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Abstract

Synaptic plasticity requires transcription and translation to establish long-term changes that form the basis for long term
memory. Diverse stimuli, such as synaptic activity and growth factors, trigger synthesis of mRNA to regulate changes at the
synapse. The palette of possible mRNAs is vast, and a key question is how the cell selects which mRNAs to synthesize. To
address this molecular decision-making, we have developed a biochemically detailed model of synaptic-activity triggered
mRNA synthesis. We find that there are distinct time-courses and amplitudes of different branches of the mRNA regulatory
signaling pathways, which carry out pattern-selective combinatorial decoding of stimulus patterns into distinct mRNA
subtypes. Distinct, simultaneously arriving input patterns that impinge on the transcriptional control network interact
nonlinearly to generate novel mRNA combinations. Our model combines major regulatory pathways and their interactions
connecting synaptic input to mRNA synthesis. We parameterized and validated the model by incorporating data from
multiple published experiments. The model replicates outcomes of knockout experiments. We suggest that the pattern-
selectivity mechanisms analyzed in this model may act in many cell types to confer the capability to decode temporal
patterns into combinatorial mRNA expression.
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Introduction

Long-term memory formation involves plasticity at synapses,

but its consolidation requires protein synthesis and typically

involves the activation of the cellular transcription machinery.

Several mechanisms for plasticity and their mechanistic models are

restricted to one or a small subset of synapses. These include

biochemical pathways [1], receptor trafficking [2], and protein

synthesis [3]. Other forms of plasticity have a restricted cellular

localization, such as excitability modulation in dendrites [4]. In

contrast to these local mechanisms, activity-dependent transcrip-

tion control of synaptic plasticity genes has a unique position in

that it is cell-wide and in a position to integrate inputs from the

entire cell, and possibly to control plasticity across the cell [5].

There is a strong evidence that cell-wide plasticity effects are

important in behavioral and systems level measures of learning [6].

For example, silencing of cells expressing activity-regulated

cytoskeleton-associated protein (Arc) following an aversive stimulus

abolishes the memory of the stimulus [7,8].

There is substantial overlap of transcription control regulatory

mechanisms between neuronal and non-neuronal cell types such

as insulin-producing b-cells [9] and melatonin-synthesizing cells

[10]. Transcription mediated by the cAMP response element-

binding protein (CREB) has been shown to affect a variety of non-

neuronal responses such as hematopoiesis, cell proliferation, acute

leukemias [11], differentiation of adipocytes [12], cardiac myo-

cytes [13] and smooth muscle cells [14]. For neuronal responses,

CREB-mediated transcription has been shown to be involved in

the formation of long-term memory [15] and also critical for late-

phase LTP. The genes implicated in LTP are regulated by CREB-

mediated transcription. These include BDNF [16], Calcium-

calmodulin dependent protein kinase IV (CaMKIV), synapsin I,

somatostatin, voltage-gated potassium channels, Fos, and Jun [17].

A few of these genes products are themselves inputs (e.g., BDNF)

or essential components of the transcriptional control system

(zif268, c-fos, C/EBPb) [18]. In neuronal as well as non-neuronal

contexts, the temporal pattern of input is important in determining

the transcriptional outcome [19,20]. Thus it is important to

develop a mechanistic understanding of how different inputs as

well as the timing of inputs regulate transcription control

pathways.

Processes at many levels come together to effect the temporal

and spatial regulation of mRNA synthesis during learning. There

is substantial convergence of inputs during synaptic plasticity. For

example, calcium influx through N-methyl-D-aspartate (NMDA)

receptor and L-type calcium channel [21], neurotrophins like

Brain-derived neurotrophic factor (BDNF) [22], and cyclic

adenosine monophosphate (cAMP) signaling [23] have been

shown to modulate mRNA synthesis and thus participate in

formation of long term potentiation (LTP) [24]. In addition to

these distinct pathway inputs, gene expression is also differentially

controlled by the temporal and spatial parameters of the inputs.

The timing, amplitude, and duration of calcium stimuli are known

to be important, as is the spatial arrangement of multiple synaptic

inputs [25]. The output of these signaling events is equally

complex. About 300 genes are affected in response to neuronal
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activity [26]. These are mainly ion channels, receptors for growth

or neurotrophic factors, protein kinases, or components of the

neurotransmitter synthesis or release machinery [16]. Interesting-

ly, many have an unique time-course of varying amplitude and

duration [26]. Several studies have reported that behavioral

stimuli such as visual experience and fear conditioning, as well as

different synaptic stimuli and BDNF lead to synthesis of different

mRNA subtypes [26]. For example, the single or multiple

electroconvulsive seizure (ECS) treatments change expression of

multiple genes in the hippocampus [27]. In the perforant path-

granule cell (pp-gc) synapse, the high-frequency stimulation affects

expression of zif/268, c-fos, c-jun and jun-B mRNA whereas low-

frequency stimulation have no affect on the expression of these

mRNAs [28]. In addition, the short term (3–6 h) exposure of

BDNF induces expression of synapse-associated proteins whereas

BDNF exposure for long-term (6–12 h) induces expression of

immediate-early genes in hippocampal cultures [29]. Overall, it is

clear that mRNA undergoes specific regulation by a wide range of

stimulus attributes. It is not clear how these stimulus attributes

influence subtype-specific changes in expression of mRNA during

plasticity. Our analysis is designed to understand how different

stimuli or distinct stimulus patterns result in differential gene

expression.

In our study, we simulate CREB-mediated gene expression. We

used postsynaptic calcium patterns to replicate synaptic input, and

BDNF as an additional input. We modeled key regulatory

pathways which are activated in the dendrites, soma, and nucleus

of hippocampal neurons in response to synaptic and BDNF input.

The model uses CaMKIV, MAPK and PP1 pathways to transfer

the signal to the nucleus. We have parameterized the model by

using the data obtained from published literature. The model

suggests that this network of pathways performs a transformation

of temporal stimulus patterns into a combinatorial code of mRNA

expression.

Results

The major signaling pathways in our model were the CaMKIV

pathway, MAPK pathway and PP1 pathway. The other pathways

included in the model were PKA and TORC1 (Fig. 1). We first

developed independent sub-models for the CaMKIV and mRNA

synthesis portions of the model. These were independently

parameterized. These models were merged with previously

published models for CaM, BDNF input pathway (Fig. S1A in

File S1), PP1 (Fig. S1B in File S1) and PKA (Fig. S1C in File S1)

signaling inputs [30,31]. We then validated the behaviour of the

composite model. We deployed the composite model using

simulated long term potentiation (LTP)- and long term depression

(LTD)- induction protocols to predict the dependence of mRNA

synthesis on CaMKIV, MAPK, CREB and TORC1. Finally, we

postulated mechanisms for CaMKIV, MAPK and PP1 to regulate

distinct subsets of mRNA synthesis, and used the model to predict

the combinatorial regulation of mRNAs by different synaptic

plasticity-inducing stimuli.

CaMKIV Sub-model
The calcium-calmodulin-dependent protein kinase kinase

(CaMKK) and Ca2+/calmodulin-dependent protein kinase IV

(CaM-kinase IV) are both activated through the binding of Ca2+/

CaM (Fig. 2A) [32]. Then, the Ca2+/CaM bound form of

CaMKK phosphorylates and activates the Ca2+/CaM bound

form of CaMKIV, leading to a substantial increase in its activity

[33]. PP2A dephosphorylates and thus inactivates the phosphor-

ylated form of CaMKIV [33]. There is a cross-inhibitory

interaction between the PKA pathway and CaMKIV pathway.

Active-PKA phosphorylates CaMKK to render it inactive, and

hence the downstream CaMKIV is also inhibited [34]. Phosphor-

ylated CaMKIV is transported to the nucleus [35]. It is known

that there is a significant contribution of Ca2+/CaM independent

CaMKIV activity [36] which is shown by a pool of basal

CaMKIV in the model. The sum total of Ca2+/CaM independent

and dependent CaMKIV contributes to the total activity of

CaMKIV in the nucleus which then activates CREB at Ser-133 by

phosphorylation [37] (Fig. 2A).

We have constrained the CaMKIV pathway model by

simulating four previously published experiments, whose details

we specify in order to compare against the simulated implemen-

tation of the experiment.

1) Time course of activation of CaMKIV by CaMKK: In the

published experiment, an extract of CaMKIV (0.67 mg/ml)

from rat brain was mixed with CaMKIV kinase (0.07 mg/ml),

0.2 mM CaCl2 and 2 mM Calmodulin (CaM) [38]. The

mixture was incubated for indicated times and the phosphor-

ylated CaMKIV was measured using SDS-PAGE. In our

model we used CaM-Ca4 (2 mM) as the input and measured

Figure 1. Block diagram of the model of pathways regulating
mRNA synthesis. We incorporated three major pathways: Calcium-
calmodulin dependent protein kinase IV (CaMKIV), Mitogen-activated
protein kinase (MAPK) and Protein Phosphatase 1 (PP1). Each of these
converged on CREB activation. We also modeled further interactions
with Transducer of regulated CREB activity 1 (TORC1) and the protein
kinase A (PKA) pathway. The inputs to the model were BDNF and Ca2+

waveforms configured to represent LTP- and LTD- inducing stimuli.
doi:10.1371/journal.pone.0095154.g001
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the levels of phosphorylated CaMKIV as a function of time

(Fig. 2B).

2) Calmodulin dependence of CaMKIV activity: In the

published experiment, CaMKK (36 nM) and CaMKIV

(22 nM) were added to a mixture of 1 mM CaCl2 and the

different concentrations of CaM [32]. The CaM dependence

of activated CaMKIV was assayed by measuring the

phosphorylation of substrate syntide-2 by activated CaMKIV.

In the model we gave CaM-Ca4 as the input and measured

Figure 2. CaMKIV sub-model and parameterization. (A) Reaction diagram of CaMKIV sub-model. Shaded gray ovals highlight the molecules
used for constraining the model. (B) Time course of activation of CaMKIV by CaMKK [38]. (C) Calmodulin dependence of CaMKIV activity [32]. (D) Time
course of inactivation of phosphorylated CaMKIV by PP2A [33]. (E) Time course of Total_pCaMKIV in presence of 90 mM K+ solution for 1 min [39]. (F)
Time course of active PKA in presence of LTP (three sets of stimuli at 10 min intervals, each set consisting of three 1 sec, 100 Hz tetani, 5 sec apart)
[42].
doi:10.1371/journal.pone.0095154.g002
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the phosphorylated CaMKIV at 5 min as a measure of its

activity (Fig. 2C).

3) Time course of inactivation of phosphorylated CaMKIV by

PP2A: In the experiment, phosphorylated CaMKIV (152 nM)

was incubated with PP2A for a range of durations between 0

and 2400 seconds, and then the CaMKIV activity was

measured [33]. To simulate this experiment, we mixed

phosphorylated CaMKIV and PP2A (150 nM) and compared

experimental and model levels of phosphorylated CaMKIV as

a function of time (Fig. 2D).

4) Parameters for CaMKIV activation by steady calcium stimuli:

In the experiment, hippocampal culture neurons were

stimulated by perfusing with 90 mM K+ solution for 1 min

[39]. After the stimulus presentation, the level of phosphor-

ylated CaMKIV (pCaMKIV) in crude cell lysates was

monitored at different time-point (0, 30, 60 and 180 sec) by

immunoblot. We have estimated the calcium generated by

90 mM K+ solution based on a previously published study

[40]. Using this calcium stimulus as an input, we simulated the

formation of active CaMKIV, measured as the sum of

cytoplasmic and nuclear concentrations of active CaMKIV.

The simulated time-course of Total_pCaMKIV matches the

experimental time-course (Fig. 2E).

Thus, our CaMKIV activation model was able to semi-

quantitatively reproduce each of these experiments.

PKA Sub-model
The PKA model was based on previously published reaction

schemes and parameters [41]. We selected only the CaM-

mediated portion of the previous model, acting through ACI

[30]. ACI synthesizes cAMP, which binds to and activates PKA.

To fine-tune the PKA model parameters in the context of the

composite model, we simulated the following previously published

experiment:

LTP was induced in hippocampal slices using three sets of

stimuli at 10 min intervals, each set consisting of three 1 sec,

100 Hz tetani, 5 sec apart [42]. After the final set of stimuli, the

slices were frozen at different time points (0, 1, 2, 10 and 45 min).

The CA1 area of the slice was micro-dissected, homogenized and

incubated with PKA substrate for 5 min. Phosphate incorporation

into substrate was measured to assay PKA-activity. To simulate

the experiment, we presented a simulated LTP input to the

composite model, with the same 3 stimuli every ten minutes. Each

stimulus set in the simulation consisted of three calcium pulses of

duration 1 sec and concentration 2 mM, presented every 5 sec.

The simulated PKA activity time course was smoothened by

averaging the obtained trace over a 5 min sliding window point to

account for the 5 min incubation time of the homogenized CA1

sample with the PKA substrate. The change in simulated PKA

activity correlates with the experimental PKA activity (Fig. 2F).

MAPK Sub-model
The MAPK model was an extension of a previously parame-

terized and published model from the DOQCS database [43] (Fig.

S2 in File S1) [30]. We extended the previous model by

incorporating activation of MAPK by B-Raf (Fig. S2 in File S1)

in addition to the existing activation through C-Raf. This

additional pathway was parameterized in a published modeling

study [44]. The B-Raf activation pathway was modeled as follows:

PKA activation induces activation of MAPK [45] by phosphor-

ylating Src which then phosphorylates Cbl [46]. Active Cbl forms

a complex with a bound form of CRK and C3G, and catalyse

GDP/GTP exchange reaction of Rap1 [44,47]. Rap1GAP

activates intrinsic GTPase activity of Rap1 [48]. Rap1GTP

interacts with B-Raf and activates it [49]. Active B-Raf leads to

the activation of MAPK [50]. The B-Raf pathway contributes to

the slow phase of active MAPK formation (Fig. S3A in File S1).

We further extended the earlier MAPK model by including

downstream steps involving RSK, PDK1, and nuclear transport

(Fig. S2 in File S1). Active MAPK phosphorylates RSK which

then undergoes auto-phosphorylation. RSK is further phosphor-

ylated by PDK1, which leads to its full activation [51]. Active RSK

is transported to the nucleus where it phosphorylates CREB at

Ser-133 [52,53]. Another substrate for active MAPK is MSK

which expresses exclusively in the nucleus. Active MAPK is

transported from the cytosol to the nucleus, where it phosphor-

ylates MSK1 which then activates CREB at Ser133 [53,54]. We

modeled all these steps in the MAPK pathway (Fig. 3A). The

newly incorporated reactions in the model were parameterized as

a part of the composite model by using published experiments. We

simulated four previously published experiments to constrain the

MAPK pathway model.

1) Parameters for MAPK activation by E-LTP stimuli: In the

published experiments, the early phase of LTP (E-LTP) was

induced at CA1 neurons in hippocampal slices [55]. The

stimulus used to induce E-LTP was high-frequency stimula-

tion HFS, a 1 sec train of 100 Hz. After the induction of E-

LTP, slices were frozen at various time-points (0, 2, 5, 15 and

30 min) to measure phosphorylated forms of MAPK by using

western blots. To simulate this experiment, we delivered a

single calcium pulse of 2 mM for 1 sec, to represent the HFS

stimulus [56,57]. As output we measured total MAPK

(Total_MAPK), computed as the sum of cytoplasmic and

nuclear concentration of active MAPK. The simulation gave a

qualitative match to the experimental time-course of MAPK

pathway (Fig. 3B).

2) Parameters for MAPK activation by steady calcium stimuli: In

the published experiments, hippocampal culture neurons were

perfused with 90 mM K+ solution for 3 min. The level of the

phosphorylated MAPK (pMAPK) bound to the specific

antibodies was measured by western blots [40]. The authors

also measured intracellular calcium using fluorescence

imaging generated by 90 mM K+ solution for 3 min. We

have used the same calcium time-course measurement as a

stimulus to the model. We computed Total_MAPK (Fig. 3C)

to account for all the phosphorylated forms of MAPK. Again

the match of simulation to experiment was qualitative.

3) Parameters for MAPK activation by LTP stimuli: In the

published experiments, hippocampal slices were used to

measure the time course of MAPK (pMAPK) [58]. LTP

was induced in the CA1 region by electrical stimulation. A

HFS of 100 Hz frequency and 1 sec duration was applied two

times with a 20 sec interval. After stimulation, the slices were

homogenized and the measurements were done by western

blots using specific antibodies. We modeled the experiment by

presenting the stimulus as two pulses of calcium separated by

20 sec. The duration of each calcium pulse was 1 sec [56] and

concentration was 2 mM [57]. The simulated time course of

Total_MAPK (Fig. 3D) matches the experimental time-course

of pMAPK with the exception of the third data point.

4) Parameters for BDNF activation of MAPK: In the experi-

ment, cortical neurons were stimulated with steady applica-

tion of 2 nM BDNF [59]. The tyrosine phosphorylation of

MAPK was measured for various time points (0, 5, 10, 15 and

30 min) using western blots. We simulated the experiment by

providing BDNF for the entire time-course and measured

Simulating Neuronal mRNA Synthesis
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Total_MAPK (Fig. 3E). The simulated Total_MAPK closely

matched the experiment data.

The MAPK model was based on numerous data sources and

the current parameterizing runs were challenged by apparently

incompatible time-courses of responses in some cases (Figures 3B,

3C, and 3D). We therefore regard the model as semi-quantitative,

and rather than try to precisely match one or two experiments, we

sought to approximate several. Later we carry out parameter

sensitivity analyses to show that the resultant model behaves

robustly to parameter changes.

TORC1 Sub-model
TORC1 is the Transducer of regulated CREB activity 1, and is

also called CRTC (CREB-regulated transcriptional co-activator).

TORC1 is abundantly expressed in the brain and plays a role in

the late phase of hippocampal long-term potentiation [60]. Under

basal conditions, Salt-inducible Kinase 2 (SIK2) phosphorylates

TORC1 at Ser171 and stimulates binding of 14-3-3 protein to

phosphorylated TORC1 in the cytoplasm [61,62]. We modeled it

as a pool called pTORC1 which represents phosphorylated

TORC1 in a complex form with 14-3-3 protein. Upon activation

of calcium and cAMP pathways, TORC1 dissociates from 14-3-3

protein. It has been proposed that SIK2 serves as a negative

feedback signal that prevents TORC1 dependent transcription

[61]. Active PKA phosphorylates active SIK2 and reverses this

effect by activating the translocation of TORC1 to the nucleus

[61] (Fig. S3B in File S1). The phosphorylated TORC1 undergoes

dephosphorylation in presence of calcium dependent phosphatase

(PP2B, CaN) which leads to the translocation of TORC1 to the

nucleus [63]. PKA and PP2B mediate synergistic effect on

TORC1 dependent transcription by decreasing the level of

phosphorylated TORC1 and increasing the level of unpho-

sphorylated TORC1 in the nucleus. The nuclear TORC1 binds to

the CREB and upregulates CRE-dependent transcription [64]

(Fig. 3F). This sub model was parameterized as a part of the

composite model by using published experiments, as follows.

In a previously published study, immunohistochemical exper-

iments were performed in the hippocampal slice preparation to

measure the ratio of nuclear to cytosol TORC1 (N/C fluorescence

ratio) and the relative increase of phosphorylated CREB, in CA1

neurons. These measurements were made for basal stimulation, E-

LTP and L-LTP stimuli [60]. Basal stimulation was induced at

0.033 Hz for 30 min. E-LTP was induced by a train of HFS at

100 Hz for 1 sec (1HFS) and L-LTP was induced by four trains of

HFS (100 Hz for 1 sec) presented after every 5 min (4HFS). In the

simulation, each HFS was represented by a 1 sec pulse of calcium

at 2 mM. We computed the ratio of nuclear TORC1 (TORC1n)

to cytoplasmic TORC1 (TORC1c) (N/C ratio of TORC1) and

pCREB-CRE as a readout for experimental N/C TORC1 and

pCREB respectively. In the experiment, the level of TORC1 and

pCREB for basal stimulation remained close to the level obtained

from unstimulated slices. We have estimated a level of N/C

TORC1 and pCREB-CRE for basal stimulation from the

unstimulated model to measure the relative change following

basal, 1HFS and 4HFS stimulation (Fig. 3G and 3H). We were

able to match the simulation output to experimental result to

within the error bars.

Thus, the TORC1 model is mechanistically reasonably well-

defined but somewhat under-constrained with respect to detailed

parameters. We have been able to simulate a couple of

experiments that measure the overall input-output relationships

of this pathway, but clearly there are other parameter sets that

would achieve these outcomes. Since our composite model

depended primarily on the input-output relationships, we

proceeded with this as a sufficient semi-quantitative approxima-

tion.

CREB Regulation and mRNA Synthesis Sub Model
In the basal state CREB is bound as a dimer to the CAMP

response element (CRE) sites in the promoter regions of target

DNA [65]. We modeled it as a pool where CREB is in a complex

form with DNA. When activated, this bound form of CREB binds

to the CREB-binding protein (CBP) [66]. This interaction allows

CREB to bind to the transcriptional machinery and thus, promote

transcription. In our model we simulated the transcriptional

machinery as a monolithic complex which synthesizes mRNA. We

have also incorporated the basal mRNA synthesis for account of

synthesis of mRNA independent of CaMKIV and MAPK

pathways (Fig. 3F).

We modeled the following published experiment to estimate

parameters for CREB phosphorylation by Ca2+ stimuli: Cultured

hippocampal neurons were subjected to field electrical stimulation

(18 sec, 50 Hz) [67]. Immunoreactivity of phosphorylated CREB

in the nucleus was measured using specific antibodies, at different

time-points following the stimulus (0, 2, 5, 15, 45 and 120 min).

The change in intracellular free calcium in response to stimulus

was measured by Fura-2 imaging. The measured change in the

level of intracellular calcium is presented as an input stimulus to

the composite model. After the stimulus presentation to the model,

we recorded the time-course of pCREB-CRE (phosphorylated

form of CREB) and plotted against the experimental pCREB. The

simulated time course approximated that of the experiment except

at the 50 min data point (Fig. 3I).

We further constrained the CREB-CBP portion of the model

using a published dose-response curve for pCREB-CBP formation

as a function of CBP concentration. In this experiment, 30 nM

pCREB was incubated with indicated concentrations of CBP for

2 min [68]. The binding of phosphorylated CREB to CBP was

quantified using fluorescence anisotropy. To model this experi-

ment, we set the concentration of pCREB-CRE to 30 nM and

systematically varied the concentration of CBP in a range from

1 nM to 1 mM. We then ran the simulation for 2 min and

recorded pCREB-CBP, a complex form of phospho-CREB and

CBP. The simulation closely matched the experiment result

(Fig. 3J).

Thus we were able to simulate two distinct experiments leading

to the phosphorylation of CREB.

Parameterizing the Composite Model
The composite model was constructed by merging the

individual sub-models: CaMKIV pathway model, MAPK path-

way model, PP1 pathway model, PKA pathway model and mRNA

synthesis model. In each of these individual sub-models, we have

included basal activation of the output molecules to account the

effect of other signaling pathways on the activation of these

molecules. Later the sub-models are merged by consolidating

common molecules in different sub-models, such that the ‘output’

molecules of one sub-model, and the ‘input’ molecules of the next,

are now one entity. In a few cases ‘output’ molecules act as

enzymes, for example, as upstream kinases, that act on molecules

of the next sub-model. In these cases the enzyme rates are

estimated as before from literature sources, and refined in the

composite model as below. The underlying sub-model remains

unchanged.

Above, we had parameterized separate sections of this model.

To constrain the interactions between the sub-models and also to

monitor the flow of signals as they propagate through the

Simulating Neuronal mRNA Synthesis
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composite model, we simulated five stimulus-response experi-

ments. Some of the interactions between the sub-models were

already parameterized in an earlier study, for example the

interaction between CaM and Ras [30]. The parameters were

not adjusted in the composite model and remain the same as they

were used while constraining the sub-models. We monitored

Figure 3. MAPK and TORC1/CREB sub-models and parameterization. Except for panel G and J, all graphs report how many fold the
measured molecule changes with respect to baseline levels. (A) Block diagram of MAPK sub-model. The shaded gray oval highlights total
phosphorylated MAPK, which was compared with experiments in panels B, C, D and E. (B) Time course of Total_MAPK in presence of LTP (100 Hz for
1 sec) [55]. (C) Time course of Total_MAPK in presence of 90 mM K+ solution for 3 min [40]. (D) Time course of Total_MAPK following an LTP stimulus
[58]. A tetanus of 100 Hz frequency and 1 sec duration was applied two times with a 20 sec interval between tetani. (E) Time course of Total_MAPK
[59] in presence of 2 nM BDNF stimulus for indicated time points. (F) Block diagram of sub-model including TORC1, CREB and mRNA synthesis (G) N/C
fluorescence ratio of TORC1 in presence of L-LTP (four pulses of 100 Hz for 1 sec after every 5 min) [60]. (H) Relative increase in pCREB-CRE in
presence of L-LTP (four pulses of 100 Hz for 1 sec after every 5 min) [60]. (I) Time course of pCREB-CRE in presence of 50 Hz for 18 sec [67]. (J) Dose-
response for pCREB-CRE with change in CBP [68].
doi:10.1371/journal.pone.0095154.g003
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activation of CaMKIV, CREB, and mRNA synthesis rate to assess

the quality of the parameterization in the composite model

(Fig. 4A).

1) Parameters for BDNF activation of CREB: In the published

experiment, cortical neurons were stimulated with BDNF for

indicated time points (0, 15, 30 and 60 min) and phospho-

Ser133 CREB (p-CREB) was measured using western blots

[69]. To simulate this, we presented a steady 2 nM BDNF

stimulus and measured the levels of pCREB-CRE (Fig. 4B).

The simulated pCREB-CRE closely matched the experiment

data.

2) Parameters for BDNF activation of mRNA synthesis: In this

published experiment, the relative increase in mRNA

synthesis following BDNF stimulation was measured [70].

The experiment was carried out in cultured hippocampal

neurons where a steady stimulus of 100 ng/ml (4 nM) BDNF

was delivered and the CRE mediated luciferase activity was

measured as a readout for CREB-dependent transcription.

We simulated the experiment by measuring the relative

increase in mRNA synthesis following steady BDNF stimu-

lation (Fig. 4C). The simulated increase in mRNA synthesis

was close to the experimental value.

3) Parameters for CaMKIV by LTP stimuli: In the experimental

study, LTP was induced in hippocampal CA1 region by

electrical stimulation to measure the time course of phos-

phorylated CaMKIV (pCaMKIV) [58]. The stimulus used

was a HFS of 100 Hz frequency and 1 sec duration was

applied two times with a 20 sec interval. After stimulation, the

slices were homogenized and the measurements were done by

western blots using specific antibodies. We modeled the

experiment by presenting the stimulus as two pulses of

calcium separated by 20 sec. The duration of each calcium

pulse was 1 sec [56] and concentration was 2 mM [57]. We

measured Total_pCaMKIV (Fig. 4D) to account for all the

phosphorylated forms of CaMKIV. We were able to match

the time-course of pCaMKIV.

4) Parameters for CREB phosphorylation by E-LTP stimuli: In

the published experiment, E-LTP was induced at CA1

neurons in hippocampal slices [55]. The stimulus used was

HFS (100 Hz for 1 sec). The level of the phosphorylated form

of CREB was measured at different time-points (0, 2, 5 and

15 min) using western blots. In the simulation, we presented

the stimulus as a pulse of calcium (2 mM concentration and

1 sec wide). The levels of pCREB-CRE were monitored after

the stimulus presentation. The simulated time course of

pCREB-CRE was close to that of experiment (Fig. 4E).

5) Parameters for mRNA synthesis following L-LTP stimulus: In

the experiment, LTP was induced in cultured hippocampal

neurons by tetanic stimulation [71]. The stimulus consisted of

three trains of HFS (100 Hz for 1 sec) (3 HFS) presented at an

interval of 5 min. CRE-mediated luciferase activity was

measured as a correlate of activity-induced gene expression.

We simulated the experiment by presenting the stimulus as

three pulses of calcium (1 sec wide and 2 mM amplitude) to

the composite model and measured the relative increase in

mRNA synthesis at 5 min after the stimulus presentation. The

simulated increase in mRNA synthesis was compared with the

CRE-mediated luciferase activity and was within the error

bars of experimental data (Fig. 4F).

At this point we had concluded the first part of our model

development, that is, constraining and parameterizing the model

using a range of published experiments.

Parameter Sensitivity Analysis Demonstrates Robustness
of Model
In order to test the robustness of the model, we performed a

parameter sensitivity analysis. If the model is robust there will not

be significant change in intermediate molecules and mRNA

synthesis over a wide range of parameters, thus mimicking the

in vivo condition where a small change in the system does not lead

to much change in its behaviour. Here we altered each parameter

over a 100-fold range (0.1 to 106reference values). For molecular

pools, we varied the initial concentration (CoInit). For enzymes we

varied Michaelis Constant of enzyme (Km) and turnover number

of an enzyme (kcat). For non-enzymatic reactions we varied the

forward (Kf) and backward rate constants (Kb). As a readout of the

effect of these parameter variations, we monitored the simulated

concentrations of Total_pCaMKIV (Fig. S4 in File S1), Total_-

MAPK (Fig. S5 in File S1), pCREB-CRE (Fig. S6 in File S1) and

also the mRNA synthesis rate (Fig. 5). Almost all (360/418)

parameters elicited a smaller than two-fold effect on these

responses. The parameters which have a greater than two-fold

effect on responses are plotted in Fig. 5. Most of these sensitive

parameters correspond to two pathways of the model: CaMKIV

pathway and MAPK pathway. In addition, the other sensitive

parameters were the basal synthesis of mRNA, and SIK2 which

prevents the translocation of TORC1 by phosphorylating TORC1

(Fig. 3F). We have tested the sensitivity of mRNA synthesis rate for

various calcium-input patterns (Fig. S7 in File S1). In each case,

the stimulus consists of three pulses of Ca2+ presented with a 5 min

spacing (Fig. S7A in File S1). To test for sensitivity we varied the

waveform of the Ca2+ pulse. In addition to the reference pulse of

2 uM amplitude and 1 second duration (Fig. S7B in File S1), we

delivered a pulse of 1 mM amplitude and 2 sec wide (Fig. S7C in

File S1), and a time-varying pulse having a peak of 2 mM
amplitude near the end of the pulse which then decayed with a

half-time of ,5 sec to the baseline level (Fig. S7D in File S1)

[72,73]. Overall, the time-course of simulated mRNA synthesis

was not sensitive to the Ca2+ waveform, but the peak of the mRNA

synthesis rate was moderately sensitive to the peak Ca2+ levels.

Different Pathways Mediate Calcium Dependent mRNA
Synthesis
We next performed a characterization of model responses to

patterned Ca2+ stimuli. The stimulus used was three pulses of

calcium separated by 300 sec, each pulse of 1 sec duration. We

measured the response to varied levels of calcium pulses (i.e. 0.08,

0.5, 1, 2, 4, 6, 8 and 10 mM). We measured the readouts at 15 min

after the stimulus presentation. As expected, the mRNA synthesis

rate increased with an increase in calcium level (Fig. 6A).

Upstream of the mRNA synthesis, we observed a calcium-

dependent increase in Total_pCaMKIV (Fig. S8A in File S1)

and pCREB-CRE (Fig. S8B in File S1) whereas Total_MAPK

level saturated at around 2 mM of Ca2+ stimulus amplitude

(Fig. 6B). This divergence in response profiles and calcium

dependence suggests that different pathways may selectively

activate different temporal or molecular components of the overall

mRNA-synthesis response.

We repeated the analysis for BDNF stimulation. We ran the

model to steady state and then applied a steady stimulus of BDNF

at the indicated concentration. Ca2+ was maintained at basal levels

for first set of simulations. For a second set of simulations we

presented BDNF along with a Ca2+ stimulus (three pulses of

calcium of 2 mM amplitude given for 1 sec after every five min).

We measured the readouts at 18 min after the stimulus

presentation. When the BDNF stimulus was given at basal
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calcium (0.08 mM) the mRNA synthesis responded in a sigmoid

manner to increasing levels of BDNF. When the BDNF stimulus

was delivered along with the Ca2+ stimulus, the baseline due to

Ca2+ was already high and the addition of BDNF had little effect

on the response. Hence, BDNF effects were occluded by high

calcium (Fig. S9A in File S1). We observed a sigmoid dependence

of phosphorylated MAPK on BDNF (Fig. S9B) but there was no

effect of BDNF on CaMKIV responses (Fig. S9C in File S1). This

is expected, because there are no downstream interactions of

BDNF leading to the CaMKIV pathway in our model. Hence, we

attributed the effect of BDNF on the mRNA response to the

MAPK pathway.

BDNF Raises mRNA Synthesis When Combined with LTD,
but not LTP, Stimulus
The above simulations suggested that distinct synaptic input

patterns might have differential sensitivity to BDNF, because the

amplitude and duration of calcium influx is pattern dependent

[74]. We therefore presented LTP- and LTD- inducing stimuli

along with BDNF. The LTP stimulus was delivered as three pulses

of Ca2+ influx, each 1 sec wide separated by 300 sec plus a BDNF

input of 2 nM for 600 sec. The LTD stimulus was presented as a

single 900 sec Ca2+ pulse along with a BDNF input to 2 nM for

900 sec. We chose this duration for BDNF input based on our

earlier study [31] where we measured protein synthesis as a

function of time after the delivery of stimulus. The contribution of

Figure 4. Composite model and parameterization. All the graphs show relative increase in level of read-outs with respect to baseline level. (A)
Block Diagram of composite model with calcium and BDNF as an input. The shaded gray boxes represent the molecules measured for constraining
the model. (B) Time course of pCREB-CRE [69] in presence of 2 nM BDNF stimulus for indicated time points. (C) Relative increase in mRNA synthesis
rate following 4 nM BDNF stimulation [70]. (D) Time course of Total_pCaMKIV following an LTP stimulus [58]. A tetanus of 100 Hz frequency and 1 sec
duration was applied two times with a 20 sec interval between tetani. (E) Time course of pCREB-CRE in presence of E-LTP (100 Hz tetanus for 1 sec)
[55]. (F) Relative increase in mRNA synthesis after LTP induction (three pulses of 100 Hz for 1 sec separated by 5 min) [71].
doi:10.1371/journal.pone.0095154.g004

Simulating Neuronal mRNA Synthesis

PLOS ONE | www.plosone.org 8 May 2014 | Volume 9 | Issue 5 | e95154



Figure 5. Parameter sensitivity analysis. The reference model parameter was varied by 0.1 to 10 fold to measure mRNA synthesis rate. The
measured value was divided by the reference parameter model value to obtain the fold change. The parameters which show greater than two fold
change in the response are plotted. The measurements done at 1000 sec and 2000 sec are showed by thick and thin black lines respectively. (A)
Sensitivity Analysis for intial concentration (CoInit) (B) Sensitivity Analysis for Michaelis constant for enzymatic reactions (Km). (C) Sensitivity Analysis
for turn over number for enzymatic reactions (kcat). (D) Sensitivity Analysis for forward rate of binding reations (Kf). (E) Sensitivity Analysis for
backward rate for binding reactions (Kb).
doi:10.1371/journal.pone.0095154.g005
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BDNF to model response was negligible when presented with LTP

(Fig. 6C), but significant with LTD (Fig. 6D). This is might be due

to the occlusion of the BDNF effect on mRNA synthesis rate at

high levels of calcium as observed above and in Fig. S9 in File S1.

This is in agreement to a published study where BDNF LTP is

occluded by HFS-LTP [75].

The Model Predicts the Outcome of Pathway Knockout
Experiments
Knockout experiments have demonstrated the role of CaMKIV

[76], ERK [15], CREB [77,78] and TORC1 [60] in activity-

dependent gene transcription. We analyzed the dependence of

mRNA synthesis on these key molecules, for LTP and LTD

inputs. To simulate knockout, we individually set CaMKIV,

MAPK, CREB and TORC1 to zero and measured mRNA

synthesis rate following different kinds of stimuli. The LTP

Figure 6. Effect of inputs and pathway knockouts on mRNA synthesis. Calcium dose-response relationship for mRNA synthesis rate (A) and
Total_MAPK (B). (C) The rise in mRNA synthesis is negligible when BDNF input is combined with LTP stimulus (D) mRNA synthesis responds more
strongly when BDNF was combined with LTD stimulus. (E) Control and knockout responses to LTP stimulus. (F) Control and knockout responses to
LTD stimulus. CREB and TORC1 knockouts completely abolished the mRNA response as they are immediate upstream regulators. CaMKIV and MAPK
knockouts had intermediate effects on mRNA. (G) Temporal tuning of pCREB-CRE and TORC1n. (H) Temporal tuning of mRNA synthesis rate. We
plotted area under the curve after the stimulus presentation for Fig. 6G and 6H.
doi:10.1371/journal.pone.0095154.g006
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stimulus caused an increase in mRNA level through the combined

action of different pathways (Fig. 6E). The mRNA level was

sharply attenuated when CaMKIV, CREB, or TORC1 was

knocked out. The MAPK-knockout had an approximately 25%

reduction on mRNA response. This panel of effects matches well

with previously published experiments. For example, in brain-slice

experiments on CaMKIV/Gr KO mice stimulated with gluta-

mate, c-Fos staining of hippocampal CA1 neurons is much

reduced compared to controls [76]. Further, dominant negative-

TORC1 hippocampal neurons show no increase in KCl-induced

gene expression in contrast to wild-type neurons [60]. The modest

MAPK reduction is comparable to an experimental study showing

around 35% decrease in gene expression when MEK inhibitor was

used [15]. For LTD, we found that CaMKIV-knockout substan-

tially reduced mRNA synthesis, and CREB- and TORC1-

knockout almost abolished it. MAPK-knockout in our model

had only a 30% reduction on mRNA synthesis during LTD

(Fig. 6F). To our knowledge there have been no direct

experimental readouts of mRNA synthesis under these conditions,

hence these model predictions remain to be tested.

Overall, our model replicated a range of outcomes from

knockout studies on key upstream pathways in translational

regulation.

mRNA and Upstream Pathways are Tuned to
Interstimulus Interval
We next examined how mRNA and other pathways in the

model responded to a sequence of strong synaptic inputs, at

different temporal intervals. This set of simulations addresses

tuning to massed as opposed to spaced inputs, which are known to

elicit different forms of LTP [79]. Three pulses of 100 Hz for 1 sec

were presented at varying inter-tetanus intervals (ITI), from 1 sec

to 1800 sec (Fig. S8C in File S1). Each individual pulse was 1 sec

long and had an amplitude of 2 mM. We considered three

readouts of temporal tuning: the activation of phosphorylated

CREB, nuclear level of TORC1 (TORC1n) (Fig. 6G) and mRNA

synthesis rate (Fig. 6H). In each case we considered the time-

integral of the response after the stimulus presentation (measured

as area under the time-series curve). CREB exhibited little tuning,

TORC1 increased 50% with longer intervals, and mRNA

synthesis peaked at 60 seconds. This 60-sec tuning is consistent

with an earlier experimental study which showed an increase in

activation of CREB-dependent gene expression with widely

spaced training as opposed to massed training [80].

mRNA Transcripts are Differentially and Combinatorially
Synthesized Depending on Stimulus Pattern
As a key prediction of the model, we next asked whether the

mRNA transcriptional control network might lead to differential

stimulus dependent transcription of distinct mRNA sequences. In

order to test this prediction of pattern selectivity in the

transcriptional control network, we delivered four different

stimulus patterns to the model: spaced-LTP (ITI - 300 sec),

massed-LTP (ITI - 10 sec), theta burst, and LTD. We observed

distinct activity patterns of CaMKIV, MAPK and TORC1 to

these four stimuli (Fig. 7A, 7B and 7C). While these were complex

temporal patterns of activity in their own right, we hypothesized

that the mRNA synthesis reactions might act as a temporal

integrator and thus transform these activity patterns into

expression-level readouts.

To test this hypothesis, we extended our model with the

assumption that the key transcription regulatory pathways couple

to distinct promoters in addition to the common CREB activation

pathway. While the details of this separate coupling are not

known, there is considerable evidence for such a mechanism, in

the form of unique subsets of transcripts generated upon activation

of different upstream pathways [26–29]. We represented this

mechanism as an alternate model (Fig. 7D), where for simplicity

CaMKIV, MAPK and PP1 each activated a distinct promoter,

leading to mRNA synthesis. Using this model, we found that the

different plasticity stimuli were transformed into distinct combi-

nations of expression of different mRNA transcripts (Fig. 7E).

Interestingly, the theta-burst stimulus which elicits robust LTP,

caused relatively little activation of the subset of pathways in our

model. Relatively low theta-burst activation of the CaMKII and

PKA pathway has also been reported in another simulation study

[56], and we suggest that pathways outside the scope of our model

may be involved in the transcriptional response to theta-burst

stimuli [81]. In the cell we expect considerably more complex

promoter control signaling and hence still more varied mRNA

outcomes [82–84]. Thus this set of simulations supports our

hypothesis that the mRNA synthesis reactions, in conjunction with

the different time-courses of stimulus-triggered pathways, may

transform stimulus activity patterns into distinct profiles of mRNA

expression.

Simultaneous Input Patterns Sum Non-linearly to Give
Rise to Novel Combinatorial mRNA Expression
The branching of a dendrite tree is complex and neurons

receive numerous inputs from different synapses simultaneously or

in succession. This input information must funnel into the soma to

control transcription. This raises two questions: First, can the

transcription control pathways distinguish between simultaneous

inputs? Second, is the summation of inputs linear or nonlinear? To

address these questions, we compared the mRNA outcome to the

delivery of simultaneous, mutually opposed LTP and LTD stimuli

(Fig. 7F). We modeled the combinatorial mRNA response to LTD

plus different variants of LTP stimuli. We found that the predicted

mRNA response pattern was different both from the individual

responses (Fig. 7G), and from the sum of the individual responses

(Fig. 7H). Specifically, the PP1-driven mRNA profile was close to a

simple sum, but CaMKIV and MAPK mRNAs responded

differently. Thus, the outcome of simultaneous inputs is that the

transcriptional outcomes are indeed distinguishable from either

input on its own, and the resultant mRNA profile is distinct, rather

than an overlay of the outcomes of the individual patterns.

Overall, our final set of simulations shows that the mRNA

transcriptional control network decodes a wide range of temporal

stimuli implicated in synaptic plasticity, and generates distinct

combinations of mRNA transcripts in response.

Discussion

Selective transcription control is a cell-wide determinant of

plasticity, and underlies spatially localized processes such as

biochemical signaling, protein traffic, and protein synthesis.

Transcriptional control is also crucial in many other biological

contexts but there have been few mechanistic models of the

molecular information processing leading from cellular inputs to

the synthesis of mRNA. Many studies suggest that CREB-

mediated transcription is essential for formation of long-term

memory, but the signaling involved in this process is not fully

understood. Here we built a biochemically detailed model of some

key pathways in this signaling and parameterized these based on

published experiments. We replicated a number of knockout

experiments. The model predicts that even this limited subset of

the transcriptional control network acts like a versatile decoder of
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stimulus patterns, and can generate diverse combinatorial mRNA

expression patterns.

Somatic Pattern Integration
The soma has a unique role in plasticity: there is just one soma

to manage production of proteins for many thousands of synapses.

To some extent this problem is mitigated by synapse-local protein

synthesis. However, this too requires that appropriate sets of

mRNA transcripts be available to the local synthesis machinery.

Many questions remain about which fraction of proteins are made

at the soma, and which at the synapse; how proteins and mRNAs

‘know’ which synapse to go to; which signals are important in

synaptic tagging; and how the soma decides which mRNAs to

make [85]. The current study addresses the last question.

How does synaptic information reach the soma? One possibility

is that stimulus mediated activation of biochemical molecules is

Figure 7. Differential synthesis of mRNA. Distinct activation profiles of (A) Total_pCaMKIV, (B) Total_MAPK and (C) TORC1n to four different
temporal patterns of stimulation (spaced-LTP (ITI - 300 sec), massed-LTP (ITI - 10 sec), theta burst, and LTD). (D) Block diagram of an alternate model
where CaMKIV, MAPK and PP1 pathways each leading to synthesis of different mRNA transcripts. (E) Distinct expression profiles of different mRNA
transcripts for each of the four stimulus patterns. (F) Schematic showing two different branches of a neuron where one branch receives LTP stimulus
and the other branch receives LTD stimulus. The LTP and LTD inputs are represented by blue arrows and the direction of information flow is shown
by red arrows. The red blocks represent signaling molecules and the wavy colored lines represent mRNA (G) mRNA expression profiles for
combinations of stimulus patterns. The stimulus combination presented were LTD plus different variants of LTP stimuli. (H) Expression profile for
combined input computed by the arithmetic sum of the contributions from individual inputs. This is strikingly different from the simulated response
in Fig. 7G.
doi:10.1371/journal.pone.0095154.g007
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followed by transport of these signals from the potentiated synapse

to the nucleus. There are two problems with this. First, the

diffusion/transport process is slow. It would take 10 minutes for a

signal to be transported from a spine 600 micron down the

dendrite, even with a fast motor [86]. In contrast, transcription

commences relatively quickly (within 2 min [24,87,88]). Second,

the signal decays as it spreads along the dendrite and thus, the

signal reaching the nucleus might not be sufficient for activating

transcription. Local synaptic activity triggered biochemistry might

be reasonable in the case where the synapses are located very close

to the soma.

Another possibility is that distal synapses rely on electrical

signaling to trigger chemical signaling in the dendritic shaft and

soma [89]. Although the effect of a single synapse at the soma is

small (typically under one mV, [90,91]), simultaneous activation of

many synapses may trigger somatic calcium influx through

voltage-gated ion channels. Many of the pathways in this model

are calcium-dependent. It is likely that both these mechanisms

operate, depending on the location of synapses and the function of

the synthesized mRNA. In our model we do not distinguish

between these kinds of input. We instead assume that all the soma

has to work with are patterns in time and contextual information

such as BDNF. Our model suggests that these are sufficient to

generate considerable transcript diversity. This observation is

supported by the results of previously published experiments

demonstrating input-dependent synthesis of specific mRNA [27–

29].

One specific issue which our model addresses is the possibility

that the soma may have to deal with different, perhaps

contradictory forms of input from different dendritic branches.

For example, one branch may be subjected to an LTP-, and

another to an LTD-inducing stimulus. Surprisingly, the predicted

outcome of such a combination is an entirely distinct pattern of

mRNA transcription. The implication is that while the sub-

branches may indeed get the required molecules for their stimulus-

specific remodeling program, the proportions may change and

they may also get additional transcripts to modulate the outcome.

This may lead to very wide-ranging heterosynaptic interactions

between dendrites undergoing different kinds of plasticity.

Overall, we see that the soma is capable of quite sophisticated

decision-making based on temporal pattern and signaling context.

The cellular transcription control network response is therefore far

more nuanced than a simple stress-response to strong activation

[20,92].

Other Layers of Decoding
Having generated a suitable combination of transcripts and

proteins, how does the cell know where to send them, and how do

the target synapses know what to do with them? Newly synthesized

mRNAs are translated either near the nucleus [93,94] or in the

dendrites [95,96]. Delivery of mRNAs or proteins to the

potentiated synapse introduces altogether a new level of regulation

in neuronal gene expression. Frey and Morris suggest that synaptic

tagging helps direct mRNA or protein to particular synaptic sites

[3]. Recently active synaptic sites are ‘tagged’, presumably through

some persistent biochemical activity, leading to capture of newly

synthesized mRNA and proteins.

Synapses themselves are versatile pattern-decoding machines

[56,97,98]. This decoding can happen in two stages. First,

patterned synaptic input sets up activity in distinct combinations

of signaling pathways [27]. This forms a layer of specificity to

recruitment and incorporation of subsets of mRNA and proteins,

though the mechanisms for this are yet to be experimentally

defined. Second, there are further sets of synaptic signaling

pathways that control activity-dependent protein synthesis once

mRNA has reached the synapse. These too are pattern-selective

[31]. It is interesting that the,15 minute round-trip time from the

synapse, to the soma, and transport of mRNA back to the synapse,

overlaps with the predicted activation time-scale of the synaptic

translational machinery [31].

These additional layers of control provide local control with

distinct possible outcomes over thousands of synapses. In contrast,

the somatic control of transcription is central: it decides what the

rest of the cell has to work with. Hundreds of genes are transcribed

in response to neuronal stimulation [16]. The current study

provides an insight into how even a small subset of known

biochemical control pathways can orchestrate them to produce

diversity in cellular responses.

Materials and Methods

We used the Kinetikit interface of GENESIS, the General

Neuronal Simulation System [99] and MOOSE, the Multiscale

Object-Oriented Simulation Environment [100] for running the

simulations. GENESIS uses an explicit exponential Euler method

and MOOSE uses an adaptive Runge-Kutta method. The

complete model consisted of 142 molecules, 68 molecule-molecule

interactions and 70 enzymatic reactions. The biochemical

reactions and the parameters (418) used in the model are shown

in Supporting material (Dataset S1). The GENESIS version of our

reference (Dataset S2) and alternate model (Dataset S3) are also

available in our supporting material and on the DOQCS database

[43]. All the production simulations were performed in MOOSE

for greater accuracy and speed, however the results from the

GENESIS simulator match closely. The parameters were

estimated from published data from pharmacological, genetic,

and molecular biological experiments [101]. Hand tuning of the

parameters were done to fit data of multiple published experi-

ments. Once the model was constrained and validated, parameter

sensitivity analysis was performed. Parameterization was substan-

tially on the basis of published time-series experiments, which were

converted using a screen capture and analysis program (Engauge

Digitizer) into numerical values. These were tabulated and re-

plotted for comparison with our own graphs for Fig. 2, 3 and 4.

Parameter sensitivity analysis was done by scaling the reference

model parameters one at a time by factors of 0.1, 0.2, 0.3, 0.5, 0.8,

0.9, 1.1, 1.2, 1.5, 2, 3, 5, and 10 fold. The stimulus used was three

pulses of Ca2+ presented with a 5 min spacing. Each pulse was of

2 mM amplitude and 1 sec wide. The stimulus was delivered after

the model reached the steady-state at 7000 sec. The concentration

of the readouts (Total_pCaMKIV, Total_MAPK, pCREB-CRE

and mRNA) were recorded at 1000 sec and 2000 sec after the

stimulus. The obtained concentration was normalized by the

original parameter model. These normalized fold change were

plotted against logarithmic value of the parameter scale factor.

Pathway Inhibition Simulations
In all these simulations we first ran the model for 7000 sec to

reach steady-state. We then presented the stimulus. For measuring

LTP responses, the stimulus was three pulses of Ca2+ influx, each

1 sec wide and 2 mM amplitude separated by 300 sec. To measure

the outcome of LTD stimuli, we delivered a steady Ca2+ stimulus

of 0.2 mM amplitude for 900 sec. To measure the dependence of

CaMKIV, MAPK, CREB and TORC1 on mRNA synthesis for

different inputs, we performed knockout experiments. We have set

the concentration of knockout molecule at zero and measured the

read-outs.
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Model Tuning to Interstimulus Interval
We ran the model to steady-state at 7000 sec, and then

presented the stimulus (3 pulses of Ca2+ influx, each 1 second wide

and 2 mM amplitude) at the indicated inter-tetanic intervals. The

pulses of Ca2+ were separated by 3, 10, 20, 300, 600, 900 and

1800 sec. We measured the change in read-out for 2 hr after the

stimulus presentation. The trapezoidal rule was used to calculate

area under the curve after the stimulus presentation.

Differential Synthesis of mRNA from Different Stimulus
Patterns
We used four distinct input stimuli for analyzing pattern-

dependent differential synthesis of mRNA. These were: 1: spaced-

LTP (3 pulses of Ca2+ influx, each 1 sec wide and 2 mM amplitude

separated by 300 sec); 2: massed-LTP (3 pulses of Ca2+ influx,

each 1 sec wide and 2 mM amplitude separated by 10 sec); 3:

theta-burst (4 sets of stimuli delivered after every 20 sec where

each set consisted of 10 calcium pulses of duration 75 ms and

concentration 2 mM, presented every 2 sec [56]) and 4: LTD (a

steady Ca2+ stimulus of 0.2 mM amplitude for 900 sec). To see the

effect of different input on differential synthesis of mRNA, we

extended our model so that the existing PP1, MAPK and

CaMKIV pathways individually regulated mRNA synthesis. They

did so by a binding reaction to a downstream molecule A, B and C

respectively. Each of these binding steps was assumed to have the

same kinetics. These molecules are a minimal representation of the

machinery with which PP1, CaMKIV and MAPK interact, in

order to direct synthesis of specific mRNA. We ran the model to

steady-state at 7000 sec, and then presented the stimulus. The

mRNA response at 20 min time-point after presenting the

stimulus was used for plotting Fig. 7E.

Differential Synthesis of mRNA from Simultaneous Inputs
The calcium concentration of simultaneous inputs were added

and then presented as stimulus to an alternate model at 7000 sec.

The mRNA response at 20 min time-point after presenting the

stimulus was used for plotting Fig. 7G and 7H.
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