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Abstract

In Europe, especially in Mediterranean areas, the sheep has been traditionally exploited as a dual purpose species, with
income from both meat and milk. Modernization of husbandry methods and the establishment of breeding schemes
focused on milk production have led to the development of “dairy breeds.” This study investigated selective sweeps
specifically related to dairy production in sheep by searching for regions commonly identified in different European dairy
breeds. With this aim, genotypes from 44,545 SNP markers covering the sheep autosomes were analysed in both European
dairy and non-dairy sheep breeds using two approaches: (i) identification of genomic regions showing extreme genetic
differentiation between each dairy breed and a closely related non-dairy breed, and (ii) identification of regions with
reduced variation (heterozygosity) in the dairy breeds using two methods. Regions detected in at least two breeds (breed
pairs) by the two approaches (genetic differentiation and at least one of the heterozygosity-based analyses) were labeled as
core candidate convergence regions and further investigated for candidate genes. Following this approach six regions were
detected. For some of them, strong candidate genes have been proposed (e.g. ABCG2, SPP1), whereas some other genes
designated as candidates based on their association with sheep and cattle dairy traits (e.g. LALBA, DGAT1A) were not
associated with a detectable sweep signal. Few of the identified regions were coincident with QTL previously reported in
sheep, although many of them corresponded to orthologous regions in cattle where QTL for dairy traits have been
identified. Due to the limited number of QTL studies reported in sheep compared with cattle, the results illustrate the
potential value of selection mapping to identify genomic regions associated with dairy traits in sheep.
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Introduction which means that it is particularly suited to processing into cheese.
Historically, most sheep milk has been produced by multipurpose
local breeds with low-to-medium milk yields and raised under
traditional husbandry conditions [3]. More recently, moderniza-
tion of husbandry methods and the establishment of breeding

Since their domestication 8 000-9 000 years ago (reviewed by
[1]), sheep (Ouvis aries) have been used by humans for the
production of wool, meat and milk. Adaptation to very different
geographic and climatic conditions and the specialization for
specific characteristics have resulted in a phenotypically highly
diverse species. The first documented modifications to sheep by

schemes focused on milk production have led to the development
of “dairy breeds”, facilitated by the implementation of quantitative
genetics-based breeding and the use of artificial insemination [2].
The market for sheep milk and sheep dairy products appears to be
growing, even in those countries without a history of sheep
dairying [4].

Selection sweep mapping strategies, in which regions of the
genome are identified that show patterns consistent with positive
selection, can be used as a complementary approach to linkage
mapping and genome-wide association study (GWAS) analysis to
identify regions of the genome that influence important traits in
livestock. Various methods have been applied to livestock and

human-imposed selection had taken place by the time that
illustrations and records first appeared c. 3 000 BC and primarily
concerned morphological and coat colour traits with the initial
major morphological changes including reduction in the length of
the legs, lengthening of the tail and alteration of horn shape [2].
Initially, sheep were kept solely for meat, milk and skins.
Archaeological evidence suggests that selection for woolly sheep
may have begun around 6000 BC.

Dairy sheep are mainly found in Europe, especially in

Mediterranean areas, where they have been traditionally exploited other domesticated animals, with the aim of identifying genomic

regions with characteristics that reflect the influence of selection:
extended low diversity haplotypes [5], overall low heterozygosity

as a dual purpose species, with income from both meat and milk.
Sheep milk has a higher solid content than cow or goat milk,
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(e.g. [6,7]), specific diversity patterns [8], extreme allele frequen-
cies [9] and between-breed differentiation [10,11,12]. Because of
their well-documented selection pressures and highly-developed
genetic resources, domesticated animal species also provide a
valuable resource with the potential to identify the molecular
pathways underlying phenotypic traits through the use of selection
mapping approaches [10,13].

To perform a search for signatures of selection related to dairy
production in sheep, we used genotypes obtained with the Illumina
OvineSNP50 BeadChip (Illumina Inc., San Diego, CA) for a number
of European breeds genotyped within the framework of the Sheep
HapMap Project [14]. These breeds include several selected
primarily for dairy production and others not used for dairy. In
order to specifically target regions under dairy-related selection
and not related to other traits that may have been under selection
in the sheep populations, only selection signatures commonly
identified in different European dairy breeds were considered. We
applied two approaches for the detection of selection sweeps: (i) we
looked for regions with extreme genetic differentiation between
cach dairy breed and a closely related non-dairy breed, and (i1) we
looked for regions of the genome with reduced heterozygosity in
the dairy breeds using two methods. We then searched for
candidate genes that could be selection targets within the regions
that were identified in multiple breeds and using multiple analysis
methods. For these regions we also looked for correspondence with
previously reported QTL related to dairy production traits in
cattle or sheep. Although the selection history of dairy cattle is
quite different from that of dairy sheep, in particular because
breeding schemes in sheep are focused on more localized (and in
many cases isolated) breeds than the global dairy cattle population,
comparison of our results with studies in cattle allowed us to
evaluate whether some of the same regions/genes show evidence
of selection in both dairy sheep and dairy cattle.

Materials and Methods

Data

Samples. We analysed a subset of the dataset generated in
the Ovine HapMap project [14], which included 5 dairy and 5
non-dairy sheep breeds (Table 1).

Genotypes. After an initial quality control procedure de-
scribed in detail elsewhere [14], this dataset provides the genotypes
of 49,034 SNPs (using the llumina OvineSNP50 BeadChip) distrib-
uted across the 26 autosomal ovine chromosomes and chromo-
some X (only one of the markers genotyped belongs to
chromosome Y). Markers were filtered to exclude loci assigned
to unmapped contigs. The analyses reported here focused on the
remaining 44,545 of these SNP located on autosomes. The
positions of the markers according to the Sheep Genome Assembly
v2.0 (update September 2011) were used for the analyses.

Selection Sweep Mapping Analysis Methods

(i) Genetic differentiation: Pair-wise Fgr calculations.
In order to search for genomic regions that have been under
divergent selection in dairy and non-dairy breeds, we
examined genetic differentiation across the genome for five
breed pairs. The selection of sheep breeds to serve as non-
dairy partners for dairy breeds was based on the shortest
divergence time estimates reported by the Sheep HapMap
project (based on the extent of haplotype sharing and
correlation of linkage disequilibrium values; Supplementary
Information Figure S10 and Figure 3 in [14]), and close
relationships according to additional Principal Component
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Analyses (PCA) performed in a selection of breeds (described
in detail in File S1).

The following pairs of breeds of European ancestry were
considered in the differentiation analysis:

a. Chios (Greek, dairy) us Sakiz (Turkey, non-specialized)

b. Churra (Spanish, dairy) vs Ojalada (Spanish, meat)

c. Comisana (Italian, dairy) »s Australian Poll Merino (Austra-
lian, originated in southwest Europe, wool)

d. East Friesian Brown (highly specialized dairy) vs Finnsheep
(Finland, primary wool, more recently used as a meat
producing breed)

e. Milk Lacaune (French, highly specialized dairy) vs Australian
Poll Merino (Australian, originated in southwest Europe,
wool)

f. Milk Lacaune (French, highly specialized dairy) us Meat
Lacaune (French, meat)

For each of these pairs, unbiased estimates of Weir and
Cockerham’s Fgp [15], a measure of genetic differentiation, were
calculated as functions of variance components, as detailed in
Akey et al. [16]. This type of approach to selection mapping,
exploiting between-breed allele frequency differences, has been
applied in studies of humans [16] and domesticated animals
[10,11,12,17,18] where it has been demonstrated to be effective in
identifying genes that are associated with breed differentiation.
(ii) Reduced diversity: Observed heterozygosity. For all

the breeds included in the pair-wise Fgp calculations,
observed heterozygosity (ObsHtz) was calculated for each
SNP marker. This approach has previously been applied in
selection mapping studies of chickens [6,7], pigs [19] and
dogs [20].

(iii) Reduced diversity: Regression analysis for detec-
tion of regions with asymptotic heterozygosity
patterns. For all the breeds included in the pair-wise Fgr
calculations, tests of significant asymptotic relationships
between heterozygosity and distance from a test position
were performed across the genome based on the approach of
Wiener and Pong-Wong [8]. This method detects regions
with patterns of variation consistent with positive selection:
an asymptotic increase in marker variation (heterozygosity; )
with increasing distance (x) from a selected locus y=4 +B R*
(where R is the asymptotic rate of increase; B is the difference
between heterozygosity at the test position and the
asymptotic level; A is the asymptotic level of heterozygosity).
For each regression (performed in Genstat, [21]), we
recorded the parameters of the asymptotic regression, their
standard errors, the significance level associated with the
regression (p) and the variance explained by the curve.
Positive and increasing regressions (0<R<1, B<0) were
considered as being in the direction predicted by positive
selection. Analysis of simulated data suggests improved
precision of this selection mapping approach compared to
an alternative haplotype-based method as well as robustness
to demographic influences [8].

Protocols for Selection Mapping Analyses

In order to determine appropriate parameters for the above-
mentioned analyses, we investigated their behaviour on a test
genomic region encompassing the myostatin (GDF-8) gene, which
1s known to have been under selection in the Texel breed (details
in File S2).

Window/bracket sizes. Based on the analysis of the
myostatin gene (File S2), window and bracket sizes for the three
methods were established. For the differentiation and reduced
heterozygosity analyses, Fs and ObsHtz values, respectively, were
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averaged across sliding windows of 9 SNPs (Fs1-9SNPW, ObsHtz-
9SNPW). For the regression analysis, the test position was moved
every 50 Kb across each chromosome and all markers within
10 Mb of this position (10 Mb-bracket size) were considered in the
asymptotic regression. A —log(p) value was determined for each test

position.
Identification of selection signals by individual
methods. Evidence of positive selection was interpreted for

window estimates in the extreme of the empirical distributions, as
suggested by Akey etal. [10,16] and employed in various
subsequent studies (e.g. [11,13]. Specifically, we considered the
positions showing signatures of selection as the top 0.5th percent of
the distributions for differentiation (Fsr) and asymptotic regression
(-log(p), for regressions in the predicted direction) or the bottom
0.5th percent for observed heterozygosity. Based on the results of
the analysis of the myostatin gene (File S2), a selected “region’ was
defined as the range of positions within 2 Mb of each other
showing evidence of selection by any of the three methods. An
additional criterion for selected regions was that they were
identified in at least two breed pairs, for Fgr, or two dairy breeds,
for heterozygosity-based methods (with distances up to 2 Mb
allowed between the regions identified for different breeds). For
genetic differentiation, we further required that regions of extreme
Fgr must be detected in at least two different pairs of dairy — non-
dairy breeds that did not share a common breed (e.g. top regions
found only in the Milk Lacaune-Australian Poll Merino and
Comisana-Australian Poll Merino but not in other studied pairs
were not included in the list of differentiated regions). By requiring
at least two breeds (or breed pairs) for the initial identification of
candidate regions for each methodology, this selection mapping
strategy will not identify dairy gene variants occurring in only one

breed.

Criteria for Identification of Regions with Shared
Selection Signals

Based on the selected ‘“regions” identified by the individual
methods through the overlapping of at least two breeds or breed
pairs, and taking into account that the Fgp-based method is
expected to specifically target traits relevant for dairy production,
whereas signals detected by heterozygosity-based methods may not
be specific for dairy-related selection, we defined a “convergent
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Table 1. Breeds included in the present study.
Number of
Group Breed name samples Aptitude
Dairy Chios 23 High milk production
Churra 96 Double purpose breed
(milk and lamb production
Comisana 24 Highly-specialized dairy breed
East Friesian Brown 39 Highly-specialized dairy breed
Milk Lacaune 103 Highly-specialized dairy breed
Non-dairy Australian Poll Merino 98 Meat production
Meat Lacaune 78 Meat production
Ojalada 24 Meat production
Sakiz 22 Triple-purpose (milk, meat, wool)
Finnsheep 99 Primary used for wool production;
more recently used for meat production.
The classification established into Dairy and Non-dairy groups are presented together with some details about the breed aptitude.
doi:10.1371/journal.pone.0094623.t001

candidate region” (CCR) as one where a signal was identified by
the pair-wise Fgp comparison and at least one of the reduced
heterozygosity methods. Hence, a CCR was labelled where there
was overlap between the position ranges of the candidate regions
identified by the genetic differentiation methodology and at least
one of the two heterozygosity-based methods, such that each CCR
was associated with a region identified in at least two breeds (breed
pairs) and using at least two different methods.

Identification of Candidate Genes within CCR Regions

We identified the genes mapping to the end of each CCR using
the genome browser of the sheep genome reference sequence
(v2.0;  http://www livestockgenomics.csiro.au/ cgi-bin/gbrowse/
oarv2.0/) and identified the corresponding orthologous regions
in the bovine genome (Cow (UMD3.1) using Ensembl (http://
www.ensembl.org/Bos_taurus/Info/Index). A systematic extrac-
tion of all the annotated genes contained within the orthologous
genomic ranges in cattle was performed using Biomart (www.
biomart.org). Subsequently, an exhaustive search was performed
for candidate genes previously linked to cattle dairy traits [22]. In
addition, genes not included in this database but reported as
candidate genes in the literature in relation to milk production or
dairy-related traits were also identified. We also looked for
correspondence with genes for which signatures of selection have
been reported in studies of dairy cattle [23,24,25] and sheep
[14,26].

We evaluated correspondence of the CCR with QTL reported
for milk production and other functional traits related to dairy
production in sheep (based on the SheepQTL database, http://
www.animalgenome.org/cgi-bin/QTLdb/OA/index). We also
examined overlap between the CCR and QTL influencing milk-
related traits, mastitis and other functional traits related to dairy
production in cattle (based on the CattleQTL database; http://
www.animalgenome.org/cgi-bin/ QTLdb/BT/index), positioned
on the bovine genome reference sequence (UMD_version 3.1).

Results

Regions Identified by Individual Methods

Genetic differentiation. The level and range of the top
0.5% of Fgr values averaged in sliding windows of 9 SNPs (Fg-
9SNPW) varied among the five breed pairs (Figure 1). The lowest

May 2014 | Volume 9 | Issue 5 | 94623


http://www.livestockgenomics.csiro.au/cgi-bin/gbrowse/oarv2.0/
http://www.livestockgenomics.csiro.au/cgi-bin/gbrowse/oarv2.0/
http://www.ensembl.org/Bos_taurus/Info/Index
http://www.ensembl.org/Bos_taurus/Info/Index
www.biomart.org
www.biomart.org
http://www.animalgenome.org/cgi-bin/QTLdb/OA/index
http://www.animalgenome.org/cgi-bin/QTLdb/OA/index
http://www.animalgenome.org/cgi-bin/QTLdb/BT/index
http://www.animalgenome.org/cgi-bin/QTLdb/BT/index

genome-wide differentiation within a pair was found, as expected,
for the Milk Lacaune-Meat Lacaune pair (0.076), whereas the
highest levels of genetic differentiation were found for the East
Friesian Brown-Finnsheep pair (0.752, for the 9SNP-window
centered on marker OAR3_185527791) (Table 2).

Twenty-eight genomic regions distributed across 15 autosomes
were identified in at least two dairy-non-dairy breed pairs (Table
S1, where a reference number has been given to each of them:
Fsp-CandidateRegionX, Fsp-CRX). The largest number of Fgp-
based candidate regions per chromosome was found on OARS3 (5
regions). The length of the Fsr-based candidate regions varied
from 0.215 Mb (OARS3, Fs-CR8) to 9.211 Mb (OARG6, Fgr-
CR14).

Reduced observed heterozygosity in dairy breeds. Fifty-
five regions showing reduced observed heterozygosity (ObsHtz-
CR1-ObsHtz-CR55) in more than one dairy breed were found
across 21 of the 26 autosomes (Table S2; where a non-dairy breed
showed reduced heterozygosity in the same region, this is also
indicated). Eight of the candidate regions found in dairy breeds
covered intervals larger than 3 Mb. The largest was that on
OAR13 (ObsHtz-CR42; 56.061-63.781 Mb), followed by one on
OAR6 (ObsHtz-CR27:34.576-41.863 Mb), while the smallest
region was a single window centered on marker on OAR2
(ObsHtz-CR9; 211.205 Mb). A normalized observed heterozy-
gosity (NObsHtz) (based on that introduced by Rubin et al. [6])
was also calculated for all breeds analysed, again averaged in 9-
SNP windows. There were no regions in the extreme lower end of
the distribution (NObsHtz<<-6) in the dairy breeds although the
region on OARG6 (ABCG2 gene region) had a value of —5.99 for
the Meat Lacaune breed.

Regression analysis for detection of regions with
asymptotic heterozygosity patterns in dairy
breeds. Three regions ranging in size from 0.1 to 4.0 Mb were

a) Chios-Sakiz Fst

9SNPW-Fgr

Genomic position

b) Comisana-Australian Poll Merino Fsr

9SNPW-Fgr

Genomic position

e) Milk Lacaune-Australian Poll Merino Fst

9SNPW-Fgr

Genomic position

Selection Signatures in Dairy Sheep

identified with asymptotic heterozygosity patterns (bracket
size =10 Mb) in two or more dairy breeds (RegBrackl0-CR1-
RegBrackl0-CR3) (Table 3, where a non-dairy breed showed
reduced heterozygosity in the same region, this is also indicated).

The myostatin analysis suggested that a bracket size of 10 Mb
was optimal for identification of selected region. However, because
this is a new methodology, the results obtained for the dairy breeds
with all three bracket sizes (5-, 10- and 20-Mb) were compared to
aid interpretation of results based on this approach. The number
of candidate regions identified in at least two dairy breeds
decreased with increasing bracket size. For the 5-Mb bracket size,
a total of seven candidate regions were observed, whereas only
three and one candidate regions were observed for the 10- and 20-
Mb bracket sizes, respectively (Table 3). The region commonly
identified through the use of all three bracket sizes was located on
OARG6 (RegBrack5-CR6, RegBrackl0-CR2 and RegBrack20-
CR1). The signal for this region was seen in Milk Lacaune
(34.875-38.875 Mb, 10-Mb bracket) and Comisana (36.125—
38.325 Mb, 10-Mb bracket) breeds. In addition, the Meat
Lacaune variety also showed extreme results for this region for
all three bracket sizes (34.375-38.175, 10-Mb bracket). Another
region on OAR2 (104 Mb) was identified by both of the smaller
bracket sizes.

Some of the inconsistencies between bracket sizes were
investigated further. In several cases, where regions were not
found in the top 0.5% of —log(p) values for a particular bracket
size, they did appear in the top 1% of —log(p) values. Regarding
the region on OAR20 (~50 Mb) that was identified in two dairy
breeds using the 10-Mb bracket size (RegBrack10-CR3, Table 3)
but not using the 5-Mb bracket size: for Churra, positions within
this region appeared within the top 1st percent of —log(p) values for
the smaller bracket size but did not reach the threshold for the top

b) Churra-Ojalada Fsr

0.4 0.6

9SNPW-Fsr
0.2

0.0

Genomic position

d) East Friesian Brown-Finnsheep Fst

06

0.4

9SNPW-Fsy
0.2

I T |

0.0

Genomic position

f) Milk Lacaune-Meat Lacaune Fgr

9SNPW-Fgr

Genomic position

Figure 1. Genome-wide distribution of Fs; values for the six analysed breed pairs. The level of genetic differentiation, measured by Fsr,
was estimated within each dairy - non-dairy breed pair’, and averaged in sliding windows of 9 SNPs (Fs--9SNPW) across the genome: The horizontal
line indicates the top 0.5.th percent threshold considered for the Fsr-distributions. These raw results were used to identify Fsr-based candidate
regions (Fsr-CRs) when overlapping significant selection signals (allowing gaps up to 2-Mb) were identified between different pairs. 'Breed pairs
analysed: a) Chios-Sakiz, b) Churra-Ojalada; c¢) Comisana-Australian Poll Merino; d) East Friesian Brown -Finnsheep, e) Milk Lacaune-Australian Poll

Merino f) Milk Lacaune-MeatLacune.
doi:10.1371/journal.pone.0094623.g001
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Table 2. Maximum and minimum of the 0.005 top averaged pair-wise Fsr values in sliding windows of 9 SNPs (Fs-9SNPW)
estimated for the pairs considered in the present work to detect selection signals in dairy sheep.

Breed pair Min. Fs-9SNPW Max. Fst -9SNPW
Chios-Sakiz 0.2799 0.4392
Churra-Ojalada 0.1345 0.2193
Comisana-Australian Poll Merino 0.1781 0.4873
East Friesian Brown-Finnsheep 0.3212 0.7515
Milk Lacaune-Australian Poll Merino 0.1547 0.3071
Milk Lacaune-Meat Lacaune 0.0757 0.1449

doi:10.1371/journal.pone.0094623.t002

0.5th percent, whereas for Milk Lacaune, this region was identified
using both bracket sizes. Regarding the five regions (Table 3) that
were identified in two dairy breeds using 5-Mb bracket size but not
10-Mb, four of the regions were in the top lst percent of —log(p)
values for one or both of the dairy breeds. Two of these regions
(RegBrack5-CR1 and RegBrack5-CR3) were found in Chios and
Churra, however, while these regions were found for Churra using
both the 5- and 10-Mb bracket sizes, for the 10-Mb bracket size,
the top —log(p) values for Chios were dominated by regions on
OARI13 and OARI16, which did not feature in the top —log(p)
values for the other dairy breeds. Thus, these Chios-specific signals
may have overwhelmed the more general dairy signals for the
larger bracket size in this breed. The region labelled as
RegBrack5-CR4, identified at ~75 Mb on OAR3 for Churra
and Milk Lacaune using the 5-Mb bracket size, did not feature in
the top st percent of the —log(p) values for the 10-Mb bracket for
either of these breeds. It is worth noting that regions identified
using one bracket size but not a smaller one could reflect more
recent selection events for which the pattern of heterozygosity with
respect to distance from the selected locus appears linear rather
than asymptotic in the smaller bracket.

Convergence Candidate Regions (CCR)

Six candidate regions were detected in at least two breed pairs
by the pair-wise Fs1 comparison and in at least two breeds by a
heterozygosity-based analysis (T'able 4). One of the regions, CCR3
(OARG6:30.367—41.863 Mb), was identified by all three analysis
methods. The orthologous bovine genomic regions corresponding
to each of the CCR are shown in Table 5. A total of 406 genes
(positional candidate genes) were found in these six core regions
(Table S3). There were three other regions where an Fgp-CR
signals was less than 1 Mb from an ObsHtz-CR signal
(OAR3:18.648-19.360 Mb, OAR3:167.711-168.959 Mb, and
OAR13:95.801-98.865 Mb) but because they did not overlap,
they were not considered as CCR.

Among the positional candidate genes extracted from the six
CCRs, a search for functional candidates for milk production traits
and mastitis was performed by comparison with the genes
included in the Ogorevc et al. [22] database of cattle candidate
genes for dairy-related traits. A total of 13 genes were common to
these two lists (Table 5). The evidence for relationships with milk
production traits for these genes was based on the different aspects
considered in the Ogoreve et al. [22] database such as gene
expression studies related to mammary gland (7TFAP2C, FAM1104,
CD82, ABCG2) or mastitis (BID, MAFF, AHCY), mouse model
studies in which gene knockouts or expression of transgenes
resulted in phenotypes associated with the mammary gland

PLOS ONE | www.plosone.org

(FRBP4, MKLI, POFUTI, CHUR) and association studies of milk
production traits (ABCG2, SPP1, SCD).

In order to assess whether there was greater overlap between the
CCRs and candidate genes than expected by chance, we
repeatedly (1 000 000 times) assigned regions of the same length
as the CCR at random positions on the bovine genome and
checked overlap with all candidate genes from the Ogorevc et al.
[22] database that could be positioned on the bovine genome (423
genes). Although we could not do the test with the sheep genome
as the annotation is not as complete, the length of the sheep and
bovine genomes is very similar and so we expect this test would
provide similar results. The number of overlaps between CCR
regions and candidate genes based on a model with random
positioning of CCR regions was very different from the actual
situation: only 8.4% of the replicates contained any overlaps and
the maximum number of overlaps was 4.

Some other positional candidate genes not included in the
Ogoreve et al. [22] database were identified as possible functional
candidates based on their known biological function and an
exhaustive literature review of reported signatures of selection in
dairy cattle (Table 5). There was also correspondence between the
CCR and QTL previously reported in dairy cattle and sheep for
milk production traits or functional traits related to dairy
production (Table 5), which is discussed below.

Discussion

This study reports the first genome-wide analysis of regions
under selection for dairy traits in sheep. For this we have used the
valuable information generated in the International Sheep
HapMap project [14], through the use of the Jllumina OvineSNP50
BeadChip, to evaluate a range of European sheep breeds that have
been selected for dairy production. With the aim of identifying the
signatures of selection specifically due to dairy selection and not
related to other traits that may have been selection target in the
studied sheep populations (e.g. coat colour), we also included in
our study other non-dairy European sheep breeds. Furthermore,
because of the difficulties in distinguishing between the effects
caused in the genome by genuine selective sweeps rather than
demographic events such as population expansion or contraction
[16], we used three different analysis methods and only considered
for further exploration those six regions identified by the Fgr-
based method and at least one of the two heterozygosity-based
methodologies.

Candidate Dairy Selection Regions

Based on the convergence among the three different analysis
methods, six core regions were identified as candidate regions
under positive selection in dairy sheep. Based on the comparison
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to predicted overlaps for randomly-positioned CCR, these regions
were highly enriched for candidate dairy-related loci. We discuss
further the CCR regions that meet specific criteria.

Region Identified by all the Three Methods

— CCR3 (OAR6:30.367-41.863 Mb). The three analysis
methods identified this region of positive selection in the first
half of OARG6, which includes the ABCG2 (ATP-binding
cassette, sub-family G (white), member 2) and SPP! (osteo-
pontin) genes (at 36.565-36.610 Mb and 36.708-36.720 Mb
respectively), and is orthologous to the region of the bovine
genome on BTA6 where several QTL for milk production
traits have been reported (See Table 5 for QTL identifier
number in the CattleQ'TLdb). This region also includes the

FAM134 (family with sequence similarity 13, member A) gene,

which has been shown to be associated with mastitis in Jersey

cows [27]. In dairy cattle, strong selection signals have
previously been identified [23,24] in the proximity of the

ABCG2 gene, which harbors one of the few causal mutations or

Quantitative Trait Nucleotide (QTN) described in livestock
species [28]. In sheep, a selection signal in the ABCG2 region
has also been identified in a work focused on Altamurana
sheep, where differences in allele frequencies were compared

for animals with high and low milk yields [29].

The identification of a selection signature in this region of
OARG by the pair-wise Fgt comparison (Fs-CR14) was based on
four breed pairs. For the Milk Lacaune-Australian Poll Merino
and the Comisana-Australian Poll Merino pairs, the signal of
genetic differentiation involved the ABCG2 and SPPI genes,
whereas for the two other pairs, the identified signal was upstream
(Chios-Sakiz; OAR6:30.367-30.380 Mb) or downstream (Churra-
Ojalada; OAR6:39.316-39.577 Mb) of these genes. The ObsHtz
analysis showed a selection signal (ObsHtz-CR27) for Milk
Lacaune, Comisana and Churra dairy breeds, and also for three
non-dairy breeds, Australian Poll Merino, Meat Lacaune and
Ojalada. Both Lacaune breeds showed low values of ObsHtz
extended for long intervals (3.48 and 5.47 Mb for Milk Lacaune
and Meat Lacaune, respectively). With regard to the regression-
based analysis, this region was the only one detected in multiple
breeds for all three bracket sizes (for Milk Lacaune, Comisana,
Meat Lacaune and Australian Poll Merino breeds).

Together these results suggest that CCR3 shows selection for
dairy traits in several sheep breeds, and that this signal may be
related to the documented effects of the ABCGZ2 [28] or SPPI [30]
genes on milk production and lactation regulation, respectively.
The selection signal positioned directly at ABCG2 and SPPI was
only seen in the highly specialized breeds Milk Lacaune and
Comisana (Fgr, ObsHtz and Regression). In other dairy breeds for
which the selection is more recent and less efficient (e.g. Churra
and Chios), selection may not have substantially altered the
frequencies of favoured alleles at these loci, which could explain
why a strong selection signal directly at these genes was not
observed. A previous study in Churra sheep found suggestive
associations between the ABCGZ2 gene and milk fat percentage and
milk yield [31] while no studies to date have tested the effects of
these two genes on dairy traits in the Lacaune and Comisana
breeds.

The results reported in the current study also suggest that in this
region of OARG there could be a selection signal related to meat
specialized breeds such as Meat Lacaune, Australian Poll Merino
and Ojalada. In this regard, it is worth noting that several QTL for
growth and carcass traits have been described in the orthologous
bovine region [32,33]. Hence, analogous to the observations in the
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orthologous bovine region, this region of the sheep genome may
influence both dairy and meat production traits.

Regions with High Fst in more than Two Breed Pairs
This criterion was used to highlight the CCR regions where the
genetic differentiation analysis showed a particularly strong
indication of a dairy selection signature, as this is possibly the
most effective analysis performed in this study to detect regions
specifically affected by dairy selection rather than selection acting
on non-dairy-related traits. With the aim of establishing stringent
criteria we consider in this section only those regions where more
than two breed pairs (none sharing a common breed, as explained
above) showed the selection signal. In addition to CCR3 discussed
above, this category also includes the following two regions:

— GCR1 (OAR3:152.680 to 154.679 Mb). This core region,
for which the Fgr-selection signals were identified for the
Churra-Ojalada, Comisana-Australian Poll Merino and East
Friesian Brown-Finnsheep pairs, includes HMGA2 (high
mobility group AT-hook 2), a gene associated with human
stature [34]. The identification of this gene as a selection target
was also found in an analysis of dogs with divergent stature
[10]. The bovine region orthologous to CCR1 includes QTL
related to stature (with the HMGAZ gene suggested as a possible
causative locus [35]) and rump length (see Table 5). Hence, the
CCRI signal identified in the present study might indicate
selection targeting sheep body conformation traits. This
hypothesis would agree with the differences in body size
between some of the pairs involved in this selection signal. For
example, the adult weight of Australian Poll Merino is
significantly higher than that of Lacaune and Comisana;
Churra and East Friesian Brown are also generally heavier
than their comparison breeds. HGMAZ2 has also been suggested
as a candidate gene related to ear size and shape in both pigs
and dogs [36,37], thus further investigation is required to assess
whether there are differences in ear morphology between the
sheep breeds showing this selection signal. Although the
confidence interval of a QTL for protein percentage reported
in Churra sheep [38] (Table 5) overlaps with CCR1, the causal
mutation for that QTL was later found in the LALBA gene
[39], which maps outside of this core region.

— CGCR2 (OAR3:209.872-215.814 Mb). Four candidate
genes in the orthologous bovine region to this CCR (distal
end of BTA5) were identified from the Ogoreve et al. [22]
database. Two of them were related to mastitis in a disease-
induced mouse-model study [40]: BID (BH3 interacting
domain death agonist), which is a pro-apoptotic induced gene,
and MAFF (v-maf avian musculoaponeurotic fibrosarcoma
oncogene homolog F), which is related to cell proliferation. The
identification of two other genes as candidates for dairy traits in
this regions, FRKBP4 (FK506 binding protein 4) and MLKT
(mixed lineage protein kinase), was also based on mouse model
studies (http://www.informatics.jax.org/). Furthermore,
FREBP{ 1s expressed in breast cancer tissue (Genes-to-Systems
Breast Cancer database, G2SBC, http://www.itb.cnr.it/
breastcancer//index.html) and MLKT is expressed in epithelial
tumor cell lines of colonic, breast and esophageal origin [41].
QTL effects described in the bovine region orthologous to
CCR2 (on BTA5) influence milk production and some
conformation traits (T'able 5). A previous study in dairy cows
found a selection signature in this region [23]. In that case, the
gene displaying the strongest evidence of selection was CDI63,
which is involved in the innate immune response and clearance
of plasma hemoglobin [42]. This region also includes the gene
coding for CSNK1e (casein-kinase epsilon), which is related to
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circadian rhythms. In a study of the human milk fat globule
transcriptome, GSNVATe was identified as one of the nine core
“clock” genes that showed differential expression over a 24-
hour period time in lactating women [43]. Of particular
interest is the finding that this OARS3 region was labelled as a
CCR based on the overlap of candidate regions detected by
pair-wise-Fst in the pairs including the most highly specialized
dairy breeds (Milk Lacaune, Comisana and East Friesian
Brown), which may have been under selection for circadian-
related adaptation of milk production to intensive milking.

Other Regions

— CCR4 (OAR13:56.061 to 65.811 Mb). Several genes
included in this core candidate region were also found in the
Ogoreve et al. [22] database. The POFUT! (protein O-
fucosyltransferase 1) gene plays a crucial role in Notch
signaling, which regulates mammary stem cell function and
luminal cell-fate commitment [44]. TFAP2C (transcription
factor AP-2 gamma; activating enhancer binding protein 2
gamma) is involved in mammary development, differentiation,
and oncogenesis playing a critical role in gene regulation in
hormone responsive breast cancer [45], and AHCY (adeno-
sylhomocysteinase) has been suggested as potentially involved
in mastitis defense based on its disease-associated expression
[46]. Another positional candidate gene for this core region is
the GHRH (growth hormone-releasing hormone) gene. Al-
though the direct relationship of this gene and milk production
traits is still not clear [47,48], its link to the somatotropic axis
and other functional candidate genes included in the Ogorevc
et al. [22] database (GH, GHR, GHRHR) suggest a possible
influence, directly or indirectly, on dairy traits. In addition to
these candidate dairy-related genes, the ASIP (Agouti signaling
protein) gene is also located in this region (OAR13:63.028—
63.033 Mb). This gene has a major role in metabolic processes
[49] and coat colour pigmentation in mammalian species [50].
Based on the known associations between polymorphisms at
this gene and coat colour patterns in sheep [51] it is possible
that the identified selection signal results from coat colour
selection. In their analysis of the complete HapMap dataset,
Kjjas et al. [14] also identified a selection signal near ASIP.

— GCR5 (OAR15:72.774-74.550 Mb). This region included
the CD82 (CD82 molecule) gene, which is included in the
Ogoreve et al. [22] database based on its expression in the
mammary gland. This gene is included in the group of genes
that regulate breast cancer metastasis, as a metastasis
suppressor [52]. Whereas no studies have reported an
association of this gene with dairy related traits, there is a
functional relationship between CD82 and ERBB3 (Receptor
tyrosine-protein kinase erbB-3) [53], which is related to normal
mammary development [54].

— GCR6: (OAR22:19.588-23.157 Mb). Two functional can-
didate genes [22] were found in this region: SCD (Stearoyl-CoA
desaturase) and CHUK (conserved helix-loop-helix ubiquitous
kinase). The SCD gene encodes a multifunctional complex
enzyme important in the cellular biosynthesis of fatty acids.
Several studies in different populations of dairy cattle have
reported associations between polymorphisms at this gene with
milk production traits [55] and milk fatty acid composition
[56]. In sheep, the SCD gene has been suggested as positional
and functional candidate gene for a QTL identified on OAR22
in a Sarda x Lacaune back-cross population for the ratio of
conjugated linoleic acid to vaccenic acid in sheep milk [57]. A
later study in Churra sheep also identified a QTL on OAR22
for the same trait close to the SCD position, although various
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analyses questioned this gene as responsible for the identified
effect [58]. The CHUK gene is listed in the Ogorevc et al. [22]
database because it is expressed in breast cancer tumors and is
a regulator of mammary epithelial proliferation [59]. Accord-
ing to the SheepQTL database, this region includes a QTL for
somatic cell score described in an Awassi x Merino cross
population [60] and it has also been identified as a selection
signal by the analysis of allele frequency differences between
animals with divergent milk yields reported in Altamurana
sheep [29].

The bovine region orthologous to CCR6 (on BTA26), overlaps
with a region showing a selection signature in dairy cattle [23],
where the C100ORF76 (chromosome 10 open reading frame 76)
gene was associated with the strongest selection signal. Although
there is not a reported association of this gene with milk
production traits, it is expressed in the mammary gland and it is
altered in breast cancer cells, based on the G2SBC database.

Inconsistencies between this Study and Previous QTL
and Selection Mapping Studies of Cattle and Sheep

Although all six CCR overlapped with QTL for dairy traits in
sheep or cattle (Table 4 and discussed above), our study did not
identify a selection signal close to several genes previously
associated with dairy traits in sheep and cattle. For example,
there were no CCR near the LALBA (alpha-lactalbumin) gene
(OAR3:137 Mb), where a particular variant has been recently
been proposed to explain a QTL for milk protein percentage
identified in Churra sheep [39]. The lack of signal near this QTL
in the Fst analysis of Churra vs Ojalada is consistent with the fact
that the causative mutation is still segregating in Churra, which
allowed its identification as QTL.

In addition, in their analysis of the complete Sheep HapMap
dataset, Kijas et al. [14] reported positive selection surrounding
the PRLR gene, which is associated with milk traits in dairy cattle
[61]. In our study, although none of the CCRs map to OARI6,
where this gene is located (39.250-39.284 Mb), it is worth
mentioning that this gene is included in the interval of Fgr-
CR27 (OAR16:37.347-40.850 Mb), which was identified based
on the signals detected in three breed pairs involving the most
specialized dairy breeds in this study (East Friesian Brown-
Finnsheep, Milk Lacaune-Australian Poll Merino and Comisana-
Australian Poll Merino) but was not classified a CCR due to the
lack of selection signals from the heterozygosity-based methods.
Other regions that were detected by the Fsr-pairwise comparison
for many breed pairs but that were not supported by the
heterozygosity-based methods were found on OAR2 (Fgr-
CR2:52.346-53.409 Mb) and OAR9 (57.363-60.849 Mb).
Whereas the first region does not include any functional candidate
gene for dairy traits, the region in OAR9 included three genes
related to the metabolism of fatty acids (FABP4, FABP5 and
FABP9). FABP4 and FABP5 have been shown to be highly
expressed in the mammary gland during lactation [62] and
significant associations have been found between FABP4 and fatty
acid composition of bovine milk [63]. We acknowledge that one or
more of these regions may represent false negatives that were
missed by our stringent selection signal criteria. However, because
of the difficulty in linking a sweep signal to a given phenotype, we
suggest that application of stringent criteria in this type of study is
an appropriate option to avoid reporting long lists of candidate
regions based on spurious results.

We also did not find evidence of selection on some major
candidate genes for milk production for which selection signatures
have been observed in cattle (e.g. DGATI: OAR9:13.534—
13,543 Mb; GHR: OAR16:32.068-32.231). In contrast to our
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results, the GHR gene (BTA20) showed the largest difference in
sliding window average allele frequencies in a study of divergent
selection between dairy and beef cattle [24], and also showed
significant extended haplotype homozygosity [25]. With regard to
DGATI, evidence of selection has also been identified when
comparing dairy and beef cattle breeds [24].

In their study, Kijas et al. [14] also identified a strong selection
signal on OARI10, associated to the presence or absence of horns
and close to the gene responsible of the polled phenotype, RXFP2
(relaxin/insulin-like ~ family  peptide  receptor 2)  gene
(OAR10:27.602-27.646 Mb). In our study, a selection signal was
identified in this region based on the ObsHtz-based method
(ObsHtz-CR33:24.856-27.897 Mb, for the dairy breeds Comi-
sana, Churra and Milk Lacaune) and the Fgp-based method
(OAR10:25.540-28.983 Mb). However because the Fgp signal
was due only to the two breed pairs involving the Australian Poll
Merino, this was not labelled as Fgp-CR.

Apart from the overlap between two CCRs (CCR3 on OARG6
and CCR6 on OAR22) with the selection signals identified in
Altamurana sheep for milk yield [29], we did not find evidence of
selection near the signals reported for this Italian breed. This lack
of correspondence may derive from breed-specific signals reported
for Altamurana.

Comparison of the Three Selection Mapping Methods

From our point of view, the analysis method that involved the
estimation of pair-wise F'st for pairs of related breeds showing
divergent specialization (one for milk production, one not) should
be the most powerful analysis in terms of identifying selection
specifically related to dairy production. Four out of the 28
candidate regions showing multiple pair-wise Fgr signals were
detected in four out of the six breed pairs (Fsr-CR3, Fs-CR9,
Fgr-CR14 and Fs1-CR18). Of these, Fs-CR3 (OAR2:52.346—
53.409 Mb) was not included as a CCR due to the lack of
consistency with the ObsHtz or 10-Mb Regression analysis results,
although the same region was identified by the 5-Mb Regression
analysis (RegBrack5-CR1 in Table 3) in two dairy breeds (Churra
and Chios) and one non-dairy breed (Ojalada). Given that no
functional candidate genes from the Ogorevc et al. [22] database
were found in the orthologous bovine region, it is possible that this
region underlies breed differentiation not directly related to dairy
traits.

Among the 55 candidate regions identified based on the
ObsHtz analysis (ObsHtz-CRs, Table S2), there were only twelve
regions showing a signal in dairy but not in non-dairy breeds
(ObsHtz-CR3, 7, 8, 10, 12, 25, 28, 29, 31, 41, 45 and 55).
Considering that the background genome has been previously
selected for meat, maternal characteristics, and other traits,
whereas the development of dairy breeds is much more recent,
it would be expected that the selection signals specifically related to
dairy traits would not be seen in the other breeds (although Meat
Lacaune could be an exception). However, as none of these
regions showing a reduction of heterozygosity exclusively in dairy
breeds were identified by the Fgr-based method, they were not
identified as final core CCRs (and thus are not present in Table 4).
Although the evidence linking these regions to dairy-related
selection is weaker than for the CCRs, we performed an additional
search for functional candidate genes and dairy-related QTL
mapping within these regions, similar to that performed in the
eight identified CCRs (see Table S4). A total of 118 genes were
extracted from the orthologous bovine regions of these eleven
dairy-breed-limited regions of reduced heterozygosity (data not
shown). Among them, only the HSPDI (Heat shock 60 kDa
protein 1; chaperonin) gene is included in the Ogorevc et al. [22]
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database, due to its expression in the mammary gland. This gene is
also included in the G2SBC database although no studies have
reported so far its association with milk production traits.
Interestingly, among the dairy QTL detected in these regions
there is greater overlap with ovine Q'T'L for milk production traits
(Table S4) than for the list of core CCRs. Hence, these regions
identified exclusively by ObsHtz could include gene variants
occurring in individual dairy breeds, as it is the case for many of
the QTL described in sheep.

There were eight regions that overlapped between those
identified by Fgsr (including a full set of regions, including those
that contained pairs with the same breeds that were removed from
Table S1) and ObsHtz (out of 35 and 55, respectively). The
explanation for the higher number of regions identified by ObsHz
is that the regions identified using Fst were slightly larger
(incorporated more windows) than those identified using ObsHtz.

There were far fewer signals identified using the Regression
approach than either Fg1 or ObsHtz. Although the top (or bottom)
0.5th percent results were considered as signals of selection for all
methods, the Regression method first filtered out the intervals with
non-significant and non-asymptotic regression patterns, and thus
the total number of eligible intervals was substantially reduced
compared to the other approaches in which the distribution of
Fgr/ObsHtz values for all markers (with the exception of those on
the very ends of the chromosomes) was considered. Thus the
implementation of Regression in this study was more stringent
than the other methods.

The regions identified by the Regression method showed
greater overlap with ObsHtz than Fgp, which is not surprising
since both Regression and ObsHtz are designed to detect regions
with a reduction in diversity. For the 10-Mb bracket size (results
considered for the identification of CCR), all three regions
identified with the Regression approach overlapped with those
identified with ObsHtz while one out of the three, RegBrack10-
CR2, overlapped with the regions identified with Fsp and was
therefore considered as CCR (CCR3).

Conclusions

The results reported here provide a genome-wide map of
selection signatures in the dairy sheep genome. The six core
candidate regions identified are likely to influence traits of
economic interest in dairy sheep production and can be
considered as starting points for future studies aimed at the
identification of the causal genetic variation underlying these
signals. For some of these regions, strong candidate genes have
been proposed (e.g. ABCG2, SPPI), whereas some other genes
designated as candidates based on their association with sheep and
cattle dairy traits (e.g. LALBA, DGATI1A) were not associated with a
detectable sweep signal. Discrepancies between selection signals in
dairy sheep and cattle may be explained either by statistical or
biological factors, such as the limited statistical power of the
analyses to identify effects of small magnitude or the fact that the
genetic architecture of milk production and dairy-related traits
substantially differs from sheep to cattle and also between the
different breeds of dairy sheep, which have been subjected to
different levels of selection pressure. Many of the identified regions
corresponded to orthologous regions in cattle where QTL for
dairy traits have been identified. Due to the limited number of
QTL studies reported in sheep compared with cattle, the results
illustrate the potential value of the study of selection signatures to
uncover mutations with potential effects on quantitative dairy
sheep traits. Additional studies are needed to confirm and refine
the results reported here. To this end, the recent availability of the
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high-density ovine chip (700 K) will provide a valuable tool to
perform more powerful and precise selection mapping studies.

Supporting Information

Table S1 Candidate regions for signatures of selection identified
on the basis of the pair-wise Fgr analysis.
(PDF)

Table S2 Candidate regions identified based on reduced
heterozygosity signals identified in at least two of the dairy breeds.
(PDF)

Table 83 List of all genes from the orthologous bovine genome
regions corresponding to the six convergence candidate regions
(GCR) for dairy selection sweeps identified in this study, extracted

using the Biomart tool (http://www.biomart.org/).
(XLSX)

Table S4 Candidate regions identified by the analysis based on
observed heterozygosity (ObsHtz-CR), averaged in sliding win-
dows of 9 SNPs (ObsHtz-9SNPW), that were exclusively detected
in dairy breeds.

(PDF)
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