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Abstract

BACKGROUND AND PURPOSE—Genome-wide association studies have revealed multiple

common variants associated with known risk factors for ischemic stroke (IS). However, their

aggregate effect on risk is uncertain. We aimed to generate a multilocus genetic risk score (GRS)

for IS based on genome-wide association studies data from clinical-based samples and to establish

its external validity in prospective population-based cohorts.

METHODS—Three thousand five hundred forty-eight clinic-based IS cases and 6399 controls

from the Wellcome Trust Case Control Consortium 2 were used for derivation of the GRS.

Subjects from the METASTROKE consortium served as a replication sample. The validation

sample consisted of 22 751 participants from the Cohorts for Heart and Aging Research in
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Genomic Epidemiology consortium. We selected variants that had reached genome-wide

significance in previous association studies on established risk factors for IS.

RESULTS—A combined GRS for atrial fibrillation, coronary artery disease, hypertension, and

systolic blood pressure significantly associated with IS both in the case-control samples and in the

prospective population-based studies. Subjects in the top quintile of the combined GRS had >2-

fold increased risk of IS compared with subjects in the lowest quintile. Addition of the combined

GRS to a simple model based on sex significantly improved the prediction of IS in the combined

clinic-based samples but not in the population-based studies, and there was no significant

improvement in net reclassification.

CONCLUSIONS—A multilocus GRS based on common variants for established cardiovascular

risk factors was significantly associated with IS both in clinic-based samples and in the general

population. However, the improvement in clinical risk prediction was found to be small.
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genetics; polymorphism; genetic; risk assessment; risk factors

Introduction

Stroke is the leading cause of permanent disability and the third most common cause of

death in high-income nations.1,2 Approximately 80% of stroke cases are caused by

ischemia, with large artery atherosclerosis and cardioembolism from atrial fibrillation (AF)

being among the most common mechanisms.

Ischemic stroke (IS) is highly heritable.3,4 Probably reflecting some of the heritability,

recent genome-wide association studies (GWAS) have identified common variants in

several genomic regions that are associated with IS5 (L.L. Kilarski et al, unpublished data,

2013) or specific stroke subtypes such as large artery stroke.6,7 Furthermore, GWAS have

identified multiple variants in multiple genomic regions that are associated with established

risk factors for IS, including AF,8 coronary artery disease,9,10 and hypertension.11,12

Several of these variants were also found to be associated with IS risk typically through their

association with specific stroke mechanisms, such as large artery disease6,13–15 or

cardioembolism,16,17 although some loci were also found to be associated with IS as a

whole5 (L.L. Kilarski et al, unpublished data, 2013). In general, the observed increase in

risk associated with individual variants was found to be small usually in the range of 1.2 to

1.6. However, because most risk alleles are common in people of European ancestry, their

effect on a population level is likely to be substantial. Current risk prediction models, based

on conventional risk factors,18 perform reasonably well and are used to guide clinical

decision making. Yet, efforts to add emerging factors into risk prediction scores continue19–

21 because even incremental improvements in predictive performance might lead to

clinically meaningful changes in risk classification. Combining the effects of genetic risk

variants into multilocus genetic risk scores (GRSs) may aid in risk prediction. In fact, recent

studies have demonstrated significant improvements in coronary risk prediction using

multilocus GRS for coronary artery disease.22–25 Despite the increase in direct-to-
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consumer testing for genetic variants for stroke,26 the use of adding genetic variants to

stroke risk prediction has not been evaluated systematically.

The purpose of this study therefore was to construct a multilocus GRS based on common

variants previously shown to reach genome-wide significance for an association with known

risk factors for stroke. Single nucleotide polymorphisms (SNPs) were identified on the basis

of systematic literature and database review using predefined criteria. We hypothesized that

a GRS derived from clinic-based case–control samples would replicate in independent

clinic-based case–control samples and improve the ability to predict IS in population-based

cohorts.

Methods

Study Sample

The clinic-based case–control sample for derivation of the GRS consisted of 3548 IS cases

and 6399 controls from the Wellcome Trust Case Control Consortium 2.6The clinic-based

replication sample included 3856 IS cases and 4069 controls from the METASTROKE

consortium.15 The prospective population-based cohorts included 22 751 participants from

the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE)

consortium.27 A detailed description of these cohorts together with information on the

methods used for genotyping is provided in Table 1 and the online-only Data Supplement.

Selection of Genetic Variants

We selected SNPs from GWAS on modifiable risk factors for IS as defined by the American

Heart Association stroke statistics and the American Heart Association/American Stroke

Association guideline on primary prevention of stroke28,29 that were published before

January 2012. This included GWAS on the following risk factors: hypertension, diastolic

blood pressure, systolic blood pressure, smoking/tobacco use, type 1 diabetes mellitus, type

2 diabetes mellitus, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol,

overweight and obesity, AF, hypertriglyceridemia, coronary artery disease, myocardial

infarction, alcohol abuse, uric acid, elevated circulating urate levels, and

hyperhomocysteinemia (Table I in the online-only Data Supplement).

The National Human Genome Research Institute GWAS catalogue30 was used as the

primary source for published GWAS. We considered studies assessing >100 000 markers in

the discovery stage and variants reaching a global P value of <1E–5.31,32 Findings from

candidate gene studies were excluded as were studies based on somatic mutations (eg, in

cancer cells) compared with naturally occurring mutations. We further searched PubMed

using the following MeSH terms “risk factor” AND “GWAS” OR “genome wide” OR

“genome wide association.” The resulting citations and abstracts were reviewed manually as

were cited articles in the selected publications. Studies on non-Central European populations

and studies where the effect allele was not reported were disregarded. A full list of the 521

SNPs included in the analysis is provided in Table I in the online-only Data Supplement.
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Weighting Scheme and Calculation of Risk Scores

SNPs were weighted by their estimated effect sizes (β) provided in the original reports

(Table I in the online-only Data Supplement). For SNPs derived from quantitative trait

studies, we arbitrarily used a uniform weight of 0.1, corresponding to an odds ratio (OR) of

1.105 (weak to moderate effect size) while accounting for directionality of effects. This was

performed to account for the different scales and measures that were used in the original

studies to measure the effects of SNPs on the respective traits.

Weighted multilocus GRSs (wGRSs) for individual risk factors (eg, hypertension) were

calculated using the – score function implemented in PLINK33 and an additive model. Risk

profile scores were derived by adding the number of risk alleles multiplied by the weight of

the risk variant. SNPs with missing information were excluded from the model. Scores were

expressed as the mean score per SNP in the set. The combined GRSs (cGRSs) were

calculated by adding Z score transformed wGRS. Z scores were used to account for the

variable numbers of risk alleles constituting the wGRS.

Statistical Analysis

For the case–control studies, risk profiles were analyzed by generalized linear models using

logistic regression in R with phenotype (case or control) as the outcome variable and the risk

profile score as the predictor variable. In the absence of additional information in the control

cohorts, sex was used as the only covariate. To account for intrinsic genetic differences

between cohorts, we added an indicator variable for recruiting site in all analyses of the

merged derivation and replication sample. Step-wise logistic regression was performed

using the stepAIC function in the MASS library in R. All normalized wGRSs were included

in the analysis to discover the optimal set of wGRS for inclusion in the cGRS by exact

Akaike information criterion. Odds ratios for the wGRS and cGRS are reported as an

increase of risk per improvement of 1 SD of the respective GRS. The variance in case/

control status explained by the score statistic was estimated as the difference in variance

using Nagelkerke pseudo-R2 between a model including the cGRS, sex, and study site (full

model) versus the covariates alone (reduced model). To evaluate the potential value of the

cGRS in risk prediction, we compared the receiver operating characteristic curves of models

with and without cGRS (lroc package for logistic regression in R). C-statistics were

computed to assess the gain in predictive power of the cGRS and of the full versus reduced

model.

For the prospective population-based cohorts, we used Cox regression models to evaluate

the association of the cGRS with the incident IS and an R2 measure to estimate variance

explained by the model. The statistical significance of change in the area under the receiver

operating characteristic curve (AUC) between models was tested with the correlated C-index

approach. C-statistics were meta-analyzed using the point estimates with SEs as input

followed by inverse-variance meta-analysis. Significance of the full versus reduced model

was evaluated using a method reported by Hanley and McNeil,34 which accounts for the

correlation between both models. This correlation between the AUCs was obtained using the

metacor package for R. The continuous net reclassification indices was calculated using

published methods.35
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Results

The clinic-based derivation sample included 3548 IS cases and 6399 controls from the

Wellcome Trust Case Control Consortium 2 (WTCCC2; merged WTCCC2-UK and

WTCCC2-Munich). Three thousand eight hundred fifty-six clinic-based cases and 4069

controls from METASTROKE served as a replication sample. A total of 22 751 participants

from CHARGE (the Atherosclerosis Risk in Communities Study [ARIC], Cardiovascular

Health Study [CHS], Framingham Heart Study [FHS], and Rotterdam) were included in the

prospective cohort analyses. Median follow-up in the prospective cohorts was 14.4 years

(interquartile range, 8.5). One thousand five hundred fifty-five (6.8%) incident cases of IS

occurred during follow-up. Table 1 provides background characteristics for the clinic-based

case–control samples and the population-based cohorts.

Weighted GRS for Individual Risk Factors

We first analyzed wGRS for individual risk factors (n=16) for IS in the merged clinic-based

WTCCC2-UK and WTCCC2-Munich sample encompassing a total of 3548 cases and 6399

controls. Significant associations were found with wGRS for AF, coronary artery disease,

diastolic blood pressure, hypertension, and systolic blood pressure (Table 2). Point estimates

for OR in the merged derivation samples varied between 1.06 and 1.09 with similar effect

sizes in the 2 derivation samples. Density plots for the wGRS are displayed in Figure 1.

Analysis of the clinic-based replication and merged derivation and replication sample

confirmed associations with the wGRS (Table II in the online-only Data Supplement) except

for the wGRS for hypertension, which was not significant in the replication sample but

reached significance in the merged derivation and replication sample.

Combined Risk Score

We next tested combinations of the 16 wGRS for their association with IS. In step-wise

logistic regression, a cGRS generated from wGRS for AF, coronary artery disease,

hypertension, and systolic blood pressure encompassing a total of 113 variants (Table III in

the online-only Data Supplement) showed the strongest association with IS in the merged

WTCCC2-UK and WTCCC2-Munich sample (OR, 1.07 [95% confidence interval {CI},

1.04–1.09]; P=5.78E–10; Table 3; Figure 1). The cGRS was found to replicate in the clinic-

based replication sample (OR, 1.03 [95% CI, 1.01–1.04]; P=1.67E–03). Combining the

derivation and replication samples and adding an indicator variable for recruiting site

resulted in an OR similar to that found in the derivation sample (OR, 1.06 [95% CI, 1.04–

1.08]; P=4.9E–07; Table 3).

When we divided the cGRS in the derivation sample into quintiles, we found a linear

increase in IS risk across quintiles (Cochran–Armitage test for linear trend across quintiles

P=1E–13; Figure 2A). Compared with subjects in the third quintile (reference), subjects in

the top quintile were estimated to have a 1.42× increased risk of IS (95% CI, 1.03–1.95),

whereas subjects in the bottom quintile were estimated to have a 0.35-fold risk of IS (95%

CI, 0.26–0.55). Similar results were obtained in the combined clinic-based derivation and

replication sample (Figure 2B), although effect sizes were smaller (bottom quintile, 0.59

[95% CI, 0.41–0.84]; top quintile, 1.32 [95% CI, 0.97–1.78]).
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Improvement of Prediction Quality

To determine the predictive value of the cGRS, we calculated the improvement in prediction

quality of the cGRS compared with a model that included sex and study site (reduced

model). The predictive strength, that is, the proportion to which the model explains variation

in the data set, was 8.06% when using the cGRS in addition to all covariates (full model)

and 7.56% when using only the covariates (reduced model). Hence, the cGRS resulted in an

increase of 0.5% in predictive power (Table 2). This difference in explained variance was

lower in the replication samples alone (0.041%) and was 0.179% in the combined clinic-

based derivation and replication sample. The improvement in the c-statistic (AUC) for the

cGRS was significant both in the clinic-based derivation sample (AUCfull model=62.75%,

AUCreduced model=61.04%, ΔAUC=1.71%; P=1.5E–06) and in the combined derivation and

replication samples (AUCfull model=64.51%, AUCreduced model=64.09%, ΔAUC=0.42%;

P=1.8E–06; Table 3; Figure 3A and 3B).

Validation of the cGRS in Prospective Population-Based Cohorts

To ascertain the validity and predictive power of the cGRS in stroke-free individuals, we

meta-analyzed data from the prospective population-based ARIC, CHS, FHS, and

Rotterdam cohorts. The pooled hazard ratio of the cGRS for incident IS was 1.03 (95% CI,

1.01–1.05; P=0.016) with no significant heterogeneity between studies (I2=19.9%; Figure I

in the online-only Data Supplement).

AUC analyses in individual cohorts revealed largely variable c-statistics

(AUCfull model=57.6%–72.2%), with no significant improvements in risk prediction in a

combined meta-analysis (ΔAUC=0.11%; P=0.649; Table 3). The improvement of R2 with

the full model compared with the reduced model ranged between 0.1% and 0.3% in

individual cohorts.

We also assessed net reclassification results for the population-based cohorts. The

continuous boundary-less net reclassification indices in individual cohorts ranged between

−0.0101 and 0.1108, with no significant improvement in total reclassification.

Discussion

We found that a multilocus GRS composed of 113 common variants predicted IS risk. The

cGRS was derived from clinic-based samples, replicated in independent samples, and

validated using incident cases from prospective population-based cohorts. Subjects in the

top quintile of the cGRS had >2-fold increased risk of IS when compared with subjects in

the lowest quintile. However, the improvement in risk prediction by adding the cGRS to a

simple model with sex and study site alone was small and not significant in the prospective

validation cohort.

Considering >500 variants that had been shown previously to be associated with known risk

factors for IS, we found weighted GRS for AF, coronary artery disease, hypertension, and

systolic and diastolic blood pressure to show the strongest association with IS in the clinic-

based derivation sample. These risk factors match with risk factors showing the strongest

predictive value in conventional risk prediction models for stroke18,36 and with recent
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studies that have shown associations of individual risk alleles for AF, coronary artery

disease, and hypertension with IS as a whole or with specific stroke subtypes.

5,13,15,16Together, these findings suggest that multiple genetic variants at multiple

chromosomal loci influence IS risk, possibly via known risk factors for IS. We did not

examine our cGRS in relation to established risk scores such as the Framingham Risk Score

for Stroke because information on risk factors was incomplete in the case–control samples

and because one would not expect to see significant improvements over and above a score

that contains actual information on the presence of these risk factors. It has been suggested

that GRS may be most useful earlier in life, that is, before phenotypic variation in the risk

factors incorporated into conventional risk prediction scores typically manifest.22However,

our results suggest that the gain in predictive power by adding the GRS to information on

sex alone is limited.

Our findings agree with studies in other conditions, including breast cancer,37diabetes

mellitus,38,39 coronary artery disease,23,40 or multiple sclerosis,41 that found limited

improvement in risk prediction with GRS based on GWAS discoveries. Our approach differs

from most studies, in which we also considered variants that have to date not been

associated with the clinical phenotype itself but instead reached genome-wide significance

for association with known risk factors for the phenotype of interest, in this case IS. This

enabled us to consider a much larger number of variants than were included in previous

efforts to generate GRS. The validity of this approach is demonstrated by our finding that

wGRS for systolic blood pressure, diastolic blood pressure, and hypertension all

significantly associated with IS in the clinic-based case–control samples. Nevertheless, the

improvement in risk prediction was small.

The limited use of our specific GRS for IS and of GRS in many other conditions might

relate to several factors. First, because of the presence of multiple common alleles with

small effects, almost all individuals carry some risk alleles. Second, the majority of

individuals have multiple risk alleles close to the mean number of risk alleles in the overall

population with the minority having extreme numbers of risk alleles as also reflected by the

distribution of the cGRS in the current study (Figure 2B). Third, effect sizes between risk

variants vary, which means that individuals having the same risk score may differ with

regard to genetic risk unless GRSs were weighted as was the case in the current study.

Finally, risk estimates on some of the variants may be imprecise as the number of studies is

still relatively small. This might be interpreted as a failure of personalized medicine using

genomics. On the contrary, the low level of genetic variance explained by common risk

alleles identified to date suggests that much of the genetic predisposition is still

undiscovered.42,43 Future studies will need to determine whether iterations of GRS

incorporating additional common variants as well as low-frequency variants derived from

whole-exome or whole-genome sequencing lead to clinically useful improvements in risk

prediction.

The magnitude of effect of the cGRS in the combined case–control sample was higher than

in the prospective population-based cohorts. This might be because of optimization of the

cGRS in the derivation sample. Alternatively, the observed differences in OR might reflect

different genetic architectures in clinic-based and incident cases from population-based
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cohorts. Compared with incident stroke cases from prospective population-based cohorts,

clinic-based cases usually are younger7,44,45 and have more vascular risk factors including

AF45 and hypertension.46 Another reason might be the relatively low incidence of stroke in

the population-based cohorts resulting in reduced power. Of note, however, the cGRS was

significantly associated with both prevalent and incident IS in the current study.

This study has several methodological strengths including replication of the cGRS in an

independent case–control sample and validation in community-based samples that had been

followed for extended time periods and provided a large number of incident events.

Together, these samples represent one of the largest collections of IS cases with genome-

wide data available to date.15 However, this study also has limitations. First, our GRS was

based on SNPs that had been selected on the basis of predefined criteria. Thus, many

variants with an effect on IS may have been excluded. We did not include variants published

after January 2012 because of logistic challenges in obtaining calculated scores from all the

replication and validation samples. This also includes variants from recently published loci

associated with large artery stroke7,15 and coronary artery disease.10 Thus, our estimate on

the predictive value and the explained variance of the cGRS likely is an underestimate of

multilocus GRSs in IS. However, we consider it unlikely that the results would have been

materially different with inclusion of those additional loci. Second, some quantitative traits

could not be weighted for effect sizes because effects in the original studies had been

reported on different scales. This likely resulted in an underestimation of effect sizes. Third,

we did not analyze GRS for stroke subtypes because this information was not available in all

validation cohorts. Finally, our sample consisted of white subjects of European descent.

Thus our results may not be generalizable to other ethnicities.

We think our findings have clinical relevance because genetic testing is increasingly

available and marketed to the public. We find no clinical use in constructing a multilocus

panel of SNPs for stroke risk that extended to include variants acting on intermediate

phenotypes such as hypertension or AF. It has been suggested previously that testing AF

variants in well-defined populations such as patients with a cryptogenic stroke might aid in

selecting subjects for further diagnostic procedures.16,47 The current study was not

designed to address this. However, we found a wGRS for AF to have relatively small effect

sizes in otherwise unselected clinic-based samples. Regardless of these results, any

strategies aimed at testing common genetic variants to inform clinical decision making

would need to be rigorously tested before moving to clinical practice.

In conclusion, we found a multilocus cGRS derived from GWAS for established risk factors

for IS to be significantly associated with IS risk. Odds ratios in the highest and lowest

quintile of the cGRS differed substantially. However, the power of the cGRS in predicting

IS risk and hence its clinical use was found to be limited. Future alternative strategies of

constructing GRS for IS and combining GRS with risk factor profiles and clinical

information might eventually result in better risk prediction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Distribution of genetic risk score (GRS) in patients with ischemic stroke and controls in the merged derivation sample

(WTCCC2-UK and WTCCC2-Munich). Shown are weighted GRSs (wGRSs) for atrial fibrillation, coronary artery disease,

diastolic blood pressure, hypertension, and systolic blood pressure. Bottom right, The combined GRS (cGRS). Red line

represents the distribution of the risk score in cases; and black line, the distribution of the risk score in controls. Note that the

wGRS for AF is constituted by variants from 2 risk loci, which explains the bimodal distribution.
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Figure 2.
Odds ratios for risk categories defined using the combined genetic risk score. A, Clinic-based derivation sample. B, Merged

clinic-based derivation and replication sample. The primary (left) y axis displays the percentage of cases and controls in each

quintile, the secondary (right) y axis displays the odds ratio (OR) associated with each quintile where the middle (third) quintile

serves as a reference.
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Figure 3.
Receiver operating characteristic curves for models predicting a diagnosis of ischemic stroke in the derivation sample (A) and in

the merged clinic-based derivation and replication sample (B). The reduced model of only covariates is shown in green, the full

model including the combined genetic risk score (cGRS) in purple. The blue line represents the cGRS without covariates. The

black dashed diagonal line represents a random prediction.
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Table 3

Results for the cGRS* in the Clinic-Based Derivation and Replication Samples and in the Population-Based

Sample

Sample
Odds Ratio
(95% CI) P Value

ΔR2,
%

ΔAUC, %
(PValue)

Clinic-based derivation (WTCCC2-UK+WTCCC2-Munich; 3548 cases and
6399 controls)

1.065 (1.044–1.087) 5.78E-10 0.502 1.71 (1.5E-06)

Clinic-based replication (3856 cases and 4069 controls) 1.026 (1.009–1.043) 1.67E-03 0.041 0.19 (0.11)

Combined clinic-based derivation and replication (7404 cases and 10 468
controls)

1.059 (1.036–1.083) 4.87E-07 0.179 0.42 (1.8E-06)

Population-based (CHARGE; 1554 incident cases among 22 276 participants) 1.027 (1.005–1.049) 1.57E-02 N/A 0.11 (0.649)

AUC indicates area under the receiver operating characteristic curve; cGRS, combined genetic risk score; CHARGE, Cohorts for Heart and Aging
Research in Genomic Epidemiology; CI, confidence interval; N/A, not assessed; WTCCC2-UK, The Wellcome Trust Case Control Consortium II
UK; and WTCCC2-Munich, The Wellcome Trust Case Control Consortium II Munich.

*
Generated from wGRS for atrial fibrillation, coronary artery disease, hypertension, and systolic blood pressure. The score included a total of 113

variants (for details see Table III in the online only Data Supplement).
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