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Optogenetics and synaptic plasticity
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The intricate and complex interaction between different populations of neurons in the brain has imposed limits on our ability to gain 
detailed understanding of synaptic transmission and its integration when employing classical electrophysiological approaches.  Indeed, 
electrical field stimulation delivered via traditional microelectrodes does not permit the targeted, precise and selective control of 
neuronal activity amongst a varied population of neurons and their inputs (eg, cholinergic, dopaminergic or glutamatergic neurons).  
Recently established optogenetic techniques overcome these limitations allowing precise control of the target neuron populations, 
which is essential for the elucidation of the neural substrates underlying complex animal behaviors.  Indeed, by introducing 
light-activated channels (ie, microbial opsin genes) into specific neuronal populations, optogenetics enables non-invasive optical control 
of specific neurons with milliseconds precision.  These approaches can readily be applied to freely behaving live animals.  Recently 
there is increased interests in utilizing optogenetics tools to understand synaptic plasticity and learning/memory.  Here, we summarize 
recent progress in applying optogenetics in in the study of synaptic plasticity.
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Introduction
As a fundamental mechanism of learning and memory, synap-
tic plasticity has been extensively studied using conventional 
electrophysiological and pharmacological techniques in naïve 
or transgenic animals, as shown in Figure 1[1].  However, the 
precise mechanism of synaptic plasticity has not yet been elu-
cidated in detail.  Furthermore, findings from studies employ-
ing these traditional approaches sometimes remain contro-
versial and require further study[2-4].  The controversial results 
may at least partially be accounted for by the limitations of 
classical electrophysiological or pharmacological protocols 
that induce synaptic plasticity.  Such limitations include dif-
ficulties in the isolation of individual synaptic responses or 
different neuronal populations within the electrical field or 
chemical perfusion area, identification of response location, 
and loss of an effective time window for LTP or LTD induc-
tion.  

These limitations may be overcome by a recently established 
technique termed optogenetics.  Delivery of genes that 
encode light-activated channels (opsins) to be expressed 

within specific neuron populations allows these neurons to 
be selectively activated or inhibited by different wavelengths 
of light[5].  Because of its specificity, precise reversibility, and 
success in rat models[6], this technique will open new avenues 
for the study of synaptic plasticity and learning/memory-
related diseases.
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Figure 1.  The NMDAR-dependent LTP and LTD induced by different 
electrical stimulation protocols.  Inserts represent fEPSP before (1) and 
after (2) electrical stimulation at different frequencies.  
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Opsins, optogenetics, and their application in neuro­
science
Optogenetics is a technique that takes advantage of opsins, 
which are found in retinal photoreceptor cells and are acti-
vated by light at specific wavelengths.  This technology com-
bines genetic targeting of specific neurons with optical control 
of those neurons to achieve spatiotemporally precise control 
of specific neurons with millisecond-scale pulses of light.  
Several families of opsins have been developed through modi-
fications by multiple engineering methods, including chan-
nelrhodopsin (ChR), halorhodopsin (HR) and bacteriorhodop-
sin (BR)[7].  ChR 2 (ChR2), the first opsin used in neurons to 
induce depolarization[8], is a cation-selective channel for Na+, 
H+, K+, and Ca2+ following activation by blue light at 475 nm 
wavelength[9] (Figure 2).  In addition, different variants of ChR 
have been engineered to develop an expanded toolkit of chan-
nels with distinct electrical characteristics, including CatCh 
(calcium permeability-enhanced ChR)[10], ChIEF[11], ChETA[12], 
and VChR1[13].  HR is a light-driven inward chloride pump[14] 
derived from the archaeon Natronomonas pharaonis (Halo/
NpHR) and is genetically expressed in neurons to induce 

hyperpolarization by yellow light at 593 nm[15] (Figure 2).  BR 
is microbial single-component proton pumps activated by 
light[7], represented by Arch which is activated by yellow or 
green light at 575 nm[16] (Figure 2).  In addition to being light-
sensing proteins, opsins are also G-protein coupled receptors 
(GPCRs) and capable of binding G-proteins intracellularly[17].  
Recently, GPCRs, like alpha-1 and beta-2 adrenergic recep-
tors and 5-HT1a receptor, have been successfully engineered 
into light-activated regulators named OptoXRs[17, 18].  These 
examples highlight the diversity and expand the repertoire of 
genetically encoded proteins allowing electrical activity within 
targeted neuronal populations to be precisely regulated by 
light.

Since its introduction in hippocampal neurons in 2005 by 
Boyden et al[8], optogenetics has been widely used to study 
GABAergic, cholinergic, serotonergic/glutamatergic and 
dopaminergic transmitter systems in a variety of CNS regions, 
including the cerebral cortex, cerebellum, hippocampus, 
amygdala, striatum and brainstem.  This has been undertaken 
in species ranging from rodents, worms, and non-human pri-
mates with multiple expression systems and opsins[19–29].  The 
advantage of optogenetics is that it may avoid the local release 
of neurotransmitters and the damage evoked by electrical 
stimuli[22, 23], which introduce high-frequency, sustained stimu-
lation[23].  This type of neuron population-specific approach 
will facilitate the precise mapping of neuronal connectivity 
and will more clearly elucidate the mechanisms of synaptic 
plasticity and, consequently, learning and memory.  

Optogenetics in synaptic plasticity
Optogenetics in neuronal activity
By applying optogenetics, Higley and Sabatini find that light 
stimulation of motor cortex neurons projecting to the striatal 
medium spiny neurons (MSNs) reliably evokes EPSPs and 
EPSCs that are reduced by the D2R agonist quinpirole.  In 
contrast, quinpirole fails to change EPSPs evoked by electri-
cal stimulation[22].  These results may imply that optogenetic 
approaches have great potential in the study of the bidirec-
tional synaptic plasticity induced by electrical stimulation of 
dopamine in striatum[30].  This conjecture is further supported 
by the work of Goodl and Nicoll[31].  AMPA and NMDAR 
are well known to be involved in synaptic plasticity, and 
Goodl and Nicoll used optogenetics to detect a compensa-
tory depression of postsynaptic AMPAR and NMDAR fol-
lowing 24 h of optical stimulation of CA1 pyramidal neurons 
with blue light at 50 ms, 1-3 Hz[31].  Optogenetics is also used 
to study presynaptic activity in neurons.  Photostimula-
tion of proopiomelanocortin (POMC) neurons expressing 
ChR2 significantly reduces the frequency of miniature EPSCs 
(mEPSCs)[32], which is also used to study synaptic plasticity[33], 
while POMC neurons are capable of storing a memory 
of specific hormonal states[32].  The presynaptic activity 
induced by photostimulation can be modulated by glial cells.  
Additionally, activation of ChR2 expressed in astrocytes can 
trigger enough glutamate release to activate neuronal AMPA 
receptors[34].  These results suggest that it is possible to apply 

Figure 2.  The schematic structures (A) and spectrum activation (B) of 
ChR2, NpHR, and Arch.



1383

www.chinaphar.com
Xie YF et al

Acta Pharmacologica Sinica

npg

optogenetics in synaptic plasticity studies by selectively mod-
ulating specific neuronal populations.

Optogenetics and in vitro plasticity
Because of the high selectiveness of specific neuronal popula-
tions, optogenetics can facilitate the investigation of synaptic 
plasticity in different brain areas by selective photostimulation 
of specific neurons/fibers.  The opsin genes can be introduced 
into specific neuronal populations by in utero electroporation 
or in vivo injections of viral vectors[26].  Brain slices containing 
areas of interest can also be prepared for studies of synaptic 
plasticity.  For example, in striatal D1 receptor dominant MSNs 
expressing ChR2, 100 photostimulations at 1 Hz could induce 
NMDAR-dependent LTD[35].  In cortical slices from trans-
genic mice expressing ChR2-YFP, 1 Hz blue light stimulation 
of layer V evokes LTD in layer II/III[36].  In slices of auditory 
cortex, optical stimulation of basal forebrain cholinergic input 
modulates the metabolic glutamate receptor-dependent LTP 
through activation of the M1 receptor in the thalamocortical 
projection and presynaptic A1 receptors[37].  In the anterior 
cingulate cortex (ACC)-LA pathway, LTP could be induced 
by stimulation of ChR2 in the presence or absence of GABAAR 
antagonist[38].  These results indicate a wide range of applica-
tions for optogenetics in synaptic plasticity.  Furthermore, 
when ChR2 is expressed in septal cholinergic neurons, specific 
photostimulation of septal fibers could induce LTP in CA1 
pyramidal neurons that are similar to those induced by electri-
cal stimulation or short-term depression, depending on the 
optical stimulation timing[39].  This study highlights the tempo-
ral advantage of optogenetics in synaptic plasticity.  Optoge-
netics also shows spatial advantages in the study of synaptic 
plasticity.  The asymmetrical distribution of NR2B subunit-
containing NMDARs in CA1 pyramidal neurons[40] has been 
confirmed using optogenetics to contribute to the asymmetry 
of synaptic plasticity.  By combing optogenetics and tradi-
tional electrical stimulation, Kohl et al found that left CA3 
input contributes more to the expression of LTP in CA1 pyra-
midal neurons[41].  These results pave an avenue for optogenet-
ics in investigations of the left-right asymmetric functions of 
the hippocampus.  In addition, photostimulation of astrocytes 
expressing ChR2 produces LTD in Purkinje cell of cortical 
slices by activating metabotropic glutamate receptors[34], fur-
ther expanding the range of applications for optogenetics in 
synaptic plasticity.

Since in vitro study of synaptic plasticity requires slice prep-
aration while slice quality is closely related with the animal 
age, infection of neurons with virus vector to express opsins 
will postpone the window of time for experiment.  This will 
increase the difficulty in some studies of synaptic plasticity, 
particular for LTD which is not easy to be induced in matured 
animals[42–44].  So, transgenic animals expressing different 
opsins will represent a better experimental tool for studying 
synaptic plasticity.

Optogenetics and in vivo plasticity
Cognitive functions require more detailed investigations at the 

systems level.  The advantages of optogenetics in the precise 
control of specific neuronal populations will help improve the 
study of the plasticity, learning and memory and the control 
of the brain in vivo.  Liewald et al examined the synaptic func-
tion in Caenorhabditis elegans using an optogenetic approach 
and suggested its use in the study of synaptic plasticity in 
that system[23].  Using a slow ChR2 mutant C128X, long-term 
photostimulation of C elegans command interneurons could 
induce long-lasting behavioral plasticity in locomotion[45].  In 
a rodent study performed in vivo, optogenetics also demon-
strated a promising future in plasticity and memory research.  
Stimulation of dopaminergic neurons in the ventral tegmental 
area (VTA) that express ChR2 facilitates the development of 
positive reinforcement during reward-seeking and of behav-
ioral flexibility in freely moving mice[46].  Photostimulation of 
striatal D1 receptor-dominant MSNs expressing ChR2 in freely 
moving mice restores the high-frequency stimulation-induced 
LTP that is abolished by cocaine treatment[35].  Optogenetic 
manipulation of dopamine neurons expressing eNpHR and 
tyrosine hydroxylase in VTA can modulate depression-like 
behaviors in mice[47].  In addition, photostimulation of mouse 
astrocytes expressing ChR2 can perturb motor behavioral plas-
ticity modulated by the cerebellum[34].  These studies imply a 
wide range of applications for optogenetics for the study of 
plasticity in many brain areas.  

Furthermore, optogenetics has also shown exciting results in 
studies of several memory-related brain areas.  It is found that 
the memory consolidation is impaired in mice upon optical 
stimulation of hypocretin/orexin (Hcrt) neurons expressing 
ChR2 at 60-s intervals but not 120-s intervals, mainly through 
changing the degree of sleep fragmentation[48].  Consistently, 
memory retention and working memory formation are 
blocked by optical stimulation of basolateral amygdala neu-
rons expressing Arch in rats[49] and by silencing medial pre-
frontal cortex neurons expressing Arch in rats[50], respectively.  
However, a study in rats indicates that memory retention is 
enhanced by optical stimulation of basolateral amygdala neu-
rons expressing ChR2[49].  By expressing eNpHR3.1 in dorsal 
hippocampus to inhibit the CA1 excitatory neurons, it is found 
that contextual fear acquisition and retrieval are blocked, the 
remote fear memory recall is reversibly impaired, and the 
remote contextual fear recall is blocked only by precise but not 
prolonged inhibition[51].  The contextual fear recall may also be 
modulated by the memory-engram cells in the dentate gyrus.  
Light stimulation of ChR2 expressed in a small subpopula-
tion of granule cells in the dentate gyrus can produce context-
specific memory recall[52].  However, a false memory can be 
created by the manipulation of ChR2-expressing neurons in 
the dentate gyrus but not in the ChR2-expressing neurons 
of CA1[53].  This finding suggests that memory formation is 
spatiotemporally precise and that further research is needed.  
Taken together, these studies suggest that optogenetics has a 
promising future in studies of plasticity and memory in vivo.

Limitations of optogenetics
One of the limitations of ChR2 optogenetics is that photo-
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stimulation will activate voltage-gated calcium channels 
(VGCCs)[54] if the neuron is held at membrane potentials away 
from –65 mV.  The kinetics of ChR2, such as activation and 
deactivation, can be doubled at 37 °C when compared with 
22 °C, and they can be affected by depolarization[55].  Another 
possible problem with ChR2 is its low conductance, which 
will limit its application for direct, efficient and fast stimula-
tion of a single cell, and its alternate function as an outwardly 
driven H+ pump when expressed in HEK293 cells[56].  In addi-
tion, the transmission and intensity of light is reduced as it 
passes through multiple levels of tissue, although it can still 
evoke neuron spiking from up to a 1.4-mm distance[57].  The 
behavioral interference from intrinsic phototactic reactions 
induced by ionic exchanges through opsin channels may also 
complicate the interpretation of results.  Phototoxicity due 
to the long-term illumination required in some studies may 
also be a concern.  Fortunately, some of these problems can 
be overcome.  For example, temporally focused laser pulses 
(TEFO) can simultaneously excite large numbers of channels 
on individual neurons, leading to strong (up to 15 mV), rapid 
depolarizations (≤1 ms)[58].  In the case of wild ChR2, the ChR2 
mutant C128X can avoid the phototoxicity and intrinsic photo-
tactic reaction induced by long-term photodepolarization[45].

Conclusion
The improvement of techniques and the availability of more 
convenient and applicable opsins will allow multiplexing of 
light-stimulated channels and thus more precise control of 
specific neuronal populations.  Such experiments will allow 
clearer elucidation of the mechanisms of neuronal plasticity.  
These advances will be very helpful in the understanding of 
brain functions and for the study of learning- and memory-
related diseases like Alzheimer’s disease.  
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