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Group size, individual role differentiation
and effectiveness of cooperation in a
homogeneous group of hunters
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The emergence of cooperation in wolf-pack hunting is studied using a simple,

homogeneous, particle-based computational model. Wolves and prey are

modelled as particles that interact through attractive and repulsive forces.

Realistic patterns of wolf aggregation readily emerge in numerical simulations,

even though the model includes no explicit wolf–wolf attractive forces,

showing that the form of cooperation needed for wolf-pack hunting can take

place even among strangers. Simulations are used to obtain the stationary

states and equilibria of the wolves and prey system and to characterize their

stability. Different geometric configurations for different pack sizes arise. In

small packs, the stable configuration is a regular polygon centred on the

prey, while in large packs, individual behavioural differentiation occurs and

induces the emergence of complex behavioural patterns between privileged

positions. Stable configurations of large wolf-packs include travelling and

rotating formations, periodic oscillatory behaviours and chaotic group beha-

viours. These findings suggest a possible mechanism by which larger pack

sizes can trigger collective behaviours that lead to the reduction and loss of

group hunting effectiveness, thus explaining the observed tendency of hunting

success to peak at small pack sizes. They also explain how seemingly complex

collective behaviours can emerge from simple rules, among agents that need

not have significant cognitive skills or social organization.
1. Introduction
Why do animals live in groups? A major benefit to many group living species is

the emergence of cooperative behaviours which enhance the reproductive survi-

val of individuals living within the group [1]. But, what are the mechanisms by

which cooperation, i.e. helping a potential competitor, emerges and stabilizes

in collective animal behaviour?

Collective hunting is a common form of animal cooperation [2] which appears

with different levels of complexity, ranging from being at the same place at the

same time (bats) to cooperation in complementary actions with role differentiation

(Carnivora) [3]. The cooperation of multiple hunters presumably sometimes

allows them to successfully capture prey that none of them would be able to cap-

ture on their own (larger packs have higher success per attempted hunt [4]). This is

the benefit of cooperation. On the other hand, those hunting together have to share

their spoils [4]; this is the cost of cooperation. Thus, there is a nonlinear relationship

between the individual portion of food available after the hunt and the number of

individuals participating in the hunt. The trade-offs that are involved here are not

the only challenges in explaining hunting cooperation (see, e.g. the effect of scaven-

ging by ravens in [5]). In fact, uncertainty surrounds the advantage of cooperation

(i.e. the benefit-to-cost ratio) when hunting in group [4,6]. A recent review in jack-

als, coyotes, dholes, African wild dogs and wolves suggested that small groups

provide the optimal ratio of benefit-to-cost [4].

Wolf-pack hunting is considered an archetype of collective hunting, as is

shown by the fact that it is often referenced in discussions of the foraging and cap-

turing strategies of entities ranging from bacteria Myxococcus xanthus [7] to robots
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[8,9]. In wolves, per capita rate of food intake is maximal for

packs of size two (N ¼ 2) [10], but larger groups reduce the

loss of food to scavengers [5], and, in African wild dogs, hunt-

ing success is maximal for N ¼ 4 [11]. The reason for hunting

success to peak at small pack sizes has recently been studied

[12]. Two effects have been compared: the effect of individual

wolves impeding each other’s actions (interference) and the

effect of individual wolves that withhold effort during

the hunt and simply remain nearby to have access to the kill.

The analysis indicated that interference simply did not occur

[12], and they concluded therefore that the loss of effective

cooperation within hunting groups is due to the presence of

wolves that do not participate fully in the hunt.

In this work, we used a simple, homogeneous, particle-

based computational model of pack-hunting in wolves to

identify a fundamental mechanism by which effective

group-cooperation can emerge. Depending on the number

of wolves directly involved in the hunt, we show that

above a critical number, complex behavioural patterns such

as individual role differentiation and a mosaic of collective

formations emerge that can lead to a loss of effectiveness of

group hunting strategies.

The hunting ethogram of wolf-packs consists of an initial

phase where a single prey is isolated from a herd, then a pur-

suit phase, and finally, a phase where the prey is captured

and killed [13]. Here, we consider that wolves have already

isolated a prey, so that we assume that there is a group of

N wolves pursuing a single prey.

In our model, the interactions between individuals

(wolves and prey) are described in terms of attractions and

repulsions as follows:

— Wolf–prey interaction. This is an asymmetric interaction:

wolves always repulse the prey, and wolves are always

attracted by the prey, but, when wolves arrive at a safe

distance dc to the prey, they stop approaching the prey,

so as not to be harmed by the horns or the legs of the

prey. The repulsion that a wolf exerts on the prey is stron-

ger the smaller the distance between them; respectively,

the farther the wolf is from the prey, the weaker the

attraction of the prey.

— Wolf–wolf interaction. In our model, wolves do not expli-

citly attract one another at all. In fact, we assume that

the unique one-to-one interaction between wolves is of the
repulsive kind: when wolves are at a distance da from the

prey, wolves move away from each other. This short-

range repulsion is due to the need of individual space

(see Hediger 1950 in [14]), collision avoidance, to have a

better visibility of the prey [3] and, when close to the

prey, to leave space to move freely in response to possible

attacks from the prey.

The intensity of these interactions depends on the dis-

tance between wolf and prey, and, when close to the prey,

on the distance between wolves. The critical thresholds of

these distances, i.e. dc and da, depend dynamically on the

instantaneous circumstances of the hunt and are time-

depending variables. For example, when the prey is getting

tired, falls down or triggers a counterattack, the safe distance

dc(t) varies accordingly (smoothly or abruptly increasing or

decreasing). On the other hand, wolves usually start to

move away from each other before feeling menaced by defen-

sive reactions of the prey, so that da(t) . dc(t). In nature,
wolves do not necessarily have the same behavioural

thresholds, so that dc(t) and da(t) may also vary from one

wolf to another. However, to our understanding, the charac-

ter of the variation of da(t) is not clear: a wolf Wi may keep

further away from a more athletic wolf Wj to avoid aggres-

sion, so that di
a(t) would be larger than dj

a(t); on the other

hand, the wolf Wi may prefer to get close to Wj to feel pro-

tected, so that di
a(t) would be smaller than dj

a(t). The

individualized parameter di
c(t) can also include the effects

of learning and memory of a single wolf Wi along a single

hunt, depending on the individual history experienced by

the wolf Wi. For example, di
c(t) should increase if in the last

interval of time (of a given length) the wolf Wi has been

kicked by the prey.

In this model, wolves are assumed indistinguishable

and interchangeable, and history effects are not taken into

account, so no variation of dc and da among wolves is

assumed. Thus, a hunt can be seen as dynamic transitions

of the wolf-pack between spatial configurations determined

by the changing value of dc(t). Our objective in this work is

therefore to obtain the stationary states and equilibria of

this dynamical system, and to characterize the stable con-

figurations towards which the dynamical system converges

when the control parameter dc(t) is kept constant in time.

Recently, we presented a simple particle model which

reproduces the typical wolf-pack hunting patterns observed

in nature [15]: cursorial pursuit, encircling manoeuvre, relay

running and ambushing. Numerical simulations showed

that these patterns can be seen as the emerging result of the

combination of two simple rules applied to the behaviour

of each individual wolf: (i) move towards the prey until a

minimum safe distance to the prey dc is reached, and

(ii) when at the safe distance dc, move away from the other

wolves that are within the safe area [15]. In this previous

work, we assumed for simplicity the particular case where

both critical distances are equal (da ¼ dc), that is, wolves

start to move away from each other only when they are at

the safe distance from the prey. Wolf–wolf interaction was

then assumed to occur only when two wolves are at the

same distance dc from the prey. An important result was

that these hunting patterns emerged without adding a hier-

archical or other specific social structure to the simulated

wolf-packs, and without assuming high cognitive skills for

the agents (wolves and prey).

In this paper, we use a continuous formulation of inter-

action functions (instead of piece-wise linear functions, as it

was in our simple previous model), borrowed from the clas-

sical self-propelled particle models [16–22], which produce a

more realistic behaviour of the agents than in the previous

model, with smooth transitions between regions (close/far

to the prey). This has allowed us to introduce in the model

the ingredient of the critical distance da through a Gaussian

function which determines the region where direct wolf–

wolf interactions are relevant. We use this more sophisticated

but still quite simple model to obtain the spatial configur-

ations that the agents display when a stationary state or an

equilibrium are reached for a given size of the pack and a

given value of the critical distance dc. We thus perform a clas-

sical study of dynamical systems, in which the description of

the stable equilibria will provide us with essential infor-

mation to understand the behaviour of the system when

time variation of control parameters and external condi-

tions such as environmental factors (e.g. variations in the
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Figure 1. Snapshots of the stable configuration and its orbits for (N, dc) ¼ (5, 1), (7, 1) and (11, 1.2), and dc – N stability diagram of the stable stationary regular
polygon (SRP), which is unstable for N . N* ¼ 5 and dc , d�c (N) (grey region). Black circles denote the bifurcation value d�c for each wolf-pack size N; white
circles correspond to the snapshots. See figure 2 and movies in the electronic supplementary material. (Online version in colour.)
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ground) or sudden (unpredictable) changes in animal

behaviour are taken into account.

The model is kept as simple as possible in order to ident-

ify the essential ingredients necessary for producing the

observed behavioural patterns. The kinds of inferences that

analysis of this model may warrant, for example regard-

ing social structure or cognitive ability, can be clarified by

considering hypotheses concerning another kind of feature

such as mass. If we were to observe role differentiation

emerging in models in which all the wolves have the same

mass, then we would be justified in suggesting that role

differentiation does not necessarily rely on mass differences.

Of course, this argument is valid even though real wolves

obviously do vary in mass. The same analysis applies for

hierarchical structures and cognitives abilities: if the behav-

ioural patterns emerge without assuming them, then we

can say that the patterns do not necessarily rely on them,

and we can do so without denying that real wolves have

significant cognitive abilities or that real wolf-packs are

hierarchically structured.
2. Results
The use of the formulation of continuous interaction functions

has allowed us to show analytically that wolves remain con-

fined to a bounded neighbourhood of the prey even if the

wolf–wolf interaction is only of the repulsive kind. The first

result is thus that the common attraction from the prey is suffi-

cient to induce wolf-pack aggregation around the prey, so that

collective motion and cooperation can emerge.

Once we know that wolves aggregate, we want to know

under which conditions cooperation emerges and can be

sustained. More specifically, assuming that spatial configur-

ations exhibiting more regularity are more conducive to the

production of a successful hunt, we want to know how hunt-

ing success depends on the number of wolves, i.e. on the

pack size. To do that, we have systematically characterized

the stable behavioural patterns towards which the system
converges for different pack sizes (2 � N � 15, see [23,24])

and critical safe distances dc (figure 1).

The second result is that there exists a critical pack size N*

(¼5) under which the stable configuration of the wolf-pack is

a stationary regular polygon (SRP) centred on the prey,

where all wolves are at the same distance from the prey (one-

orbit phase). For pack sizes above N* there exists a critical

value of the safe distance d�c below which the SRP becomes

unstable. When dc , d�c , the wolves are distributed in two or

more orbits centred on the prey but at different distances

from the prey (multiple orbits phase). This phase transition

takes place through a supercritical pitchfork bifurcation

which gives rise to complex collective behavioural patterns

where individual role differentiation emerges. Spatial confi-

gurations exhibit privileged or distinguished positions which

could be interpreted as apparent leadership (wolves in the

inner orbit, closer to the prey) or wolves withholding effort

(wolves holding back in outer orbits). Complex patterns

include travelling and rotating formations and periodic oscil-

latory states, where indicators of chaos have been found in

our numerical simulations (small differences between two

configurations give rise to unpredictable large differences

after a short interval of time).

Among the implications of our results is the fact that

wolves could in theory hunt cooperatively together even if all

members of the hunt were strangers to one another. In

addition, in groups larger than N*, a possible consequence of

the high complexity of behavioural patterns is that the hunt

may be permanently disrupted. It is reasonable to assume

that hunting success is more likely to occur when wolves

tend to adopt a regular spatial configuration surrounding the

prey than when complex and (apparently) chaotic behavioural

patterns take place. Our results may thus explain the observed

reduction of hunting success in larger packs. Consequently,

packing is only likely to be a selective advantage if the pack

is small (a family). Furthermore, the emergence of indivi-

dual role differentiation in our model shows that social

structures reported from hunting scenes might be mere artefact

of spatial dynamics.
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Our results could be relevant for a wide range of disciplines,

from ecology to animal behaviour (for the implications for

cognition and social structures [3]), swarm robotics (troop

and cooperative formations of homogeneous agents with

decentralized decisions and minor communication) and statisti-

cal physics (stability and morphology of organization of

asymmetric self-propelled particle systems [21]).
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3. Methods: the model
We use a simple, homogeneous, particle-based computational

model where wolves and prey are modelled as particles

that interact through smooth attractive and repulsive forces

[14–22,25–27].

The model equations consist of the Newton’s second law

for the motion of each individual [14]

mi _viðtÞ ¼ F iðtÞ, i ¼ p, 1, . . . , N: (3:1)

Here mi is the mass of the ith individual and the vectors

viðtÞ and F iðtÞ are, respectively, the velocity and the resultant

force acting on the ith individual. The index p refers to the prey

P. The position of the prey and the N wolves {Wi}
N
i¼1 is denoted

by ui(t) ¼ (xi(t), yi(t)), i ¼ p, 1, . . . , N. The evolution of the

wolves and prey system is thus described by a dynamical

system of 2(N þ 1) ordinary differential equations

_ui(t) ¼ vi(t), i ¼ p, 1, . . . , N

and _vi(t) ¼
1

mi
F i(t), i ¼ p, 1, . . . , N,

9>=
>; (3:2)

where F iðtÞ includes the individual interactions and the fric-

tion with the ground [26]. Note that no alignment forces are

assumed and, as we are interested in the stable equilibria

towards which the system converges, no noise terms are

added [16–18,21,26,27]. Variations of the model that incorpor-

ate noise and perturbations, in order to more accurately reflect

natural conditions, produce qualitatively the same results but

with residual fluctuations around the solution of the zero-

noise unperturbed model. See the electronic supplementary

material. Wolves and prey in the model have an inner force

produced by the metabolism which allows them to move for

an unbounded time [27].

A wolf Wi is subjected to the long-range attractive and

short-range repulsive force Fi,p(t) exerted by the prey, the

repulsion Fi,j(t) from the other N 2 1 wolves and the friction

with the ground (e.g. snow) nivi

F i(t) ¼ Fi,p(t)þ
XN

j¼1,j=i

Fi,j(t)� nivi(t): (3:3)

The interaction functions are defined as smooth functions

for positive (non-zero) values of ui

Fi,p ¼ CP
Wg (ui � up) (3:4)

and Fi,j ¼ CW
Wga(ui � uj)fij, (3:5)

where g(u) ¼ ga(u) 2 gr(u), with ga(u) ¼ 2u/jjujj2 and

gr(u) ¼ �ud2
c= k uk4. These interaction functions are a

novelty with respect to the piece-wise linear formulation

used in [15].

We define also the instantaneous distance Ri(t) from wolf

Wi to the prey, Ri(t) ¼ jjui(t) 2 up(t)jj, and we introduce a

Gaussian function fij which depends on the relative position
of two wolves Wi and Wj with respect to the prey

fij ¼ exp {� cw[(Ri � da)2 þ (Rj � da)2]}: (3:6)

Here dc and da denote the critical safe distance and individual

distance described in the Introduction. As mentioned,

we assume the general case where dc , da. The Gaussian

function fij determines the region (of width 1/
ffiffiffiffiffiffiffiffi
2cw

p
) where

wolf–wolf interaction is significant: fij(t) is maximal when

both wolves Wi and Wj are at a distance da from the prey,

and falls rapidly to zero as soon as one of the wolves separates

from a distance da to the prey. This is a significant change with

respect to the previous model in [15], where da ¼ dc and the

width of this region was considered zero. The parameter cw

can be made individual-dependent, so that ci
w would vary

from one wolf to another according to the width of the zone

of influence we want to assign to wolf Wi. This would be a

simple way of introducing an order relation within pack

members (i.e. a social structure such as a family or a hierarchy)

into the model.

The prey is subjected to the repulsive forces Fp,i(t) exerted

by N wolves and the friction with the ground

Fp(t) ¼
XN

i¼1

Fp,i(t)� npvp(t), (3:7)

where Fp,i is colinear to Fi,p but has different intensity:

Fp,i ¼ CW
P ga(ui � up): (3:8)

The coefficients CP
W, CW

W and CW
P are positive constants describ-

ing the relative intensity of the forces, e.g. that the attraction

exerted by the prey is stronger than the repulsion that wolves

exert on the prey. Although these coefficients should vary in

time, we consider that this variation can be neglected with

respect to the changes produced by the time variation of dc.

Finally, mass and friction m and n are considered identical

for all wolves, and larger for prey than for wolves (mp . mi,

np . ni). Note that these are relative values; agents with a smal-

ler mass can change speed more easily (high acceleration),

while agents with a larger friction can change direction more

easily (high manoeuvrability).

The values of the parameters are shown in table 1. We

have used normalized units to have parameter variations of

order one and dc � 1.

The interaction function g(u) introduced in the model

(instead of the piece-wise formulation used in [15]) is a

particular case of the attraction/repulsion function intro-

duced by Shi & Xie [16], which in turn belongs to a class of

interaction functions in swarm aggregation described by

Gazi & Passino [17,18] in models with no friction where a

very small individual mass moving in a medium of high

viscosity (e.g. bacteria) is assumed (m � 0). Under some con-

ditions, such an interaction function can exhibit the basic

features of stability and cohesion of the swarm [18]. Liu et al.
[19] also presented an interaction function which precludes

agents from colliding with one another: the repulsion grows

to infinite as the distance between agents goes to zero.

The interaction function of Shi & Xie [16] provides a more

realistic behaviour at long distances: the intensity of the inter-

action between agents goes to zero as the distance between

them grows to infinite. Here, we use g(u) and the inertial

system (3.2) instead of the reduced system proposed in [18].

A similar combination has been used recently [20] in an

inspiring numerical study of collective behaviour of prey in



Table 1. Variables and typical values of the parameters.

mp mass of the prey (350 – 400 Kg) 1

mi mass of wolf Wi (35 – 40 Kg) 0.1

np prey friction coefficient 2

ni wolf friction coefficient 1

CP
W coefficient of force that the

prey exerts on a wolf

2

CW
W coefficient of interaction

force between wolves

0.5

CW
P coefficient of force that a

wolf exerts on the prey

0.2

dc wolves safe distance not to

be harmed by the prey

1

da distance to the prey at which wolves

repulse each other

1.5

cw width coefficient of Gaussian

function fi,j (1/
ffiffiffiffiffiffi
2cw
p

)

0.5

vmax
p maximum modulus of prey’s velocity 0.1

Ri radius of the orbit of wolf Wi approx. 1 – 2

Rc radius of the SRP (stationary regular

polygon)

approx. 1 – 2

N wolf-pack size (number of wolves) 2 – 20
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the presence of predators in the case of single predator–

single prey, single predator–multiple prey and multiple

predator–multiple prey, surprisingly omitting the multiple

predators–single prey case studied here.
3.1. Wolf-pack cohesion
When interactions are symmetric, it is often possible to show

that the swarm has a stationary centre around which individ-

uals aggregate [16–19]. However, this is not the case in our

wolves–prey system, which is not symmetric. Moreover,

during a hunt, wolves do not tend to attract other wolves

but rather, when there is an interaction, the tendency is

towards repulsion. We thus consider that wolf–wolf inter-

actions are only of the repulsive kind. In spite of that, our

results show that wolves swarm into a wolf-pack formation

because of their common interest in approaching the prey [4].

Definition 3.1. A wolf Wi is said to be a free agent [17] if Wi is

far enough from P so that the repulsion from other wolves

is negligible with respect to the attraction from the prey:

Ri � d, for an arbitrarily large positive constant d� da.

Proposition 3.2. If Wi is a free agent, then the Newton’s second
law for Wi can be written as follows:

_vi (t) ¼ CP
W

mi
ga(uiðtÞ � upðtÞ)�

ni

mi
viðtÞ: (3:9)

Proof. When d! þ1, on the one hand,

k gr ( ui� up ) k
k ga ( ui�up ) k ¼

d2
c

k ui� up k2
,

d2
c

d2
! 0, (3:10)
so k gr (ui � up) k�k ga(ui � up) k, and thus g(ui 2 up) �
ga(ui 2 up), and on the other hand,

f( ui, uj) , e�cw[(d�da)2þ(kuj�upk�da)2] ! 0, (3:11)

so k ga (ui � uj) k fij �k ga(ui � up) k 8j ¼ 1, . . . , N, j = i.

Definition 3.3. Let r ¼ (up, u1 , . . . , uN , vp, v1 , . . . , vN) in

R4(Nþ1) and VðrÞ: R4(Nþ1) ! R the potential functional

(which is not a Lyapunov function) defined as

V(r) ¼
XN

i¼1

ln (Ri)þ
mi

2CP
W

k vi k2

� �
�

mp

2CW
P

k vp k2: (3:12)

Lemma 3.4. If mi/mp , ni/np , 1, then

kvp (t)k2 ,
CW

P

CP
W

XN

i¼1

mi

mp
kvi(t)k2, 8t � 0 (3:13)

implies

kvp(t)k2 ,
CW

P

CP
W

XN

i¼1

ni

np
kvi(t)k2, 8t � 0: (3:14)

Condition (3.13) can be viewed as a refinement of vmax
p .

Reasonably, the larger the number of wolves, the smaller

can be their velocity to satisfy (3.13), i.e. wolves in larger

packs do not need to run at such high speeds. Prey would

not run faster when escaping from N þ 1 wolves than when

escaping from N wolves. Condition (3.13) is less restrictive

for wolves’ velocity than imposing that the sum of the vel-

ocities of the wolves is greater than the prey’s velocity

because CW
P /CP

W , 1 and mi/mp , 1.

Theorem 3.5. If Wi is a free agent and the velocity of the prey is
bounded from above (i.e. k vp(t) k� vmax

p 8t � 0), then, for typical
masses and friction coefficients, V(r) is bounded from below and
_V(r) , 0 along free agents trajectories.

Proof. The potential function V(r) can be written as

V(r) ¼
XN

i¼1

ln ( k ui � up k )þ 1

2

XN

i¼1

mi

CP
W

k vik2 �
mp

CW
P

k vpk2

" #
:

(3:15)

Typical values of mass and friction coefficients for wolves

and prey (e.g. moose, elk—Alces alces) are such that mi/mp ,

ni/np (see parameter values in table 1), so, by lemma 3.4, both

conditions (3.13) and (3.14) hold. Then, the expression

between brackets in (3.15) is positive and, for free agents,

we have V(r) � N ln(d), so that, for free agents, the potential

function V(r) is bounded from below.

On the other hand, the time-derivative of V(r) along the

trajectories of free agents is given by

_V(r) ¼
XN

i¼1

rui V 	
dui

dt
þ
XN

i¼1

rvi V 	
d vi

dt
þrup V 	

dup

dt

þrvp V 	
d vp

dt
,

where ru i
V ¼ �ga(ui � up), rv i

V ¼ mivi/CP
W, rup V ¼
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Figure 2. Convergence of the initial configuration ui ¼ (0.5i 2 4, 2 0.35), i ¼ 1, . . ., N, to the stable state. For dc ¼ 1.3 (a – c), the final state is the SRP. For dc ¼ 1
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stationary two-orbits configuration with R1,2,3 ¼ 1.29 and R4,5,6 ¼ 1.91. (f ) N ¼ 7, stable flocking four-orbits configuration with R1,2 ¼ 1.26, R3,4 ¼ 1.46, R5,6 ¼

2.18 and R7 ¼ 2.33. Flocking velocity is vx
i ¼ �0:036 and vy

i ¼ 0:0013 (i.e. jjvijj ¼ 3.6 
 1022). (Online version in colour.)
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which, as (3.14) holds, is negative.

Theorem 3.5 shows that the function V(r) is strictly

decreasing and bounded from below, so it converges to a

minimum that is reached when all the wolves are at a dis-

tance d from the prey, meaning that free agents move

towards the ball of radius d centred in P.

Thus, wolf-pack aggregation takes place during hunting

and is not necessarily owing to the attraction between

wolves; pack-hunting can be a contingency where wolves

hunt in a particular location simply because food is there

(like M. xanthus [7]).

3.2. Stability of wolf-pack configurations
Once we know that wolves aggregate around the prey, we

want to know which kind of spatial configuration they exhi-

bit when a stable equilibrium is reached. Results of stability
have already been reported for symmetric interactions

[21,22]. When interactions are asymmetric, analytical tools

are more difficult to use and we have to rely on numerical

simulations.

Figure 2 shows the time-evolution of the wolves and prey

system for N ¼ 5, 6 and 7 for the initial condition ui(0) ¼

(0.5i 2 4, 2 0.35), i ¼ 1, . . . , N in a square domain of dimen-

sionless size 8 (large enough compared with the typical

distance dc � 1).

Each simulation in figure 2 shows the trajectory followed

by each wolf with respect to the prey until an equilibrium

between all agents is reached. The spatial configurations dis-

played by the N wolves and the prey are represented in

figures and movies as centred on the prey, so that the prey

is located in the origin (0, 0) with zero velocity.

The initial condition is taken such that not all the wolves

are aligned with the prey, and such that wolves do not

describe a regular polygon centred on the prey. If these con-

ditions are not fulfilled, unrealistic solutions arise: if wolves

are initially aligned with the prey, then they never leave

this line; and if wolves initially describe a regular polygon

around the prey, then they converge to the SRP correspond-

ing to the values of N and dc, even if the SRP is unstable

(figure 3).

We have used a first-order explicit Euler method with a

small time-stepDt ¼ 1026. The numerical test for equilibrium is

XN

i¼1

(jvx
i � vx

pj þ jv
y
i � vy

pj þ jFx
i � Fx

pj þ jF
y
i � Fy

pj) , 10�8:



4

2

0

–2

–4
–4 –2 0 2 4 –4 –2 0 2 4 –4 –2 0 2 4

(b)(a) (c)

Figure 3. Initial configuration with the form of a regular polygon centred on the prey, for N ¼ 7, dc ¼ 1 and initial radius R ¼ 3. (a) The wolf-pack converges to the
corresponding SRP, where R ¼ 1.79214179. (b) Unstability of the SRP under a perturbation of order 1026 in the abscissa of the position of only one wolf: the wolf-pack
converges to the stable four-orbits configuration, already shown in figure 2f. (c) Final configuration, with R1,2 ¼ 1.26, R3,4 ¼ 1.46, R5,6 ¼ 2.18 and R7 ¼ 2.33. The
configuration is symmetric with respect to the axis of abscissa. (Online version in colour.)
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Figure 4. Radii of the stable configurations and the SRP for different pack sizes (R – dc stability curve). For small packs (N � N* ¼ 5), only the SRP is stable. For
N . N* ¼ 5, there is a supercritical pitchfork bifurcation at d�c (black square) and the SRP is unstable (dashed line for N ¼ 8 and N ¼ 11 showing the radius Rc of
the SRP). For N ¼ 8, the bifurcation gives rise to two orbits with four wolves per orbit, while for N ¼ 11, it leads to 11 orbits with one wolf per orbit. (Online
version in colour.)
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We would like to stress that these trajectories should not be

interpreted as displaying the successive positions of wolves

during real hunts; what these simulations show is the conver-

gent process of the dynamical system towards the stable

configuration corresponding to the given value of (N, dc).

We have carried out numerical simulations of the wolves

and prey system for a wide range of values of dc for different

pack sizes, obtaining for each case the resulting stable con-

figuration adopted by the system. The final configuration

does not depend on the initial condition, except rotations

(i.e. variations of the angle described by the formation with

respect to the horizontal line). We have then characterized

the final stable configurations by measuring the radius of

the orbit in which each wolf is located. The result is the so-

called R–dc stability curve of the SRP for each pack size

N ¼ 2 2 20. See figure 3 for pack sizes N ¼ 2, 3, 4, 5, 8 and 11.

We observe that in small packs, the radius Rc of the SRP

grows smoothly and almost linearly with dc (see figure 4 for

N � N* ¼ 5), while for pack sizes larger than N*, the SRP

loses its stability via a supercritical pitchfork bifurcation [28]

at d�c (see figure 4 for N ¼ 8 and N ¼ 11).

Figure 1 shows the value of d�c for different pack sizes. We

have analysed the stable configurations corresponding to

dc , d�c , obtaining that the wolves are distributed in several

orbits centred on the prey and display complex dynamical

patterns, including flocking (travelling with constant speed),
milling (rotating around a point or a region), periodic oscilla-

tions and (possible) chaos (where small differences between

configurations give rise to unpredictable large differences [28]).

Figure 5 shows the R–dc curve for N ¼ 6. When dc , d�c , the

SRP is unstable and wolves are distributed around the prey P in

multiple orbits of different radii {Ri}
m
i¼1, Ri , Ri þ 1, 2 � m � N.

Insets show the simplest stable multi-orbital formations, which

can be (i) stationary (vi,p ¼ 0), (ii) flocking (with constant

speed vi ¼ vp ¼ vf ) or (iii) milling (rotating around P). See the

electronic supplementary material, movies M1 and M2.

We would like to stress that although they are not

stationary, the flocking, milling and (apparently) chaotic con-

figurations are stable configurations, in the sense that for a

given value of (N, dc), the wolves and prey system converges

to the corresponding configuration until this dynamical equili-

brium is reached. See the analysis of the influence of adding

noise to the equations of prey and wolves and perturbations

to the behaviour of the prey (sudden jumps) in the electronic

supplementary material.

Pattern diversity and complexity increase in larger

packs. Figure 6a shows a stable periodic oscillatory state for

N ¼ 7 where four wolves shuttle between the inner and

outer orbits, while two wolves stand still in the inner orbit

and the last one moves quickly along a short arc of the

outer orbit. Figure 6b shows a time parametric representa-

tion of radii (stroboscopic map) illustrating periodicity, and
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Figure 5. R – dc curves for N ¼ 6. Supercritical pitchfork bifurcation (square) at (d�c , R�c ) � (1:14, 1:76). Solid lines, stable radii Ri; dashed line: unstable Rc; vertical
dot-dashed lines, regions of qualitatively different patterns shown in the insets (diamonds): (a) SRP at (dc, Rc) ¼ (1.3, 1.9). (b) Stationary multi-orbital configuration
for dc ¼ 1, R1 ¼ 1.29, R2 ¼ 1.91 (m ¼ 2, three wolves per orbit). (c) Stable counterclockwise vortex for dc ¼ 0.821, rotating along six orbits (R1 � R2 � R3 ,

Rc , R4 , R5 , R6). In insets, the central star denotes prey location. (Online version in colour.)
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map R1(t) versus R2(t) (dashed line) and R1(t) versus R3(t) (solid line). (c) Oscillations of Ri(t) m ¼ 3 showing 4, 7 and 14 periods. (Online version in colour.)
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figure 6c shows the oscillations’ frequencies. The dynamics of

this solution is shown in the electronic supplementary

material, movie M3.
Figure 7 corresponds to a large pack (N ¼ 12) for which a

possible route to chaos has been found. Figure 7a–c shows

the trace of wolves’ trajectories at different instants of time for
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Figure 7. (a – c) Highly complex behavioural patterns for dc ¼ 1.3, exhibiting apparent relays and leading role in a pack of 12 wolves behaving ( possibly) chao-
tically. (Online version in colour.)
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rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140204

9

dc ¼ 1.3. See the dynamics in the electronic supplementary

material, movie M4. The stroboscopic maps shown in figure 8

illustrate the high sensitivityof the system under small variations

of dc and reveal a possible route to chaos close to dc ¼ 1.3. We

would like to stress again that this solution is stable, meaning

that for this value of (N, dc)¼ (12, 1.3) and whatever initial con-

dition (except wolves aligned with the prey or displaying a

regular polygon centred on the prey), the system will exhibit

a qualitatively identical (apparently chaotic) behaviour.
4. Discussion
We have shown that provided the (analytically derived) con-

dition (3.13) for the relative velocities of the agents is

satisfied, wolves do not escape to infinity and are confined

to a bounded neighbourhood of the prey. Thus, during

hunts, wolf-pack cohesion always takes place and is main-

tained even if the wolf–wolf interactions are only of the

repulsive kind. This confinement gives rise to a pléiade of col-

lective behavioural patterns which, under small variations of

the parameters of the model, converge towards specific

spatial configurations. We have then studied the stability of

the stationary states and equilibria of the wolves and prey

system, characterizing the spatial configurations towards

which the system converges for a given size of the pack

and a given critical safe distance dc.

The stability analysis revealed that, for small packs, small

variations of the safe distance dc induce small variations of

the radii of the orbits Ri, so that the hunt evolves smoothly

and straightforwardly. Meanwhile, for large packs, small

variations of dc can induce dramatic qualitative and quanti-

tative changes in the spatial configuration of the wolf-pack.

Our main results suggest that, observed in nature, these

abrupt variations can contribute to disruptions of the hunt,

therefore reducing the hunting success. One thus expects
hunting groups to be limited to sizes that permit hunts to

proceed without disruption.

MacNulty et al. [12] show empirically that the success of

wolves hunting elk reaches its maximum value at four

to five wolves because for larger group sizes (N . 5) some

individuals start to withhold hunting effort. A possible

interpretation of our results is that the complex spatial

dynamics displayed by the stable configuration in large

packs (N . 5) may contribute to the observed tendency of

hunting success to peak at small packs by triggering specific

spatial patterns which facilitate freeriding: individuals travel-

ling or being located in the outer orbits of large packs (N . 5)

may more easily withhold effort than individuals loca-

ted in the inner orbit because they are further from the

prey, whereas individuals in the single orbit of a small pack

(N � 5) probably have more incentive to fully contribute to

the hunt. Consequently, complex spatial dynamics can facili-

tate freeriding events in large packs, which in turn induce a

decrease in hunting success in large packs.1

On the other hand, behavioural patterns like those simulated

in figure 6 look surprisingly like a socially structured group. A

possible scenario for figure 6a could be as follows: a breeding

pair stands (almost) still in the inner orbit, leading or conducting
the hunt, while four inexperienced offspring move back and

forth from the inner orbit to the outer and vice versa, and a

single excited juvenile (see the frequency of its oscillations and

the distance it travels in figure 6b,c) remains protected behind

its progenitors. Other patterns like those shown in figure 7

might suggest a series of successive relays in the leading role.
Our results show, however, that such patterns emerge in

our numerical simulations from spatial dynamics alone. Such

scenarios should be understood as the underlying stable

states which, in combination with time variations of the con-

trol parameters (mainly dc(t)) and the possible contribution of

behavioural phenomena, are the attractors2 of the collective

behaviours observed in nature.
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The previous model [15] already displayed collective

hunting-like behaviours, such as leadership, relay running

and ambushing. Our present model expands on this

previous work by using more realistic parameters for

wolf–wolf and wolf–prey interactions. Specifically, it

allows for a smooth transition between areas where the

direct wolf–wolf interaction is significantly different (i.e.

when Ri is close to da) and for a more realistic behaviour of

the prey. Moreover, this work allows for a richer dynamic

structure of spatial configurations. It has also revealed a

possible mechanism by which role differentiation can arise

as an emergent behaviour of collective hunting; this results

in our model from the successive bifurcations into multiple

branches in the R–dc curve.

The differentiation of privileged orbits could alternatively

be interpreted as being the result of the social structure of

the hunting pack. Our results illustrate that social structure

is not necessary. Nevertheless, it is possible that the mechan-

isms underpinning our model may interact with the pack

social structure in real life situations, in such a way that

some individuals end up in privileged locations more

frequently than others.
The rich variety of patterns displayed by larger packs

demonstrates why wolf-pack hunting is often interpreted in

terms of strategies, such as foresight, planning or purposiveness.

Without ruling out the importance of social structures and

cognitive abilities, we propose to incorporate a fundamental

ingredient to the behavioural interpretations of wolf-pack hunt-

ing patterns: the emergent contribution of the combination of

simple mechanical rules.
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