Skip to main content
. Author manuscript; available in PMC: 2014 May 1.
Published in final edited form as: IEEE Trans Image Process. 2013 Jun 21;22(10):3866–3878. doi: 10.1109/TIP.2013.2263147

Algorithm 1.

K-SVD Dictionary Construction

1: Initialize F
2: repeat
3:   Find sparse coefficients Γ (γi’s) using any pursuit algorithm.
4:   for j = 1,…, M, update fj, the j-th column of F, by the following process do
5:     Find the group of vectors that use this atom: ζj := {i : 1 ≤ iM, γi(j) ≠ 0}
6:     Compute Ej := Q − ∑ij fi ΓTi where ΓTi is the i-th row of Γ
7:     Extract the i-th columns in Ej, where i ∈ ζj, to form EjR
8:     Apply SVD to get EjR = UΔV
9:     fj is updated with the first column of U
10:     The non-zeros elements in ΓTi is updated with the first column of V × Δ(1, 1)
11:   end for
12: until Convergence criteria is met