33,41 – 44] are also plotted (superscript numbers on points indicate
number of subjects if greater than one). Light grey boxes represent a
range for studies in which an explicit result is not provided.
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studies (the dose–response relation derived in [7] is not

included, because it considers the infection of monkeys and

not humans).

Interestingly, the solution is well approximated by an

exponential distribution (visually indistinguishable from the

blue line in figure 4; not shown), indicating that the birth–

death–survival model for F. tularensis may be interpreted as

a single-hit-type model. To explore this further, consider the

time immediately after exposure. Here, there are no bacteria-

containing phagocytes and two events can occur: death

(killing of bacteria), with probability pd ¼ m/(m þ a) ¼ 0.97,

or survival (phagocytosis of bacteria not resulting in bacterial

death), with probability ps¼ a/(m þ a) ¼ 0.03. If just one bac-

terium survives phagocytosis and proliferates then ultimately

358 bacteria are released back into the lung-space. To resolve

infection, then all of these bacteria must be killed and this

occurs with probability p358
d � 10�5 (as events are indepen-

dent). Hence, the survival of just one bacterium is

effectively sufficient to cause illness. This can be modelled

by a binomial distribution (§1) which gives rise to the expo-

nential distribution function (equation (1.1) with b � ps).

Therefore, the birth–death–survival model for F. tularensis
can be interpreted as a single-hit-type model whereby

a ‘hit’ is defined as the failed phagocytosis of a single

bacterium. Note that if the threshold is fixed, say at the

median Mmed ¼ 2.4 � 1011, then an equivalent dose–response

relation is produced (because the probability of resolution is

negligible for just 358 extracellular bacteria).
3.2. Time until response
The mean and median incubation period (i.e. time until illness)

are plotted in figure 5 in addition to the 95% quantiles. For a

coarse verification of these results, the deterministic solution,

equation (2.3) with M ¼Mmed, is also included. As further

verification, the median number of bacteria-containing phago-

cytes at the time of illness for the simulation results is assessed

and found to be within an order of magnitude of the determinis-

tic solution (equation (2.3) into equation (2.2)) at all doses. For
comparison, data from a number of relevant studies involving

human infection with aerosolized Schu S4 [32,33,41–44] are

included within figure 5. Also included is the log-linear relation

(equation (1.3)) obtained in [13] by fitting specifically to the data

of [32,33]. This is equivalent to fitting the birth–death–survival

deterministic solution (equation (2.3)) to these data (rather than

using the parametrized solution), because when the decaying

term in equation (2.1) is small the approximation given by

equation (2.4) is also log-linear.

Results for the birth–death–survival model with a fixed

threshold (set at the median, Mmed¼ 2.4�1011) have also

been deduced. The 95% quantiles (plotted) indicate a signifi-

cant difference in dispersion, particularly at doses larger than

100 organisms. Note that the averages (mean and median)

of this model are approximately similar to that with a

distributed threshold (not shown).

It would appear that the distribution of incubation period

(for the model with a distributed threshold) varies significantly

with dose. To gain a better understanding of this relationship,

the mean, standard deviation, skewness and kurtosis are

plotted in figure 6a. It would appear that the values of these

measures follow a trend for doses fewer than 100 (decreasing

mean, standard deviation; increasing skewness, kurtosis),

between 100 and 300 (all measures decreasing), and greater

than 300 (decreasing mean; other measures constant). Clearly,

the incubation period is normally distributed for the latter

range (skewness of zero and kurtosis of three) with a mean

approximated by the deterministic solution (equation (2.4),

i.e. tM¼ 5.44 2 0.189 log(k)) and a standard deviation of 1.15.

In order to assess the appropriateness of some common

distributions (required by many applications, e.g. outbreak

back-calculation tools [11,45–47]) in representing the mechan-

istically derived distribution at doses below 300 organisms, the

relationship between skewness (squared) and kurtosis is com-

pared between these distributions and the model results

(figure 6b). The potential significance of these comparisons

and of the other results presented in this section are considered

in more detail in Discussion.
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4. Discussion
4.1. The model
While the birth–death model is, in itself, inappropriate for

representing intracellular bacteria (§1), it has provided a useful

foundation for the birth–death–survival model considered

here. In the 1960s, there was considerable academic interest in

the mathematics of the simple birth–death model, involving sto-

chastic differential equations [14,15] and generating functions

[48]. However, very few experimental studies have actually

made use of these results, despite a thorough account [23] cred-

iting their ability in representing data for a variety of diseases.

That paper [23] and methods therein are however not without

their critics. It is claimed [5] that while the overall picture provided
by the basic birth–death model corresponds remarkably well to what is
found in practice, the underlying interpretations are flawed and

there is no experimental evidence to suggest any form of stochas-

tic mechanism in the infection dynamics. However, this is later

refuted in an in vivo study [40] (in which monkeys are exposed

to aerosolized type A F. tularensis), whose conclusions state

that organisms act independently of each other and that clinical and
anatomic manifestations of the infection occur when the bacterial
burden attains a given level.

A number of potential limitations of the birth–death–

survival model are now discussed. The underlying Markov

structure of the model restricts the choice of statistical distribu-

tion in representing the occurrence of the three events—birth,

death and survival—to those for which the Markov property

holds. The simplest choice is the exponential distribution (in

which events occur at random). Because of the memoryless

property of this distribution, the length of time from bacterial

uptake until phagocytic death is unknown, and so it is not poss-

ible to deduce the number of bacteria released on death (through

equation (2.5)). Instead, an average number is used for all such

instances—corresponding to the average time until phagocytic

death (§2.2.1). But by removing this legitimate source of variabil-

ity, this falsely increases the certainty of any model results. In

fact, this relates to another issue—the suitability of the exponen-

tial distribution in the first place. For death and survival, this

choice is justified, because the movement of bacteria [49] and

phagocytes [50] has similar properties to that of a random

walk. However, for the time from bacterial uptake to cell

death and the associated release of bacteria (birth), a simple in-

cell mechanistic model (based on a pure birth process with
saturation of available nutrients) suggests that the variance is

being overestimated by the exponential distribution. In other

areas, however, the variability may well be underestimated,

because the model fails to account for variability in other sources

that can affect dispersion, such as bacterial age [42], diameter

[7,51], agglutination, number retained and deposition site [23].

Another potential limitation is in the assumption that the

rates of birth, death and survival are constant and independent

of time. While the magnitude of these rates changes as the

adaptive immune response becomes more involved (§2.2.3),

the timing and extent to which this occurs are not known

(owing to a lack of understanding and data regarding this tran-

sition). Instead, it is assumed that the length of time from

exposure until response is insufficient for any discernible

effect of the adaptive response to become apparent. However,

if the adaptive response does come into effect before the time of

illness, then this would, at first, reduce the growth rate of extra-

cellular bacteria; decreasing the probability of response and

increasing the incubation period of those that do respond

(this is more likely to affect those with lower dose). If the

effect of the adaptive immune response on the event rates

could be quantified, then the discrete-event simulation

approach used in this study could be modified with ease.

Third, the model assumes the single infection of cells—that

is, a phagocyte may engulf only one bacterium—the validity of

which is unknown. In the review of the literature for F. tularensis,
no information could be found regarding the number of bacteria

that can be simultaneously phagocytosed by any one cell in vivo
(although it is thought that uptake is low in vitro [28,52]). Finally,

it is assumed that there is an unlimited supply of phagocytes.

This assumption is made, because the mechanisms that

govern the number of viable phagocytes within the lung-

space are complex and potentially unknown and, in any case,

there are insufficient data to provide a parametrization.
4.2. Parametrization
As with many virulent organisms for which human trials are

few and far between, there exist few relevant data, which

makes parametrization a particularly onerous task. Here, the

parameters are estimated in four stages (§2.2), starting with

the birth rate. The reciprocal of this is estimated through the

median time until cell death—found to be 41.2 h. The magni-

tude of this duration is supported by the only other similar
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in vitro study that could be found [53], in which at 24 h 100% of

cells are still healthy (cf. 92% in [28]). Pooling data from other,

related studies is not undertaken, because the timing of cell

degradation is dependent on a number of factors, such as the

strain [28,34], host species [53] and route of infection [19].

There is also a dependence on the type of phagocytic cell

infected [22,27], which could affect model accuracy. This is

because the parametrization of l and G is based on an in vitro
study [28] that only considers the macrophage, whereas

in vivo, a number of cell types could be involved—although,

the principal target of F. tularensis is indeed the macrophage [27].

The number of bacteria released is estimated by determin-

ing the amount of intracellular bacterial growth that begins

from phagocytosis until cell death. Assuming logistic growth

following an initial delay (to account for phagosomal escape),

it is found that there are approximately 358 bacteria at the

time of death. While there is no comparable study to validate

this result specifically, the validity of the intracellular doubling

time can be assessed. For the first 24 h, this is found to be 3.5 h,

which is within the range of 3–8 h (obtained from reported fold

increase using equation (2.6)) found in [54] (in which human

cells are infected with Schu S4) for an equivalent timeframe.

As would be expected, the doubling time (in humans) is less

than with attenuated strains [52,55].

The death and survival rates are estimated by fitting the

(otherwise parametrized) deterministic solution to the birth–

death–survival model for extracellular bacteria over time

(equation (2.1)) to data from two in vivo studies (in which mon-

keys are exposed to aerosolized Schu S4). This is the only part

of the parametrization in which animal and not human data

are used and, as stated in [56], animal models must be carefully
reviewed for applicability to humans, because of the inherent variabil-
ity in host/micro-organism interaction. Here, it has been assumed

that the birth, death and survival rates are equivalent in

humans and monkeys, but the threshold for illness is lower

(10 times according to [24], owing to monkey body weight

being one-tenth that of a human). This supports the shorter

incubation periods for monkeys (48–72 h) when compared

with humans, and as a result only data up to 48 h are used in

this study (latter times could involve illness which may indi-

cate the transition to the adaptive response—see above). Note

that attempting to estimate all four parameters of equation

(2.1) through these data provides a set of non-unique par-

ameter values owing to an insufficient number of degrees

of freedom.

In the final part of the parametrization, the distribution of

individual response thresholds is determined by fitting to esti-

mates of the number of extracellular bacteria at the time of

illness onset from two human volunteer studies in which

dose and incubation period are recorded. Because these are

the only appropriate data, and that there are no in vivo studies

that concern the number of extracellular bacteria on illness for

humans, a validation of the resulting distribution is not poss-

ible. However, the values are reasonable and consistent with

bacterial burdens found in monkey in vivo experiments [30,31].
4.3. Results
Before discussing the main results of this study, some of those

deduced during the parametrization are firstly reviewed. In esti-

mating the survival and death rate (§2.2.3), the deterministic

solution for extracellular bacteria over time (equation (2.1)) is

fitted to data from the two in vivo studies (figure 3c). These
data clearly suggest an initial drop in the number of extracellular

bacteria followed by exponential growth (the rate of which is

lower in less virulent strains [7]). A birth–death model cannot

represent these characteristics (not shown, but exemplified in

[23] in fitting to guinea pig plague data), but an accurate por-

trayal is obtained by extending this standard approach to

incorporate phagocytosis. Furthermore, fitting the birth–death

deterministic solution only yields the net growth rate, l 2 m,

which does not provide an explicit parametrization required

to obtain the dose–response relation and incubation period dis-

tribution (by either the asymptotic approaches of [14] and [15],

or by the matrix-analytic approach detailed in the electronic

supplementary material, A).

It is assumed that clinical infection occurs when some

threshold number of bacteria is in the system. The triggering

of symptoms is a very complex process with few data available

to validate more detailed models. It is likely that the threshold

will vary by individual, and it appears that a fixed threshold

poorly describes the data (figure 5) at higher doses given the

variability assumed in the other parameters. This is because

the process is more deterministic in the higher dose range—

an observation consistent with the standard birth–death

model with host homogeneity [5,23]. On the other hand, if

the threshold is lognormally distributed then, given determi-

nistic exponential growth, the times at which the number of

extracellular bacteria reach this threshold are normally distrib-

uted, as deduced for doses of 300 organisms and greater (not

possible to verify from [43] owing to the recording sensitivity).

This increased dispersion enables the model to capture the

variability exhibited in the data for such doses. However, at

lower doses, the majority of the variability is attributable to

the stochastic in-host processes, so the characterization of the

threshold itself plays a lesser role. This variability is caused

by an initial bistability, but as the numbers of extracellular bac-

teria start to increase they reach a ‘point of no return’, from

which the process becomes deterministic. This is supported

in fitting the three-parameter lognormal distribution to low

dose fixed threshold data, whereby an estimated location par-

ameter of 3–4 days indicates the duration of the deterministic

processes (cf. anthrax model of [47]). For the same dose range

with the distributed threshold model, this and some other stan-

dard two-parameter distributions are unable to represent the

skewness and kurtosis of the modelled incubation period dis-

tributions (figure 6b). In fact, the only distribution, out of

those considered, that is able to do so is the (four parameter)

Johnson SU family of distributions. While the gamma distri-

bution would appear to provide the least appropriate choice,

the lognormal distribution—long associated with modelling

incubation periods [57,58]—is also clearly unsuitable.

In summary, an extension to the standard birth–death

process has allowed for the incorporation of phagocytosis—a

fundamental mechanism undergone by intracellular bacteria.

Also considered is the heterogeneity of individuals through a dis-

tributed threshold required for illness. For F. tularensis, this raises

some interesting parallels to some of the classical dose–response

models. First, the infection dynamics for dose–response can be

simplified to the single-hit model, whereby the hit required for

response is a failed phagocytosis. Second, the thresholds are

found to be lognormally distributed, as in the probit model.

These findings thus support the experimental evidence and pos-

tulations of [25,26] that response is a mixture of both the

hypotheses of independent action (single-hit model) and indi-

vidual effective dose (probit model). Future uses of the model
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considered here could include application to Coxiella burnetii
(Q-fever) and L. pneumophila (Legionnaires’ disease).
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