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Abstract

We characterized genome alterations in 1255 clinically annotated lung tumors of all histological

subgroups to identify genetically defined and clinically relevant subtypes. More than 55% of all

cases had at least one oncogenic genome alteration potentially amenable to specific therapeutic

intervention, including several personalized treatment approaches that are already in clinical

evaluation. Marked differences in the pattern of genomic alterations existed between and within

histological subtypes, thus challenging the original histomorphological diagnosis.

Immunohistochemical studies confirmed many of these reassigned subtypes. The reassignment
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eliminated almost all cases of large cell carcinomas, some of which had therapeutically relevant

alterations. Prospective testing of our genomics-based diagnostic algorithm in 5145 lung cancer

patients enabled a genome-based diagnosis in 3863 (75%) patients, confirmed the feasibility of

rational reassignments of large cell lung cancer, and led to improvement in overall survival in

patients with EGFR-mutant or ALK-rearranged cancers. Thus, our findings provide support for

broad implementation of genome-based diagnosis of lung cancer.

INTRODUCTION

Lung cancer is traditionally classified into non–small cell lung cancer (NSCLC), small cell

lung cancer (SCLC), and carcinoid (CA). NSCLC is further divided into adenocarcinoma

(AD), squamous cell carcinoma (SQ), and large cell carcinoma (LC), which also includes

tumors with neuroendocrine differentiation [large cell neuroendocrine carcinoma (LCNEC)]

(1). These categories have been enriched with detailed histomorphological and

immunohistochemical characteristics leading to the 2004 World Health Organization

(WHO) classification. The most detailed subcategories exist for AD, mostly defined by

growth patterns (2). This rather descriptive taxonomy has been complicated in the past

decade because of the recognition of somatic genetic alterations occurring in some of these

subtypes: EGFR mutations, KRAS mutations, and EML4-ALK fusions occur mainly in lung

AD (3–7), whereas mutations in DDR2, FGFR2, and NFE2L2 or amplifications of FGFR1

and SOX2 mainly affect SQ (8–11). The fact that some of these are associated with clinical

response to molecularly targeted therapeutics (3–5, 12, 13) emphasizes the importance of

adding genetic annotation to the current taxonomy. Systematic efforts to comprehensively

characterize the cancer genome (14) constantly add genome alterations to the compendium

of such potentially actionable alterations (9, 15–21). Similarly, immunohistochemical

analyses have challenged some of the original histomorphological diagnoses, in particular in

the case of LC (22, 23). We therefore sought to assess cancer genome alterations linked to

histomorphological and immunohistochemical features of the disease as well as to patient

outcome to identify genetically defined subtypes of lung tumors and optimize them for

biologically informed patient stratification for personalized therapeutic approaches. We then

tested the clinical relevance of these molecularly defined patient subgroups prospectively in

a diagnostic outreach setting.

RESULTS

Cancer genome alterations in human lung tumors

Recent studies have provided analyses of genome alterations in lung cancer (20, 21, 24, 25).

To establish a systematic relationship of such alterations across the different cancer

subtypes, we collected a total of 1882 surgically resected, fresh-frozen human lung tumor

specimens with clinical annotation, yielding 1255 specimens suitable for genetic analysis

(Table 1, fig. S1A, and table S1). Visual inspection of somatic copy number alterations

(SCNAs) in those tumors for which both single-nucleotide polymorphism (SNP) array and

histology data were available (922 of 1032) revealed distinctive patterns in cases sorted

according to their initial histological subtype (Fig. 1A): some SCNAs were present in all

subtypes (for example, gains affecting 5p), whereas other SCNAs were subtype-specific (for

Page 2

Sci Transl Med. Author manuscript; available in PMC 2014 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



example, amplifications of 3q containing SOX2 in SQs) (8). In addition, the overall pattern

of SCNAs differed across histological entities; for example, SCLCs and some LCs exhibited

a predominance of chromosome arm–level events, in contrast to focal events in AD and SQ.

Stromal admixture could mask the detection and amplitude of SCNAs (26), but only partly

accounted for the diversity of SCNA patterns between subtypes (Fig. 1A). LC, in contrast to

other subtypes, did not exhibit a specific SCNA pattern. To identify significant copy number

alterations across lung tumor subtypes, we applied a rank sum–based method that is

insensitive to tumor purity and identified 8 regions of amplification and 12 regions of

deletion (fig. S2 and tables S2 and S3) (11). In cases with only one deletion, CDKN2A

(located at 9p21) was affected in 38% (fig. S3) (11, 27).

Similarly, most mutations showed histological subtype specificity (Fig. 1B). The most

frequently mutated genes were TP53 (53.6%), KRAS (16.1%), STK11 (9.8%), EGFR (7.2%),

KEAP1 (6.6%), and NFE2L2 (4.5%) (20, 21, 28). Seventeen genes were altered in at least

two samples (figs. S4 and S5 and tables S1, S4, and S5). The NFE2L2/KEAP1 axis was one

of the most frequently mutated oncogenic pathways in lung cancer. Furthermore, gene set

enrichment analysis revealed significant changes in the expression of NFE2L2 and KEAP1

target genes in cases harboring such mutations (false discovery rate, q = 0.0008) (29). Either

NFE2L2 or KEAP1 was mutated in 10.4% of AD (21) and 16.9% of SQ (20) in mutually

exclusive fashion. NFE2L2 mutations were mainly found in SQ (30–32) (Fig. 1B and fig.

S4). In addition to known frequent driver mutations, we also found rare mutations that are

possibly relevant for therapy. For example, we found an R248C mutation in the fibroblast

growth factor (FGF)–binding domain of FGFR3 (33, 34) in 3 of 365 SQ (0.8%), all of which

were negative for FGFR2 mutations (35). FGFR3-R248C was oncogenic in vitro and

associated with sensitivity to FGFR inhibition (fig. S6). Overall, more than 55% of all

malignant lung tumors harbored at least one genetic alteration with features of a possibly

tractable target (fig. S7).

We observed clinically relevant associations related to histology and stage (1). The most

frequent genome alterations had no significant impact on survival in AD, LC, and SQ (Fig.

1C). TP53 mutations were associated with inferior survival in EGFR-mutant patients (P =

0.028), which was partly driven by the higher stage of these patients. Because most of these

patients were diagnosed before EGFR inhibitors were broadly available, this observation is

likely to reflect a general aggressive behavior of EGFR/TP53 double-mutant tumors (36).

Similarly, patients with concurrent mutations of TP53 and RB1 loss had a particularly poor

prognosis (Fig. 1C), independent of stage and histology (Cox regression analysis, P =

0.023).

Subtype-specific genome alterations

As a next step, we sought to determine which of the genomic alterations were significant in

each subtype. Across all lung tumor cases, we identified amplified and deleted regions (fig.

S2) that included known protooncogenes or tumor suppressor genes, which could be

assigned to specific histological subtypes. Significantly amplified chromosomal regions in

AD were 5p,7p(EGFR),8q(MYC),11q(CCND1),12q(MDM2),14q(NKX2-1), and 17q

(ERBB2) (21, 37); in SCLC were 1p (MYCL1), 2p (MYCN), 5p, 8p (FGFR1), and 19q
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(CCNE1) (24); and in SQ were 1p (MYCL1), 3q (SOX2), 7p (EGFR), 8p (FGFR1), and 11q

(CCND1) (8, 11, 20). CA harbored no significant SCNA. As before, in LC, we observed

amplifications typical of other histologies (for example, amplification of NKX2-1, which is

specific for AD, or of SOX2, which is typical of SQ). Deletions in 9p (CDKN2A) were

present in all subtypes except SCLC, which had deletions of 3p (FHIT) and 13q (RB1) as its

hallmarks (Fig. 2A).

The specific co-occurrence of several of the alterations in individual lung cancer subtypes

suggested that it might be possible to determine patterns of alterations that could be used to

identify subtypes based on genomics alone. We integrated data on mutations and SCNAs

that were significant above the assumed background mutation rate of 0.005 (binomial test)

to identify significant signature alterations for each histological subtype (Fig. 2B). Some of

these alterations mainly occurred in a certain subtype, such as alterations in ALK (3.4%),

BRAF (2.7%), EGFR (15.3%), ERBB2 (1.7%), KRAS (32.6%), and STK11 (17.4%) in AD;

MYCN amplifications (6.5%) in SCLC; and mutations in DDR2 (1.1%), FGFR3 (0.8%), and

NFE2L2 (10.6%) in SQ (Figs. 1B and 2B and fig. S4). Others were not only enriched in a

given subtype (for example, NKX2-1 amplification in AD, MYCL1 amplification and RB1

deletion in SCLC, or SOX2 and FGFR1 amplification in SQ) but also present in other

histologies (Fig. 2B). By contrast, LC harbored alterations typical of all other subtypes

(amplification of ERBB2 and NKX2-1 and mutations in KRAS and STK11 as in AD;

amplification of MYCL1 and RB1 as in SCLC; amplification of CCND1, FGFR1, and SOX2

as in SQ) (Fig. 2B) but had no significant signature alterations.

The availability of large genomic data sets enabled us to conduct a systematic analysis of co-

occurrence and exclusivity of genome alterations (Fig. 2C and fig. S8). In 5 of 21 lung

tumors with BRAF mutations affecting residues other than V600E, either NRAS or KRAS

was mutated (38); such cases might be particularly sensitive to mitogen-activated protein

kinase kinase (MEK) inhibition (39). Furthermore, ERBB2 mutations never co-occurred

with mutations in BRAF, HRAS, KRAS, NRAS, or STK11 (table S1). FGFR2 mutations did

not co-occur with FGFR1 amplifications, in support of both alterations being oncogenic

drivers (fig. S6). In our data set, EGFR amplifications correlated with EGFR mutations in

AD (P = 0.0009), but not in SQ (fig. S9). EGFR amplification predicted treatment response

and outcome of patients receiving EGFR inhibitors in some studies (40, 41), although this

could not be confirmed in a study focusing exclusively on ADs (42). Thus, whether patients

with EGFR-amplified SQ may benefit from EGFR inhibition is currently unclear. Similarly,

loss of PTEN may influence the dependency of tumors on mutant receptor tyrosine kinases

(43, 44). PTEN was homozygously or hemizygously deleted in 5.5 and 11.1% of EGFR-

mutant ADs, respectively (fig. S10). In summary, genome alterations that define specific

lung tumor subgroups were determined in the major histological subgroups, except for LC,

which has genomic features of all other subtypes.

The heterogeneity of large cell lung cancer

Immunohistochemistry has become an indispensable method for lung cancer diagnosis. We

therefore performed an independent immunohistochemistry-based pathology review of 583

cases confirming all subclasses of lung cancer except LC (fig. S11). In 42% of all LC cases,
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pathology review led to reclassification to the other subtypes sharing similar

immunohistochemical and genetic features.

To gain further insight into the heterogeneity of LC, we applied gene expression–based

unsupervised hierarchical clustering to 261 lung tumors, including 31 initially diagnosed

LCs. Whereas 87% of ADs, 92% of CA, 84% of SCLCs, and 76% of SQs formed distinct

clusters, LCs were dispersed across all other clusters (Fig. 3A and tables S1 and S6). Except

for one case, all LCs clustered with those tumors of the other subtypes that shared the same

histology-defining signature alterations (Fig. 3, A and B, and table S7). Similar results were

obtained when applying consensus clustering, where almost 98% of AD cases formed a

distinct cluster, as well as 84% of SCLCs and 77% of SQs. Sample overlap between clusters

obtained by the two methods was 95%, 93%, and 75% for the clusters, which mainly

included tumors with neuro-endocrine differentiation (NEC), AD, or SQ cases, respectively

(table S1). Applying recently described transcriptional classifiers of subtypes of AD (45)

and SQ (46) revealed comparable results (figs. S12 and S13 and table S1). An integrative

analysis of 209 cases including copy number and expression data using iCluster defined two

subgroups that were mainly driven by amplifications on chromosome 3 (3q13.31-3q29) and

chromosome 12 (12p13.33-12q15) and thus did not reveal distinct clinically relevant

subtypes (47).

LCNEC exhibited substantial transcriptional similarity to SCLC when analyzed with

unsupervised hierarchical clustering and classification (Fig. 3A, gray triangles, and figs. S12

and S13). Furthermore, similar amplified and deleted regions were observed in LCNEC and

SCLC when compared with other histological subtypes (fig. S14).

Finally, LCNEC shared the significantly mutated genes TP53, RB1, and EP300 with SCLC,

as determined by whole-exome sequencing of 15 and transcriptome sequencing of 10

pathologically reviewed LCNECs (Fig. 3C and tables S8 and S9). We also found additional

mutated genes in LCNEC that typically occurred in AD or SQ but did not reach significance

in LCNEC (tables S8 and S9). Thus, LCNEC is most similar to SCLC, with individual cases

bearing mutations of other subtypes. The genetic similarity between LCNEC and SCLC is

also reflected by a similar overall survival (Fig. 3D). In summary, LC exhibits a general

diagnostic plasticity when considering data on chromosomal copy number, gene mutations,

gene expression, and immunohistochemistry. Combined immunohistochemical and genomic

analysis is therefore ideal to classify this heterogeneous group as AD, SQ, or NEC.

Automated genomics-based lung tumor classification

Given the strong correlation of specific genome alterations with certain histological

subtypes, we devised a statistical model to test if subtypes could be predicted robustly based

on such alterations alone. The diagnosis predicted by our model and the original diagnosis

(Fig. 4A, left) or the diagnosis obtained from pathology review were highly similar for AD

and SQ (Fig. 4A, right, fig. S15, and table S10). Only a few of the AD or SQ cases were

reclassified according to the predominant genome alterations in these cases (fig. S15).

Feature selection and automated reclassification using a similar model was highly stable

when applied to validation data sets of 382 AD (21), SQ (20), and SCLC (25) cases (Fig.

4B, fig. S16, and table S11). Review of individual discrepant cases revealed subtype-
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specific alterations, such as in one case that was predicted to be AD but classified by central

pathology review as SQ, which harbored the oncogenic S310F ERBB2 mutation (48);

ERBB2 mutations were typical of AD. Furthermore, one of three cases predicted to be SQ

but classified as AD by pathology review exhibited amplification of FGFR1 and CCND1,

both predictive of SQ in our data set (fig. S16A). Nevertheless, most initial diagnoses of

AD, SCLC, and SQ were confirmed by both our model and pathology review (Fig. 4, A and

B, and fig. S11), but most of the LCs with at least one genomic alteration were reassigned to

either AD, SQ, or aggressive neuroendocrine lung cancer/ SCLC in accordance with the

pathological review (Fig. 4C, fig. S15, and table S10). Even in those cases where

immunohistochemistry did not yield an unequivocal diagnosis, most remaining LC cases

could be reassigned genetically to the other lung cancer subtypes (Fig. 4C).

Clinical evaluation of genomics-based lung cancer diagnoses

To evaluate our combined genomic and immunohistochemical diagnostic approach, we

enrolled 5145 lung cancer patients in a molecular screening outreach program run by

Network Genomic Medicine (NGM) in the region of our cancer center between January

2010 and April 2013 (Table 1, fig. S1B, and table S12). The addition of

immunohistochemistry to the diagnostic workup of tumors with LC features reduced the

prevalence of this subgroup from 5.9% in the retrospective analysis (table S1) to 1.3% in the

diagnostic NGM data set (Fig. 5A). The expression of TTF-1 and CK7 as

immunohistochemical markers of AD, as well as p63 and CK5 as markers of SQ, allowed

such cases to be assigned to either AD or SQ. Expression of neuroendocrine markers CD56,

chromogranin A, and synaptophysin was tested to identify tumors with neuroendocrine

differentiation.

We performed central genotyping for key alterations identified within our retrospective

genomic study (ALK, BRAF, DDR2, EGFR, ERBB2, FGFR1, KRAS, and PIK3CA) (fig.

S17). Genomic testing was feasible in 3863 (75%) paraffin-embedded tumor samples

obtained by routine diagnostic procedures, yielding 1481 genomic alterations (table S12).

Treatment recommendations were provided to the network partners to enable genetically

tailored cancer therapy either with approved drugs or within clinical trials. Sixty-four of 84

advanced-stage (IIIB or IV) patients with an EGFR mutation (76%) received erlotinib or

gefitinib, and 15 of 30 advanced-stage patients with ALK translocation (50%) received

crizotinib. Furthermore, 34 patients with alterations in BRAF (n = 4), KRAS (n = 10), or

FGFR1 (n = 20) were enrolled in clinical trials. The frequencies of genomic alterations in

the diagnostic NGM data set were similar to those of the retrospective discovery data set

(Fig. 5, A and B). BRAF mutations were predominantly activating (49, 50) (60%, possibly

associated with sensitivity to BRAF or MEK inhibition). In 24% of the cases, BRAF

mutations were predicted to be inactivating (50, 51), which might predict sensitivity to

dasatinib (52) (fig. S18). In 34% of the remaining LC cases, which were not otherwise

classifiable, we found signature alterations of AD or SQ (Fig. 5, A and B) that provided both

a genetic diagnosis and a rationale for genetically tailored therapy. Thus, combined

immunohistochemical and genetic diagnosis reduced the subgroup of LC to 1.1%.
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We next compared the survival of patients in our historical and prospective data sets.

Survival of stage IIIB/IV patients in the retrospective data set was better than that in the

prospective data set (P < 0.02, fig. S19). The most likely reason for this difference is a

higher proportion of patients undergoing surgery with curative intention in the retrospective

data set (which consisted of surgically resected cases only), whereas very few patients

underwent surgery in the prospective data set. In contrast, the improved survival of patients

with earlier-stage disease in the prospective data set compared to the retrospective data set

most likely reflects treatment improvements. Histology had no major impact on survival of

advanced-stage patients in both data sets (Fig. 5C).

We next performed analyses within the prospective NGM cohort alone. When comparing

the survival of patients in our prospective data set, whose tumors had been genotyped (n =

975) to that of patients in the same cohort, in whom genetic diagnosis was not feasible (for

example, because of insufficient tissue; n = 277), genotyping alone had stage- and histology-

independent impact on overall survival in multivariate analyses (P = 0.002) (Fig. 5D, upper

left). Although this observation most likely results from the favorable outcome in patients

treated with kinase inhibitors, it demonstrates that genotyping is mandatory for patients to

benefit from targeted therapeutic intervention. Accordingly, among the different genotypes

determined within the prospective NGM cohort, EGFR mutations were associated with

improved survival (Fig. 5D, upper right; hazard ratio, 0.617; 95% confidence interval, 0.442

to 0.859; P = 0.004). We note, however, that by the time ALK fusion testing was introduced,

ALK inhibitors were not yet broadly available, which may explain why ALK fusions were

not generally associated with improved survival in our cohort. Patients with EGFR-mutant

lung cancer treated with EGFR inhibitors survived longer than those not receiving EGFR

inhibitors (median overall survival, 31.5 versus 9.6 months; P < 0.001) (Fig. 5D, lower left).

Similarly, the overall survival of patients with ALK-rearranged lung cancer treated with

crizotinib was significantly better compared to ALK-positive patients not receiving

crizotinib (median overall survival, 23 versus 11 months; P = 0.024) (Fig. 5D, lower right).

No difference in the number of therapeutic regimens and the number of platinum-based

treatment regimens existed between patients with EGFR-mutant lung cancer treated with

EGFR inhibitors and patients not treated with EGFR inhibitors (two-sided t test, P = 0.43).

Patients with lung cancer harboring ALK rearrangements treated with crizotinib did not

differ in the number of platinum-based chemotherapy regimens, but differed in the total

number of treatment regimens received: patients treated with crizotinib received an average

of 2.17 regimens, compared to 1.3 regimens in patients who did not receive crizotinib (two-

sided t test, P = 0.034) (table S12). However, in a Cox regression analysis including

treatment with kinase inhibitors and number of treatment regimens as variables, only

treatment with kinase inhibitors had a significant impact on survival (P = 0.043).

In summary, we validated the frequencies of signature alterations across lung cancer

subtypes, demonstrated the feasibility of thorough and broad genome diagnostics in an

academic-to-nonacademic outreach setting, confirmed the almost universal reassignment of

LC to the other biologically relevant diagnoses, and showed that the introduction of a

molecular diagnosis coupled to specific therapeutic intervention improves the overall
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survival of patients with alterations in EGFR and ALK compared to standard chemotherapy

(53, 54).

DISCUSSION

Here, we defined a minimal set of genome alterations for genomic lung cancer diagnosis

using comprehensive copy number analyses in combination with focused sequencing and

RNA expression analysis. This approach yielded robust frequencies of genome alterations

and afforded reassignment of LC to therapeutically relevant groups such as AD or SQ.

Finally, introduction of genome diagnostics in an outreach setting not only confirmed these

observations but also resulted in substantial improvement in overall survival of patients

receiving genetically informed therapeutic intervention compared to standard

chemotherapeutic treatment.

A major advantage of this combined histopathological and genetic analysis is the

classification of the group of LCs, a subtype that is poorly defined, mainly because of a lack

of specific morphologic features of AD, SCLC, or SQ. Applying immunohistochemistry (22,

23) (for example, TTF-1 for AD and p63 for SQ) helped assigning some of the LC cases to

other categories. However, the addition of genome annotation not only confirmed several of

the immunohistochemical assignments but also added information on possibly

therapeutically relevant alterations and afforded classification in cases where definite

pathological diagnosis was not possible. We have also observed a marked similarity between

several LCNEC tumors and SCLC that shared the same pattern of SCNAs, the particularly

poor survival, and the most significant gene mutations in this data set of limited size.

We also found (exceptionally rare) SQ tumors bearing EGFR mutations or ALK

rearrangements, which might be treatable with targeted therapies as well. Thus, genomic

diagnosis should include all subtypes and all genome alterations to provide a therapeutic

rationale for all possible patients. We propose to capture both genomic and

immunohistochemical data to link these taxa to treatment benefit in trials (fig. S20).

In our outreach study, genotyping alone—as a prerequisite for personalized treatment—was

associated with improved patient survival. These epidemiological results emphasize the need

for broad availability of systematic and comprehensive genomic lung cancer diagnoses.

We note that the prospective part of our study was not a randomized clinical trial but an

observational diagnostic intervention study. Unfortunately, obtaining overall survival data in

a randomized fashion requires prohibiting patients from crossing to the other treatment arm

—an irresponsible measure in this setting. Thus, registry data from observational studies like

ours may be an approach to demonstrate differences in survival between two different

therapeutic strategies.

Furthermore, the two cohorts analyzed in this study differ in important aspects: Whereas

patient registration and genotyping occurred in a central study office in the prospective

cohort, tumors of the retrospective cohort were obtained from multiple centers before

targeted therapies became broadly available, thus giving us limited control over the quality

of the clinical data. Additional differences existed in the time of treatment and distribution
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of stages and rate of surgical treatment. Finally, clinical annotation was not complete, and

data gaps exist for performance status, smoking status, and treatment. We note, however,

that all major class-related genotypic and immunohistochemical findings were consistent

across both cohorts, thus underscoring the validity of our approach.

In summary, we provide a blueprint for genomic diagnosis of lung tumors. Determination of

immunohistochemical, genomic, and clinical features may thus be combined to yield classes

of tumors that are biologically relevant, afford genomically tailored stratification of patients

into clinical trials, and improve overall survival of patients with lung cancer.

MATERIALS AND METHODS

Study design

Detailed information on materials and methods, including study design and statistics, is

given in the Supplementary Materials. In brief, we collected frozen tissue or genomic DNA

from 1882 resected primary lung tumors (table S1) after obtaining informed consent.

Mutations in 28 genes (ABL1, AKT2, ALK, BRAF, CDK4, DDR2, EGFR, EPHA3, EPHA5,

ERBB2, FGFR1, FGFR2, FGFR3, FLT3, HRAS, JAK2, KEAP1, KIT, KRAS, NFE2L2,

NRAS, NTRK1, NTRK3, PDGFRA, PIK3CA, STK11, TP53, and RET) were analyzed in 1127

tumor specimens using multiple technologies (table S13, A and B) (9, 28, 38).

Rearrangements of ALK (n = 602), RET (n = 362), and ROS1 (n = 211) were detected by

fluorescence in situ hybridization. Gene copy number of 1032 and whole-exome sequencing

data of 15 LCNEC tumors were analyzed as described previously (11, 24). Gene expression

analyses were performed in 261 samples. Five hundred eighty-three cases were

independently reviewed by lung pathologists (E.B. and W.D.T.) (1, 2) (fig. S1). For the

prospective diagnostic cohort, 5145 lung cancer patients were included for central

genotyping for alterations in ALK, BRAF, DDR2, EGFR, ERBB2, FGFR1, KRAS, or

PIK3CA, and written reports were provided to the treating oncologists, containing the

detected mutation and a treatment recommendation (fig. S17 and table S12).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. A global view of the lung cancer genome
(A) Copy number profiles of lung cancer specimens of the major histological subtypes (n = 992) (red, increases; blue, decreases)

are plotted along the genome (horizontal axis: chromosomes as indicated, centromeres in red). Vertical colored bars on the left

indicate lung cancer subtypes. Bottom: The frequencies (y axis) of copy number gains (red; cutoff, 2.7) and losses (blue; cutoff,

1.3) across all samples, calculated for adjoining 1-Mb fragments using segmented copy number data, are represented along the

genome. Purity of tumor samples determined through SNP array–derived copy number data (26) is shown on the right, with the

median purity calculated for each histological subgroup indicated in red. (B) Mutations and ALK rearrangements (ALK*) are

depicted per sample per gene as colored ellipses. Sample order was conserved from (A), and colors were chosen consistent with

lung cancer subtypes. Total mutation frequencies per gene expressed as a percentage of all cases are shown as a bar graph at the

bottom. Frequencies below 1% are marked with an asterisk. (C) Kaplan-Meier curves for overall survival are shown for the

overall population per histological subtype (LC includes LCNEC), per genotype, for EGFR-mutant cases according to their

TP53 mutation status, and for TP53-mutant cases according to their RB1 alteration status (from left to right) (P values for

survival were calculated using the log-rank test). Numbers of cases with wild-type (wt) and mutant (mut) TP53 in early stages (I
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and II) and late stages (III and IV) are given for EGFR-mutant cases (inset; P value was calculated using the Pearson χ2 test).

Color code for histology: orange, AD; black, CA; green, LC (including LCNEC); red, SCLC; blue, SQ.

Page 20

Sci Transl Med. Author manuscript; available in PMC 2014 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2. Genomic alterations in histological subgroups of lung cancer
(A) Significantly amplified (red) and deleted (blue) regions calculated using a rank sum–based algorithm (24) are plotted along

the genome (y axis) for the five major lung cancer subtypes [AD (n = 421), CA (n = 69), LC (n = 101), SCLC (n = 63), and SQ

(n = 338)]. Statistical significance, expressed by q values (x axes: amplification, upper scale; deletion, lower scale), was

computed for each genomic location. Known or potential oncogenes (red) or tumor suppressor genes (blue) are given at

respective locations. Vertical lines indicate level of significance of q = 0.01. (B) Frequencies of significant genomic alterations

are given per gene per histological subtype. Colors of gene names are encoded as follows: red, amplified; blue, deleted; and

black, mutated. Frequencies of alterations correspond to circle size [frequencies of deletions of FHIT and RB1 and mutations in

TP53 were adapted by dividing values by three (asterisks); frequencies of mutations in EGFR, KRAS, and STK11, of deletions in

CDKN2A, and of amplifications in FGFR1 and SOX2 were adapted by dividing values by two (circles)]. Significant mutations

were determined using a binomial test with a background mutation rate of 0.5%. P values were adjusted for multiple hypothesis

testing using the Benjamini and Hochberg method across each histological subtype. q values of significant results (q < 0.05) are

indicated by the color code of the symbols (color key provided below the chart). (C) Associations of copy number alterations

and mutations calculated using Fisher’s exact test followed by Benjamini and Hochberg adjustment are represented with a

Circos plot. Involved genes are named at corresponding genomic locations (copy number gains in red, copy number deletions in

blue, and mutations in black) outside the ring representing the genome. Internal lines show significant co-occurring (red) and

mutually exclusive (blue) events (q < 0.05) between two copy number alterations or two frequently mutated genes (solid lines)

or between a copy number alteration and a mutation (dashed lines) found in lung cancer.
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Fig. 3. Genetic features typical of other lung cancer subtypes in LC
(A) Unsupervised hierarchical clustering using 294 highly variable (SD/mean >2.1) expressed genes identified four gene

expression subgroups containing mainly CA (I), SCLC (II), AD (III), and SQ (IV). LC samples are indicated as triangles at

corresponding positions below the cluster dendrogram. They are colored orange if they have AD-specific alterations, blue if they

have SQ-specific alterations, gray if the case was initially diagnosed as an LCNEC, and green if they have no known alteration.

Genetic alterations (label: red, amplified; blue, deleted; black, mutated; ERBB includes mutation in EGFR or ERBB2) are given

for selected genes per sample as vertical lines (LC cases in green; others in black). (B) Typical immunohistochemistry is shown

for LC specimens with immunohistochemical and genetic characteristics of AD (AD-like), SQ (SQ-like), and NEC, as well as

LC lacking features of other lung cancer subtypes (NOS, not otherwise specified). The corresponding genetic alterations are

indicated on the right. H&E, hematoxylin and eosin. (C) Distribution of mutations (in red, symbols according to type of
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mutation: diamond for missense, square for nonsense, and circle for indel) and copy number loss (in blue) of TP53, RB1, and

EP300 across all whole exome–sequenced LCNECs. (D) Overall survival corresponding to each histological lung cancer

subtype, with LC separated into LCs with neuroendocrine (gray) and without neuroendocrine (green) features.
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Fig. 4. Genomics-based classification of lung cancer
(A) Semisupervised reclassification of lung tumor samples. The relative proportion of cases per histological subtype (left; the

LC group includes LCNEC cases) that were reclassified on the basis of 18 genetic alterations (table S11) to a certain subgroup

(labels in the middle) is illustrated as lines. The weight of the lines is proportional to the fraction of cases classified to the

respective subgroup. All cases that were predicted to be LC were histological LCNEC. Bars in the right graph give the

concordance of each predicted class with the central pathological review (CPR). Subtypes for which no CPR was available are

denoted with asterisks. (B) Supervised in silico classification of lung cancer specimens based ongeneticfeatures for 637 tumor

samples with at least one genetic alteration and validation of the classifier in independent data sets of all three subgroups (20,

21, 25). Original histological subtypes defined groups for supervised learning. Bars indicate classification frequencies relative to

the original histology. Classification results for the CLCGP data set are shown on the left, and results of the three validation data
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sets are on the right. (C) Semi-supervised genetics-based reclassification of LC specimens without neuroendocrine features. For

each sample (rows), prediction to a certain subtype (color per row in accordance to the color code used for histological subtypes,

see below) is given (lower graph). Degree of supervision (x axis, upper graph) decreases continuously from left to right, the

farthest right representing a genetics-based prediction. Agreement of the prediction with the CPR is plotted for each stage of

supervision (upper part). Detailed information is given in Supplementary Materials and Methods. Genome alterations (black

lines) and immunohistochemistry results (black, positive; brown, negative; thin gray line, not available) are indicated for each

sample (middle and right panels). Genes are sorted according to their predictive value for histological subtypes. For the cases in

the lower part of the figure, immunohistochemistry was not performed. Color code for predicted classes and CPR: orange, AD;

black, CA; green, LC; gray, LCNEC; red, SCLC; blue, SQ; combination of colors, mixed subtype; white, no CPR.
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Fig. 5. Clinically relevant genome alterations in lung cancer subtypes
(A) Genetic alterations per histological subtype in retrospective and prospective sample sets. Each chart represents the overall

population with proportions of histological subtypes color-coded in the outer ring. Frequencies of alterations (wild type: no

alteration in ALK, EGFR, FGFR1, KRAS, or PIK3CA) are given per gene relative to all cases within each histological subtype.

Distribution of alterations for the LC population is shown separately. (B) Genotyping results of 3590 patients enrolled in the

prospective screening effort are sorted according to the histological subtype [AD (2250), CA (3), SCLC (265), SQ (1018), LC

(47), and LCNEC (7)]. Colored lines indicate alterations, and gray lines indicate wild type. Frequencies of alterations for AD

(orange) and SQ (blue) are plotted below the respective genes, comparing the mutation frequency in the prospective data set

(dark colors) to the retrospective data set (light colors). No significant difference between the data sets was seen (q values are
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given on the graph; P values were adjusted for multiple hypothesis testing using the Benjamini and Hochberg method). Color

code: orange, AD; black, CA; green, LC; gray, LCNEC; red, SCLC; blue, SQ. (C) Kaplan-Meier curves for overall survival are

shown for stage IIIB/IV patients per histological subtype for the retrospective (left) and prospective (right) sample sets. No

significant difference was seen between subtypes within each data set. (D) Prospective sample set: Kaplan-Meier curves for

overall survival are shown for all patients who were genetically tested versus those without available genetic information (top

left). Overall survival is shown for stage IIIB/IV patients with alterations in given genes versus patients with wild type in the

given genes (top right). Overall survival was statistically significantly longer in EGFR-mutant cases compared to all other (log-

rank test, P < 0.05) except ALK-rearranged cases (P = 0.065). Overall survival is shown for patients with EGFR mutation treated

with an EGFR inhibitor or standard chemotherapy (bottom left) and patients with ALK translocations treated with crizotinib or

standard chemotherapy (bottom right). Gain of overall survival in the patient group treated with kinase inhibitors versus

standard chemotherapy is given by the median overall survival (mOS). P values were corrected using the Bonferroni adjustment.

HR, hazard ratio.
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Table 1
Clinical characteristics of lung cancer patients in the retrospective [Clinical Lung Cancer
Genome Project (CLCGP)] and prospective (NGM) data sets

UICC, Union Internationale Contre le Cancer.

Retrospective CLCGP Prospective NGM

Total n 1255 3863

Age at diagnosis n 1225 3019

Median (range) 65 (18–94) 67 (28–96)

Sex, n (%) Female 419 (33.5) 1397 (37.2)

Male 831 (66.5) 2354 (62.8)

Unknown 5 112

Histology (WHO 2004), n (%) Adenocarcinoma 537 (44.5) 2250 (62.7)

Carcinoid 71 (6) 3 (0.08)

Large cell carcinoma* 129 (10.7) 54 (1.5)

Small cell carcinoma 65 (5.4) 265 (7.4)

Squamous cell carcinoma 403 (33.4) 1018 (28.3)

Other/unknown 50 273

Stage (UICC), n (%) IA 305 (25.4) 105 (10.4)

IB 316 (26.3) 72 (7.1)

IIA 33 (2.8) 56 (5.5)

IIB 190 (15.8) 49 (4.8)

IIIA 195 (16.2) 131 (13.0)

IIIB 89 (7.4) 115 (11.4)

IV 74 (6.1) 479 (47.5)

Unknown 53 2856

Survival, median no. of months I 152 Not reached

II 66 49†

III 34 28

IV 18 9.5

Unknown 58 11.6

Smoking history, n (%) Current/former 896 (86) 102 (89)

Never 147 (14) 13 (11)

Unknown 212 3748

*
Including LCNEC.

†
Median follow-up time for stage II patients was 16.3 months. Because of short median follow-up time for stage II patients, accuracy of median

overall survival in this stage was low (fig. S19).
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