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Tiger beetles pursue prey using a
proportional control law with a delay of
one half-stride

Andreas F. Haselsteiner1, Cole Gilbert2 and Z. Jane Wang1,3

1Department of Mechanical and Aerospace Engineering, 2Department of Entomology, and 3Department of
Physics, Cornell University, Ithaca, NY 14853, USA

Tiger beetles are fast diurnal predators capable of chasing prey under closed-

loop visual guidance. We investigated this control system using statistical

analyses of high-speed digital recordings of beetles chasing a moving prey

dummy in a laboratory arena. Correlation analyses reveal that the beetle

uses a proportional control law in which the angular position of the prey

relative to the beetle’s body axis drives the beetle’s angular velocity with a

delay of about 28 ms. The proportionality coefficient or system gain,

12 s21, is just below critical damping. Pursuit simulations using the derived

control law predict angular orientation during pursuits with a residual error

of about 78. This is of the same order of magnitude as the oscillation imposed

by the beetle’s alternating tripod gait, which was not factored into the con-

trol law. The system delay of 28 ms equals a half-stride period, i.e. the time

between the touch down of alternating tripods. Based on these results, we

propose a physical interpretation of the observed control law: to turn

towards its prey, the beetle on average exerts a sideways force proportional

to the angular position of the prey measured a half-stride earlier.
1. Introduction
Diurnally active insects that perform visually guided pursuit to track their prey or

potential mates face two problems compared with vertebrate animals: relatively

small nervous systems to compute control algorithms [1] and poor visual resol-

ution to provide input [2]. How such insects overcome these challenges may

reveal principles that could be applied to other similar control systems. Vertebrate

animals have relatively complex brains, thus predators such as fish [3], birds [4],

bats [5] and social carnivores [6,7] can develop sophisticated neural compu-

tational algorithms to process sensory information about the prey and provide

control commands to their locomotor systems. Insects, on the other hand, must

adopt a simpler type of control system to accomplish the same tasks. Male flies

of one species use open-loop control of their pursuit trajectory to intercept

females [8]. Successful capture depends on a conspecific female to be a certain

size and, after the male first localizes her, to fly on a straight trajectory at a con-

stant velocity. But most insects, whether pursuing potential mates or prey, cannot

depend on their targets to move along straight trajectories at constant velocities

and thus have evolved closed-loop control of their pursuit systems, e.g. male

flies [9], male honeybees [10] and dragonflies [11,12].

Closed-loop control algorithms for angular orientation of the pursuit trajec-

tory have received the most scrutiny, and two kinds of control laws have been

reported (figure 1). The first one minimizes the error angle of the target using a

proportional, position-sensitive servo system in which the pursuer’s angular

velocity depends upon the visual angular position of the target with some

lag time, typically of the order of 10–40 ms in flying flies [9,13,14]. Tiger beetles

running after their prey also show a relationship between the angular position

of the prey and the subsequent angular velocity of the beetle [15], but this has

not been rigorously tested as a control algorithm.
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Figure 1. Two closed-loop pursuit strategies: ‘tracking’ and ‘interception’ [11]. (a) The animal controls its angular velocity to minimize the error angle
ue by turning proportional to ue with a time delay t. (b) The animal controls its angular velocity to maintain the position of the prey at some non-zero
error angle.
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The second type of controller keeps a constant, but non-

zero, error angle [12,16]. Dragonflies appear to continu-

ously control their angular velocity to maintain the

target’s position at a retinal elevation of about 458, where

the image can be viewed by so-called target-selective des-

cending neurons (TSDNs), visual interneurons thought to

be involved in the control circuit [17]. The temporal lag

of the dragonfly’s control system is about 30 ms [12],

which is similar to that measured for other insect visual

guidance systems.

Tiger beetles are visual predators that run their prey

down on relatively flat, open habitats [18]. They run so

fast that visual motion blur degrades target contrast and

the beetles must momentarily stop to re-localize the prey,

typically resulting in ‘stop and go’ pursuits [15]. When

prey contrast is high enough, however, tiger beetles are

able to chase prey continuously under closed-loop control.

Thus, they are an ideal animal to address questions of visu-

ally guided control of pursuit in a walking insect and

coupling of the system lag with actuation timing. More

broadly, the pursuit dynamics provides a natural exper-

imental system for us to understand the interplay

between the internal neural control and the mechanics of

locomotion [19–22].

In this work, we carry out a systematic study of the

control algorithm used by tiger beetles to adjust their

orientation during pursuit. We filmed beetles at 250 Hz

during the pursuit of a prey dummy controlled by hand

to move in an arbitrary fashion. To find the control law,

we examined various statistical correlations between the

beetle’s dynamic state and that of the prey. Much of the

observed trajectories can be explained by a simple pro-

portional control law that dictates angular rotation of the

beetle’s body in response to the error angle of the prey

with a time delay of about 28 ms and a gain just below

critical damping. Simulated angular orientation according

to this control law compares well with the empirical

data. The beetle walks by alternating its two sets of leg

tripods every 28 ms, thus the system lag is very similar

to half the stride period. To understand the physical

meaning of this proportional control, we offer an

interpretation of this control law in terms of the beetle’s

walking strategy.
2. Material and methods
2.1. Experimental animals
Tiger beetles, Cicindela tranquebarica (Carabidae: Cicindeli-

nae), were collected in an abandoned quarry near Ithaca,

NY, USA. Beetles are housed individually in transparent

plastic containers (13 � 18 � 7 cm tall) in the laboratory.

The floor of the container is covered with a mixture of soil

and sand that is kept slightly damp and beetles are fed

houseflies. Each beetle has the left hindwing clipped to pre-

vent flight and escape from the containers or test arena. A

small dot of white paint (Witeout) is applied to the centre

of the thoracic pronotum and to the posterior tip of the

elytra to serve as fiducial marks for digitizing. The dataset

is derived from the five beetles that responded most robustly

to the prey dummies. We analyse 39 pursuits elicited by

different movements of the prey, some are stationary,

some move in relatively straight paths and others move in

complex patterns.
2.2. Experimental set-up and protocol
Experiments are performed in a cylindrical arena (33 cm

diameter � 18 cm tall, figure 2a). The walls are patterned

alternately with black (4 mm) and white (12 mm) vertical

stripes to provide contrast for the beetle moving through

the arena. Two 45 W compact fluorescent lamps illuminate

the arena from above. The temperature in the arena during

filming was about 258C. The floor of the arena is calibrated

by filming a 1 � 1 cm grid on the floor. The prey dummy is

a high-contrast black sphere (4.5 mm diameter) glued to a

nylon monofilament.

Pursuits of a prey dummy are digitally filmed at 250

frames per second with 1024 � 1024 resolution using a

high-speed camera (Phantom v. 5.0, AMETEK, USA) aimed

at a mirror inclined 458 above the arena. The digital greyscale

images are imported into a custom MATLAB (MathWorks,

Natick, MA, USA) program and automatically converted to

binary black-and-white images (figure 2b). Our program

then finds the centre point of the prey dummy and the fidu-

cial spots on the beetle. The coordinates of these three points

are used to calculate the following angles and angular
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Figure 2. (a) Schematic of the experimental set-up. Beetles are filmed through a mirror (M) by a high-speed camera (C) as they pursue a prey dummy in an arena
(A) illuminated by two lamps (L). (b) Actual binary image of a tiger beetle pursuing a prey dummy automatically extracted from a digital frame. Our software finds
the two fiducial white spots painted on the beetle and the centroid of the prey dummy (marked as grey crosses). From these three points, the angular variables
with respect to an external Cartesian frame (X,Y) are calculated: the beetle’s orientation ub, the error angle ue from the beetle’s mid-sagittal plane (dotted line) and
the prey’s angular position up.
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velocities with respect to an external Cartesian (X,Y) frame of

reference:

ub, orientation of the beetle’s longitudinal body axis;

up, angular position of the prey dummy;

ue, error angle between the prey dummy and the beetle’s

body axis;

vb, angular velocity of the beetle defined as the rate of change

of ub;

vp, prey angular velocity defined as the rate of change of up;

ve, angular velocity of the error defined as the rate of

change of ue.

All angles are calculated for each frame and no smoothing

is applied. In the kinematic analysis, velocities (vDt
b , vb, vp) are

calculated as the central difference over two frames. In the

analysis of the control law velocities (vb, vp, ve, vT) are calcu-

lated as the central difference over the mean stride period.

Prey velocity vp is calculated for the dummy’s geometric

centre and the beetle’s linear velocity is calculated for the

centre of mass, which is assumed to be on the mid-sagittal

body axis close to where the hind legs are attached. The bee-

tle’s sideways acceleration, a?, is calculated as the product of

linear velocity and angular velocity, a? ¼ vTvb. Unless other-

wise noted, values are presented in terms of mean value+
1 s.d. Statistical tests are performed in MATLAB.

In addition, we analyse the walking gait for one straight

run from each of the five beetles by counting the time

frames that each leg is in stance phase (leg has ground

contact) and swing phase (leg is airborne).

Individual beetles are acclimatized to the arena for 10 min

before the prey dummy is introduced by lowering it from

above and moving it across the floor by hand. The beetles

often chase with intermittent runs and stops, stopping

when the target contrast is too degraded owing to motion

blur, but when contrast of the target is high the beetle is

able to achieve continuous pursuit [15]. The angular and

linear velocities of tiger beetles are similar for pursuits of

dummies and live prey [15]. In the present dataset of 39
pursuits, only those in which the beetle moves continuously

towards the target from a stationary position are analysed,

comprising five straight runs, 17 runs with a single turn to

either the left or right and 17 runs with two or more turns.

The pursuit durations range from 220 to 2284 ms.
3. Results
3.1. Walking gait and associated body oscillation
Like other typical six-legged insects, tiger beetles walk and

run with an alternating tripod gait (figure 3). To understand

the walking kinematics of tiger beetles, we first analyse a

straight run from each of the five beetles in pursuit of a

stationary prey dummy. The beetles run with a mean velocity

of 30.5+6.9 cm s21 (or 22.9 body lengths per second). Their

maximum velocity is 35.5+ 4.9 cm s21 (26.7 body lengths per

second). The mean stride period, the time between successive

initiations of stance phase for one leg, is 56+4 ms, corre-

sponding to a stride frequency of about 18 Hz. The beetle’s

alternating tripod gait leads to a periodic sway of the body;

the longitudinal axis of the body oscillates in the yaw plane

about 48 over half a stride, which corresponds to an angular

velocity vDt
b of about +5008 s21.

When alternating between the stance phase of one tripod

and that of the other tripod, the swing phase of each leg lasts

slightly longer than the stance phase, on average by about

15%. The stance phase of the middle leg is significantly

longer on average than that of the front and hind legs (a ¼

0.05, Kruskal–Wallis). The mean (+s.d.) proportion of time

during one stride cycle spent in stance phase for front,

middle and hind legs is 0.39+ 0.08, 0.48+0.10, 0.40+0.06

(n ¼ 50 for each leg), respectively.

3.2. Chasing patterns
Tiger beetles approach stationary prey if it is initially wiggled

to attract their attention. To elicit a pursuit, we wiggle and

drag the dummy prey in the arena along simple or complex
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Figure 3. Body oscillation owing to tripod gait. (a) The beetle’s body axis is shown by a line with the dot as the head during a straight run. The asterisk represents
the position of the stationary prey dummy. For clarity, the beetle is plotted every 56 ms, which equals the average stride period, and thus the spatial distances equal
the stride lengths. (b) The oscillation of the beetle’s heading, ub (upper panel), owing to the alternating tripod gait (bottom panel). Two angular velocities are
shown in the middle panel: the beetle’s instantaneous angular velocity, vDt

b , calculated from the finite difference over the sampling period, and the averaged
angular velocity over a stride, vb, calculated from the finite difference over a stride. As expected, the averaged angular velocity, vb, eliminates the oscillations
owing to symmetric stepping to the left and right, thus giving us the angular rotation due to turning. Numbers across the top correspond to beetle positions in
panel (a). The bottom panel shows the stepping pattern for the three right (R) and three left (L) legs with stance indicated as solid rectangles and swing as dotted
lines. One tripod consists of R1, L2, R3 (black), the other one of L1, R2, L3 (grey). The arrows in the beetle icons indicate the ground reaction forces (arrows) on the
legs of each tripod as they support the beetle in stance phase.
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paths (figure 4). During such pursuits with turning trajec-

tories (n ¼ 34), the beetle’s linear velocity has a similar

magnitude to that in straight runs, with a mean of 27.5+
3.9 cm s21 (19.7 body lengths per second) and a maximum

of 38.6+ 5.4 cm s21 (27.7 body lengths per second). The

highest recorded linear velocity is 46.6 cm s21 (35.1

body lengths per second). The mean stride frequency is

18.4+ 1.2 s21, corresponding to an average stride period of

55+ 4 ms. During a sharp turn, the angular velocity vb can

be as high as 14008 s21.

In a typical pursuit in this study, the beetle starts its chase

when the prey is moved in its lateral field of view. During

each pursuit, the beetle adjusts its orientation as well as its

velocity. The beetle’s orientation is almost tangential to the

path, which is similar to other walking insects and has also

been quantified for cockroaches [23]. Here, we further note

that, from geometry, the angular velocity of a point travelling

along the path is the same as the angular velocity of the beetle

about its centre of mass. The data show that the maximum of

linear velocity vT is inversely correlated to angular velocity vb

averaged over a stride period (figure 5a). This inverse

relationship implies that the beetle has a maximal sideways

acceleration, a?, as a? ¼ vTvb. The maximum sideways accel-

eration is 405 cm s22, as shown in figure 5b. The maximum

linear velocity over one stride is 41.7 cm s21 (figure 5a,b).

We thus expect that the angular and translational velocities

are not independently controlled owing to the coupling

between the force and torque exerted by the legs. In this

study, we focus on the control law for the observed angular

velocity during pursuits.
3.3. Control law for beetle orientation during pursuit
When the prey dummy moves in a relatively straight path,

the beetle approaches towards the prey initially, and as it

gets closer the beetle makes a sharp turn and then follows

along the prey trajectory (figure 4b,e). This may seem to

suggest a control law that would depend on the distance to

the prey. But as we will see, a control law for the beetle’s

angular orientation alone is sufficient to describe the bulk

of the behaviour.

To find the control law for the beetle’s orientation, we ana-

lyse 34 of the pursuits that contained one or more turns for

correlations between the parameters of the target and the kin-

ematics of the beetle (figure 6a,c). Of potential candidates of

dynamic variables of the beetle and prey, we have tested the

correlations among different pairs: vb and ue, vb and ve, vb

and vp, _vb and ue, _vb and ve, and _vb and vp (figure 7c).

The strongest correlation is between the beetle’s rotational vel-

ocity, vb, and the angular position of the prey relative to the

beetle’s heading, ue (figure 7c). This correlation can be seen

directly from the time traces of these two variables (figure

6b,d). When calculating angular velocity, we note that the bee-

tle’s orientation consists of the superposition of two

components, one corresponding to the turning motion given

by the control law and the other faster oscillation owing to

the beetle’s alternating tripod gait (figure 3b). Therefore, for

analysis of the control law, we calculate vb by taking a finite

difference of ub over an averaged stride period. This effectively

measures the average angular velocity of the beetle over each

stride period and omits the high-frequency wobble owing to

the alternating tripod gait (figure 3b). A cross-correlation of
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vb(t) and ue(t 2 t) for various temporal lags t for each pursuit

yields the maximum correlation, R2 ¼ 0.873+0.109 (n ¼ 34),

when t ¼ 28 ms (figure 7a, inset).

The correlation between vb and ue suggests a proportional

control law for the predicted angular velocity of the beetle of

the form vb(t) ¼ kue(t 2 t), where k is the gain and t is the

time delay. To find the values of k and t, we compared observed

(vb) and predicted angular (v̂b) velocities by minimizing their

RMS deviation dvb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

(vb � v̂b)2/
P

v2
b

q
over all data.
The deviation dvb has its minimum when k¼ 12 s21 and t ¼

28 ms (figure 7b, white dot), yielding a control law of

v̂b(t) ¼ 12ue(t� 0:028 ) indicated by the black line (figure 7a).

3.4. Simulated trajectories
To further examine whether this control law describes the

instantaneous orientation of the beetle during a chase, we for-

ward integrate the differential equation to predict ub, the

orientation of the beetle’s body, and compare it with the
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experimental data. Notations are the same as in figure 4. Typical trajectories of the beetle chasing a prey dummy moving along a straight (a) or sinuous
(b) trajectory. Grey symbols ¼ measured orientation ub, black arrows ¼ simulated orientation ûb derived from the control law v̂b(t) ¼ 12ue(t � 0:028).
(c,d ) Deviation between the measured and predicted orientations for pursuits shown in (a) and (b), respectively. (c) For the simple trajectory (a), the mean deviation
is 5.3+ 4.08 (n ¼ 167) with the maximum deviation of 15.58 that occurs after the sharp turn at strides 7 – 9. (d ) For the more complex sinuous pursuit (b), the
mean deviation is 6.7+ 5.58 (n ¼ 430) with the maximum of 24.68 occurring when the beetle almost stopped (strides 3 – 5).
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actual measured value. The predicted orientation compares

well with the observed ones. Two representative pursuits,

one a relatively straight chase and the other with a very sinu-

ous trajectory, illustrate that the body orientations predicted

from the control law are a very close fit to the measured orien-

tations (figure 8). Across all 34 pursuits, the simulated
orientation ûb deviates from the measured orientation ub on

average 6.6+2.28 (n ¼ 34). Such a mean difference is compar-

able to the angular deviation due to oscillation of the tripod

gait (figure 3), which is not accounted for in the control law.

The highest deviation in any pursuit was 338, which occurred

during a sharp turn when the beetle turned slower than the
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(a) (b)

Figure 9. Comparison of simple proportional control and proportional control augmented with a velocity term. (a) Simple proportional control in which the error
angle ue drives the beetle’s orientation. In the beginning, the beetle turns to the left because the prey is on the left side of its visual field. As the prey crosses the
midline of the beetle’s field of view, the beetle turns to the right, leading to an S-like trajectory. (b) Augmented proportional control in which the beetle’s orien-
tation is driven by the prey positional error ue and its angular velocity vp. Although the prey item begins on the left side of the visual field, the beetle turns to the
right as the velocity term outweighs the position term and leads to a quicker approach to the prey.
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simulation predicted. The second highest deviation of 318,
however, occurred when the beetle turned faster than pre-

dicted. Note that we have only simulated the body

orientation, and body position is given by the experiments.

We have assumed a constant gain k and also neglect the

coupling between the controls of linear and angular velocity.

3.5. The role of prey angular velocity in the control law
The simplicity of proportional control is appealing consider-

ing that the beetle’s brain has relatively slow and limited

computing power. With proportional control, the compu-

tational task only requires the beetle to measure the angular

position of the prey, without measuring the angular velocity

of the prey or itself. Nevertheless, our data do not rule out

that a beetle can and may use additional input variables for

its control algorithm. In their study of freely flying houseflies,

Land & Collett [9] suggested that the visual angular velocity

of a target may be used to augment proportional control and

would allow the pursuer to anticipate or predict the trajectory

of the target. Although such augmentation would be adap-

tive for prey seen anywhere in the visual field, the benefit

may best be explained by a scenario in which the prey is

located on one side of the beetle’s visual midline and

moves to the opposite side of the visual field, e.g. the prey

is seen at 208 on the left side and is moving to the right

(figure 9). With only proportional control of vb, the beetle

would turn to the left, likely overshooting the position of

the prey. A prey velocity term in the control strategy,

however, could compensate the tendency to turn left, and

guide the beetle to turn rightward. That way the beetle

could ‘predict’ the prey’s path resulting in a quicker approach

towards the prey.

The use of angular velocity as an input parameter has

been further explored in flies ([24], fig. 3 in [25]), but the

data are equivocal. In the case of tiger beetles, including the

angular velocity of the prey image ve as the second term in

the control law, v̂b(t) ¼ k1ue(t� t)þ k2ve(t� t), does not

improve the statistical fit, but including prey velocity vp,

v̂b(t) ¼ k1ue(t� t)þ k2vp(t� t), reduces the fitting error to

dvb ¼ 0.305+0.070 (n ¼ 34), which is an 11.3% improvement

over the simple proportional controller (figure 10). The mini-

mum deviation occurs with values of k1 ¼ 9, k2 ¼ 0.3 and

t ¼ 36 ms, suggesting a control law of v̂b(t) ¼ 9ue(t� 0:036)þ
0:3vp(t� 0:036). Allowing different time delays for the
two terms, i.e. v̂b(t) ¼ k1ue(t� t1)þ k2vp(t� t2), has a negli-

gible effect on the statistical fit. Because the derivative term is

small for a large part of the data when ue is finite, we expect

the effect of the derivative term on the overall statistics to be

small. Thus, an improvement of 11% is not negligible. On the

other hand, we note that vp is not a directly measured quantity.

In order for the beetle to detect prey angular velocityvp, it has to

compute a summation of two other angular velocities, vp ¼

vb þ ve. ve can be measured from the visual input and vb

could either be extracted from movement of the stationary back-

ground in the optical flow or be an efference copy from the

beetle’s motor signals to control angular velocity. All of these

would introduce complexity in both neural sensing and compu-

tation. One would need to carry out analysis beyond the

statistical correlations in order to demonstrate the effect of vp.

The lack of solid evidence for augmentation of the pro-

portional controller with a signal derived from the velocity

of the prey in tiger beetles and other insects is curious. Sev-

eral groups of insects, such as dragonflies [26,27], mantids

[28] and various families of flies (blow flies [29]; hover flies

[30]), have visual neurons that are excited by motion of

small targets through their receptive fields. Thus, such neur-

ons would ideally encode a target motion signal that could be

used for visual guidance. Even the well-studied TSDNs of the

dragonfly, which as a population encode a vector indicating

the direction of moving prey [31], do not seem to carry vel-

ocity information about target motion that could augment

positional information. The presence of ideally responsive

neurons, however, does not mean that they are used to

guide pursuit behaviour. Thus, it remains an open question

whether any insect is capable of using target velocity infor-

mation to augment its position-sensitive control during

visually guided pursuit and more careful behavioural studies

directly addressing this issue would be informative.
4. Physical interpretation of the control law
The results of our correlation analyses and simulations reveal

that tiger beetles in closed-loop pursuit of prey use a visual

guidance control law that is well described as a proportional

controller of the form v̂b(t) ¼ 12ue(t� 0:028) in which the

beetle’s angular velocity vb is driven by the visual angular

position of the prey ue with a lag of 28 ms. Proportional con-

trollers in which the target angular position in the visual field
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drives the pursuer’s angular velocity after a short delay have

been found in other insect pursuit systems. Male flies of

many families use closed-loop, continuous control and

attempt to reduce the positional error of the target to zero

in azimuth, and presumably elevation, although in practice

the well-studied pursuits have only examined pursuit flights

in the horizontal plane [9,13,14,32]. Moreover, Wagner’s [33]

fully three-dimensional study of chasing flies failed to find

any statistical relationship between vertical visual error and

the pursuer’s elevational angular velocity in the pitch

plane. Dragonflies may also use simple proportional control

in which positional changes of the target are followed by

changes in the pursuit trajectory after a short lag [12]. Praying

mantids visually track prey with closed-loop smooth pursuit

and open-loop saccadic head movements. Nevertheless, the

angular velocity of the saccades is related to the prey angular

positional error [34]. Thus, proportional controllers of the

type found in tiger beetles are common in visually guided

pursuit by insects. We will focus on the gain and lag of the

tiger beetle’s control law, as well as develop the physical

interpretation of the control law.
4.1. Interpretation of the gain k
The dynamical behaviour of the beetle’s heading, governed

by vb(t) ¼ kue(t 2 t), depends on the relationship between k
and t (figure 11), as the solution to this time-delayed differ-

ential equation depends on the relation between k and t.

When kt ¼ 1/e, the system is critically damped (see the elec-

tronic supplementary material for a derivation of this). In

our system, at a time delay of t ¼ 28 ms, the system

would be critically damped at k ¼ 1/et ¼ 13.1 s21. Therefore,
the observed k ¼ 12 s21 corresponds to a feedback control

just below critical damping. That is, at k ¼ 12 s21, the

beetle minimizes the error angle in close to the shortest

possible time. Above the critical k, the orientation would

oscillate about zero. Below the critical k, it would take

longer to approach to zero.

These effects are illustrated in simulations of the delayed

differential equation with different values for k (figure 11). A

stationary prey is positioned at an initial error angle ue ¼ 908.
At the critical value of k ¼ 13.1 s21, it takes 153 ms to reduce

the error to 5% of the initial value while it takes 177 ms when

k ¼ 12 s21.
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4.2. Interpretation of the delay t
The time delay of the running tiger beetle’s control system,

28 ms, is within the range measured for other visual guidance

control systems of flying insects: fruit fly, 20–30 ms [35];

lesser house fly, 20–40 ms [9]; house fly, 10–50 ms [33,36];

blowfly, 20 ms [14]; long-legged fly, 20 ms [32]; hover fly,

10–20 ms [13,37]; dragonfly, 28 ms [12]. The values reported

by some authors, e.g. [14], admittedly may be overestimates

due to slow camera speed when the best correlation between

target position and the pursuer’s angular velocity occurs with

a lag of a single frame. Thus, the actual lag could be shorter

than that reported. Nevertheless, the wingbeat period of

these flying insects is much faster than these lags reported

for visual control. Flies respond to mechanical perturbations

during flight more quickly. Halteres that sense such pertur-

bations of flight trajectory do supply sensory information to

the wings with each stroke [38]. Nevertheless, several wing

strokes occur before the control system begins to correct the

perturbation about 12 ms later [20]. Thus, even in this fast

system, control from sensor to actuator does not appear to

operate on a wingstroke-by-wingstroke basis. Given the

longer lags of the visual control systems, it is even more un-

likely that visual information is used to control wing

actuation on a wingstroke-by-wingstroke basis. A delay of

10–50 ms may simply be how long it takes for a signal to

get through the retina, optic lobe and down to the thoracic

musculature to initiate a change in body orientation.

With the running tiger beetle, however, the control system’s

delay value of 28 ms may be interpreted differently because it is

almost identical to the time it takes to alternate between the two

sets of tripods, i.e. half of the measured stride period of 55 ms.

We are therefore tempted to think that the observed time delay

is functionally coupled with actuation time. That is, each time

the beetle places one set of leg tripods into stance phase, it

adjusts the forces in response to the error angle measured at a

time one half-stride earlier. This would imply that the net
time it takes the beetle to measure the error angle and the

time to make a neural calculation of how much force and

torque to apply occur within a half-stride.

We further note that the time delay found in the statistical

correlation does not necessarily correspond to the delay

between sensing and actuation in a discrete control system.

To illustrate this, we consider an ideal case in which the error

angle ue increases linearly (figure 12). If the system is continu-

ous, then the response (vb) is also a linearly increasing function

(black curve) with a fixed delay. However, if the actuation is

discrete, then vb can follow a different time course. In the

case shown above, the delay between sensing and actuation

is only half of the delay in the continuous model.

In figure 12, the grey curve shows one possible case of

actuation dynamics in which the torque is applied at discrete

time steps. In this step function, the beginning of each step

represents the time the beetle actuates by applying torque.

To ensure that the beetle turns the same amount as in the con-

tinuous model at the end of each step, the integrals of the

linear function and the step function must be the same.

Thus, the two functions intersect in the middle of each of

the constant vb periods (figure 12, black crosses). By assum-

ing discrete sensing of the error angle ue, we can find the time

when sensing happens by finding the correct ue values corre-

sponding to the vb step values. From the definition of the

continuous vb response, we know that vb at the intersection

point is proportional to the value of ue 28 ms earlier. Actua-

tion, however, happens 14 ms before the intersection point

as the curves intersect in the middle of the constant vb

period. The ue value proportional to the vb period is 28 ms

before intersection and 14 ms before actuation. This is the ue

value used to control vb at the following discrete actuation

and therefore represents the time of discrete sensing. Conse-

quently, in the given scenario the time difference between

sensing and actuation is 14 ms although the continuous

linear functions have a delay of 28 ms.
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4.3. Interpreting the control law in terms of a walking
strategy

We conclude by offering a mechanical interpretation of the

proportional control law. So far, we have not assumed any

physical law governing the beetle’s dynamics. The control

law was deduced from the statistical correlations. This control

law now allows us to deduce the underlying dynamic law

associated with walking.

As the first guess, we may argue that the proportional control

law implies _vb � _ue(t� t), by taking the time derivative on each

side. This would further imply that the tiger beetle exerts a torque

in proportion to _ue(t� t) because torque is proportional to _vb,

I _vb(t) ¼ k00 _ue(t� t). While this relation is statistically true, it

does not lend itself to a simple mechanical picture of walking

dynamics. It is also unlikely that the beetle’s walking is driven

by _ue which is not a directly measured quantity.

Instead, a more natural interpretation of this control law

comes from considering sideways force generation. We can

see from geometry that the sideways acceleration is pro-

portional to the body’s rotational rate, a?(t) ¼ v(t)vb(t). To see

this, first consider the case of a moving point mass, the sideways

acceleration, i.e. the acceleration perpendicular to the path, is

given by the product of its translational velocity and the turning

rate along the arc, a? ¼ v(du/dt) (figure 13a). Since the beetle’s

orientation is almost tangential to the path (figure 13b), its
turning rate is the same as that of a point along the arc, vb ¼

du/dt. Therefore, a? ¼ vvb. Although the translational velocity

is not strictly a constant, a?� vb still turns out to be a good

description of the data (figure 13d). Given this, the control law

vb(t) ¼ kue(t 2 t) can be viewed as a consequence of the

dynamic law Ma?(t) ¼ k0ue(t 2 t). An advantage of viewing

the control law in this way is that it suggests a walking strategy

for the pursuit dynamics. That is, on average, the beetle exerts

sideways force in proportion to the error measured one half-

stride earlier.
5. Conclusion
In summary, our statistical analyses of pursuit dynamics of

tiger beetles show that they use a proportional control law

to catch their prey. We further argue that the proportional

control law is a manifestation of a walking strategy. To turn

towards the prey, the beetle biases its alternating tripods to

generate a sideways force proportional to the error angle

measured a half-stride earlier. The data also show that the

beetle adopts a nearly optimal gain value so that it minimizes

the error angle in close to the shortest possible time.
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