
Inverse probability weighting with error-prone covariates

DANIEL F. McCAFFREY, J. R. LOCKWOOD, and CLAUDE M. SETODJI
RAND Corporation, 4570 Fifth Avenue, Suite 600, Pittsburgh, Pennsylvania, U.S.A

DANIEL F. McCAFFREY: dmccaffrey@ets.org; J. R. LOCKWOOD: jrlockwood@ets.org; CLAUDE M. SETODJI:
setodji@rand.org

Summary

Inverse probability-weighted estimators are widely used in applications where data are missing

due to nonresponse or censoring and in the estimation of causal effects from observational studies.

Current estimators rely on ignorability assumptions for response indicators or treatment

assignment and outcomes being conditional on observed covariates which are assumed to be

measured without error. However, measurement error is common for the variables collected in

many applications. For example, in studies of educational interventions, student achievement as

measured by standardized tests is almost always used as the key covariate for removing hidden

biases, but standardized test scores may have substantial measurement errors. We provide several

expressions for a weighting function that can yield a consistent estimator for population means

using incomplete data and covariates measured with error. We propose a method to estimate the

weighting function from data. The results of a simulation study show that the estimator is

consistent and has no bias and small variance.
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1. Introduction

Inverse probability-weighted estimates are widely used in applications where data are

missing due to nonresponse or censoring (Robins et al., 1995; Robins & Rotnitzky, 1995;

Scharfstein et al., 1999; Lunceford & Davidian, 2004; Kang & Schafer, 2007) or in

observational studies of causal effects (Robins et al., 2000; McCaffrey et al., 2004; Bang &

Robins, 2005). The estimators are consistent and asymptotically normal under very general

conditions, and combining inverse probability weighting with modelling for the mean

function yields doubly robust estimators which are consistent and asymptotically normal if

either the model for the mean or the model for the response or treatment is correctly

specified (Robins & Rotnitzky, 1995; Robins et al., 1995; Scharfstein et al., 1999; van der

Laan & Robins, 2003; Lunceford & Davidian, 2004; Bang & Robins, 2005; Kang &
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Schafer, 2007). Recent studies have considered estimation of the response or treatment

assignment functions (Hirano et al., 2003; McCaffrey et al., 2004; Lee et al., 2009; Harder et

al., 2010) and have shown that nonparametric and boosting-type estimators work well in

simulations and applications.

The consistency and asymptotic normality of inverse probability-weighted estimators

require covariates to be free of measurement error. However, covariates measured with error

are common in applications. For instance, achievement tests for school students can have

very large errors, and it is clear that future achievement depends on a student’s true level of

achievement rather than on the error-prone test scores. Ignoring the measurement error in

the covariates can result in bias in inverse probability-weighted estimates (Pearl, 2010;

Steiner et al., 2011; Raykov, 2012; Yi et al., 2012).

In the context of functional analysis of longitudinal data with missing responses and

covariate measurement error, Yi et al. (2012) proposed inverse probability weighting for

missing responses. They assume that response is independent of the outcomes conditional on

the error-prone covariates. We consider the case where ignorability and the probability of

response depend on the error-free covariates. In addition to this work, there is literature on

related issues such as inverse probability-weighted estimation with missing regressors

(Robins et al., 1994; Tan, 2011), error in the treatment or exposure measure (Babanezhad et

al., 2010; and a 2010 unpublished report from The Pennsylvania State University by J. Kang

and J. Schafer), and estimation of propensity scores when covariates are measured with error

(D’Agostino & Rubin, 2000; Raykov, 2012). Pearl (2010) developed a general framework

for causal inference in the presence of error-prone covariates. The framework does not

provide specific solutions for weighted estimators, but it can yield weighted estimators in

some cases, such as that of a binary covariate measured with error (Pearl, 2010). A

shortcoming of this approach is that it relies on a model for the joint distribution of the

outcome and the covariate. An analyst may want to avoid modelling with the outcomes,

especially in causal inference problems (Rubin, 2001). A general advantage of inverse

probability-weighted estimators is that they do not require a model for the outcome; our

estimator also has this advantage.

2. Inverse probability-weighted estimator with error-prone covariates

Let Y1, …, Yn be the outcomes of primary interest obtained from a sample of units from a

population. We are interested in the population mean, μ. Inverse probability weighting is

commonly applied to two scenarios where the outcomes are observed for only a portion of

the sample. The first is the case of missing data due to survey nonresponse, loss to follow-

up, or censoring in which sampled units failed to provide the requested data. The second

scenario involves the estimation of the causal effect of a treatment or treatments in which

only one of the possible outcomes for each study unit, the outcome corresponding to the

unit’s assigned treatment, is observed, and all other potential outcomes are unobserved. Let

Ri be a response indicator, with Ri = 1 if Yi is observed and Ri = 0 if Yi is unobserved or

missing.
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For observational studies, each unit in the population has two potential outcomes: one that

occurs when assigned to treatment Yi1 and one that occurs when assigned to the control

condition Yi0 (Rosenbaum & Rubin, 1983). Each study unit also has an observed treatment

indicator, Ti, with Ti = 1 if unit i received the treatment and Ti = 0 if the unit received the

control condition. When estimating the mean of the potential outcomes for the treatment, Ri

= Ti; when estimating the mean of the potential outcomes for the control, Ri = 1 − Ti. We use

the generic term response indicator, but the results apply to both nonresponse and

observational studies. In observational studies, we observe only Yi1 when Ti = 1 and Yi0

when 1 − Ti = 1, and we let Yi,obs = Yi1Ti + Yi0(1 − Ti ). We assume that the potential

outcomes are well-defined and unique for each unit, i.e., that the stable unit treatment

assumption holds (Rosenbaum & Rubin, 1983). Although it may not hold in some studies,

this assumption is commonly made when the covariates are error-free; we shall assume it

holds throughout this paper in order to focus on the issue of weighting with error-prone data.

For each unit there is a covariate Xi which is unobserved and possibly related to both Yi and

Ri. We observe the covariate Wi = Xi + Ui as well as Zi, another possibly vector-valued

covariate measured without error. All data are independent across units, and we assume that

the following conditions hold.

Assumption 1. The Ui are independent of Yi and Ri conditional on Xi and Zi.

Assumption 2. For all sampled units, 0 < pr(Ri = 1 | Xi, Zi ) < 1.

Assumption 3. The response Yi is independent of Ri conditional on Xi and Zi.

By the definition of W and Assumption 1, W is a surrogate for X when modelling Y and R,

and measurement error is nondifferential (Carroll et al., 2006, § 2.5). Assumptions 2 and 3

are similar to strong ignorability (Rosenbaum & Rubin, 1983), which also requires

Assumption 2. However, in the context of causal effect estimation for a single treatment,

strong ignorability requires the conditional joint distribution of both potential outcomes,

(Yi0, Yi1), to be independent of the treatment. We require only that each potential outcome be

marginally independent of treatment assignment conditional on Xi and Zi, i.e., the weak

unconfoundedness of Imbens (2000). More importantly, independence is conditional on the

error-free variable Xi and not the observed error-prone covariate Wi.

Theorem 1—Let p(x, z) = pr(R = 1 | x, z) and let A(w, z) be a function that satisfies, for any

z in the support of Z,

(1)

Let g be any function of Y such that E{g(Y)} = μg and E{ Rg(Y ) A(W, Z)} are finite. Then

E{Rg(Y ) A(W, Z)} = μg.

Theorem 1 naturally extends to settings with multiple error-prone covariates. It guarantees

that E{g(Y )} = μg can be recovered using a weighted mean of the observed data, even if Yi

is unobserved for a portion of the sample, i.e., Ri = 0, and covariates are measured with
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error, provided that the weights A(W, Z) derived from the error-prone W satisfy (1). The

following corollary provides an estimator for μg.

Corollary 1—A consistent estimator for μ is

(2)

In a similar manner, for the estimation of causal effects, the next corollary provides a

consistent estimator of a treatment effect even in the presence of error-prone covariates.

Corollary 2—Let μt = E(Yit ) for t = 0, 1, where the expectation is for the entire population,

and let δ = μ1 − μ0 be the average treatment effect. Let A1(w, z) satisfy the conditions of

Theorem 1 with R = T and Yi1, and let A0(w, z) satisfy the conditions with R = 1 − T and Yi0.

Suppose that Assumptions 1–3 hold. Then a consistent estimator of δ is

(3)

Remark 1—Suppose that Aodds(w, z) satisfies, for any z in the support of Z,

then, using an approach analogous to the proof of Theorem 1, we can show that E{(1 − T )Y

Aodds(X, Z)} = E(Y0 | T = 1) = μ0|1, which can be estimated consistently by

Here μ0|1 is the counterfactual mean of control outcomes for units that receive treatment.

The average effect of treatment on the treated (Wooldridge, 2002, Ch. 18) can be

consistently estimated by .

Theorem 1 involves solving an inverse problem to obtain weights. As noted above, Pearl

(2010) provided a framework for causal inference with error-prone covariates. In the case of

dichotomous X and W and no additional covariates, Pearl’s approach yields estimates of μ0

and μ1 which are weighted sums of, respectively, the control and treatment group outcomes.

However, the weights involve pr(Wi = 0 | Ti, Yi ) and pr(Wi = 1 | Ti, Yi ) (Pearl, 2010). In this

simple case, the conditions of Theorem 1 are satisfied by A(W ) where
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The propensity scores for X, p(0)−1 and p(1)−1 can be estimated from the marginal

distribution of W, the probability of treatment assignment given W, and the matrix inverse of

Pearl (2010), which does not depend on Yi. Thus, our weights are the solution of a simple

linear system that does not involve the outcomes or pr(Wi = 1 | Ti, Yi).

A closed form solution for A(w, z) also exists when Ui ~ N(0, σ2) and p(x, z)−1 = 1 +

exp(−β0 − xβ1 − zT β2). In this case, 

satisfies (1). The weighting function plugs W into the true inverse probability function and

then shrinks the value back towards 1. More generally, let Xi be a k-vector and let p(x, z)−1 =

1 + exp{−(β0 + xTβ1 + zTβ2 + xTB1x + xTB2z + zTB3z)}. Suppose that we observe Wi equal

to Xi with additive, multivariate normal error, Wi = Xi + Ui with Ui ~ N(0, Σ), and suppose

that A(w, z) = 1 + |Σ−1V|−1/2 exp{−(ω0 + wT ω1 + zT ω2 + wT M1w + wT M2z + z′ M3z)}. If

V = (Σ−1 + 2 M1)−1 is symmetric and positive definite, and if

and , then A(w, z) satisfies (1). Solutions for A(w, z) that satisfy all of

these conditions with a positive definite V may not exist, and additional research is needed

to determine the conditions under which p(x, z) and Σ yield feasible solutions. Details are

given in the Supplementary Material.

Theorem 1 states that the weights need to be unbiased in the sense that the conditional mean

equals the inverse probability weight calculated with the error-free X. However, because the

conditional density function f (y | x, z, w, R = 1) depends only on x and z, if we could

reweight the cases so that the density of x and z for the weighted cases equals f (x, z), the

marginal density for the population, then we could obtain a consistent estimate of the

expected value of g(Y ). This can be formalized by the following theorem.

Theorem 2—Let Ã(w, z) be a function that satisfies, for every x and z,

(4)

Let A(w, z) = Ã(w, z)/pr(R = 1). Let g be any function of Y such that E{g(Y )} = μg and

E{Rg(Y ) A(W, Z)} are finite. Then E{Rg(Y ) A(W, Z)} = μg.

Weights solving (4) also solve (1) and vice versa. Thus, to generate a weighting function, we

must find weights which are unbiased for the correct weights or which reweight the

conditional density of the error-free covariates given R = 1 to match their marginal density.

Proposition 1—A weight function Ã(w, z) satisfies (4) if and only if A(w, z) = Ã(w, z)/pr(R

= 1) satisfies (1).

McCAFFREY et al. Page 5

Biometrika. Author manuscript; available in PMC 2014 May 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



3. Estimation

3·1. Estimation of the propensity score and weighting function

Corollaries 1 and 2 provide consistent estimators in the presence of error-prone covariates,

but they treat the propensity scores and weighting functions, p(x, z) and A(w, z), as known.

In practice, these will need to be estimated from the observed data. The first step is to

estimate p(x, z) using techniques for consistent estimation of models with error-prone

covariates together with a model for the distribution of U. For example, a logistic regression

model with the conditional score approach (Carroll et al., 2006, Ch. 7) could be used without

assumptions on the distribution of X. If the distribution of X is known up to some

parameters, then likelihood or Bayesian methods could be used with various parametric

models for p(x, z); alternatively, gradient boosting corrected for measurement error could be

used for nonparametric modelling (Sexton & Laake, 2008).

The next step is to calculate A(w, z) using the estimated p̂(x, z) for the unknown propensity

score function. Use of Fourier transforms is a standard approach to solving integral

equations like (1) in cases where there is not a closed form solution. We explored such

methods but were unable to obtain the necessary transforms for p(x, z)−1 when it did not

have a simple functional form. We propose estimating an approximation to A(w, z) using

simulated data and the estimated p̂(x, z).

First, generate a grid of x1, …, xJ values. Second, for each xj simulate U j1, …, Uj M, error

terms from the density of U given X j and Z, and set Wjm = X j + U jm. Third, for each

observed z, approximate A(w, z) by  for a set of basis functions ηk(w) and

approximate E{A(W, z) | X = x j, Z = z} by . Fourth,

estimate E{ηk(X) | X = x j, Z = z} by ; repeat this step for each xj

in the grid. Fifth, obtain a consistent estimator p̂(x, z). Sixth, estimate the coefficients of the

series approximation, β̂z1, …, β̂zK, through linear regression of p̂(xj, z)−1 on η̄kj, for k = 1,

…, K. Repeat steps 1 to 6 for every z. Lastly, use

, where , to

estimate μ.

Theorem 3—Suppose that Assumptions 1–3 hold, and assume that p(x, z) meets regularity

conditions, including being bounded below by a constant greater than zero for all x and z;

then μ̃ is a consistent estimator of μ.

The methods for estimating p(x, z) and A(w, z) all rely on the distribution of the

measurement error, which may be known or possibly estimated. Theorem 3 assumes that the

measurement error distribution is known. Our simulation study tests an estimator that uses a

noisy estimate of the variance of measurement errors.
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3·2. Simulation study

We conducted a simulation study to test the feasibility of using μ̃ to estimate treatment and

control group means and treatment effects with a finite sample. For each of 100 Monte Carlo

iterations, we generated 1000 independent draws (X, Z1, Z2, T, W ), where X and Z1 are both

N(0, 1), with correlation 0·3, Z2 is a Bernoulli random variable with mean 0·5, independent

of (X, Z1), and T is a Bernoulli treatment indicator with propensity score p(x, z1, z2) = pr(T =

1 | X = x, Z1 = z1, Z2 = z2) = G(0·5 + 1·2x + 0·5z1 − 1·0z2 + 0·7xz2), where G is the

cumulative distribution function of a Cauchy random variable. The Cauchy inverse link

function yields fewer extreme values of p(x, z1, z2)−1 and {1 − p(x, z1, z2)}−1 than do the

logistic or probit functions (Ridgeway & McCaffrey, 2007). The error-prone variable is W =

X + U, where the U are independent and distributed as N(0, 0·09). The reliability of W is

roughly 0·92, similar to that of student achievement test scores, as per a 2010 unpublished

report of the Pennsylvania Department of Education. For each iteration, we also generated a

working measurement error variance, S2, as a scaled χ2 random variable with mean 0·09 and

99 degrees of freedom. It is used in estimating the propensity scores and the weighting

function to simulate analyses where the variance of the measurement error is estimated from

an auxiliary dataset with 100 independent observations.

The simulated data included three outcome variables for each record: the linear outcome Y =

0·6X + 0·3 Z1 + 0·3 Z2 + e, where e ~ N(0, ν2) with ν2 chosen such that {E(Y | T = 1) − E(Y |

T = 0)}/ ν = 0·8; the tobit outcome Y * = Y I (Y > 0); and the cubic outcome Y ** = Y −

0·6{h(X) − X}, where h(X) approximates the roughly cubic relationship between two

consecutive years of student achievement test scores.

For each iteration, we estimated the coefficients of p(x, z1, z2) by maximizing the likelihood

for (T, W, Z1, Z2) via SAS Proc NLMIXED, using the correctly specified functional form for

the propensity score and a measurement model for W (Rabe-Hesketh et al., 2003) where X is

normally distributed with unknown variance and W given X = x is distributed as N(x, S2).

For each observation, we estimated Âp̂ (w, z1, z2) using J = 800 equally spaced pseudo-x

values between −5 and 5 and M = 500 errors. We approximated A by cubic B-spline basis

functions with 31 knots. We estimated the treatment effect by (3) with the unknown A(w, z1,

z2) replaced by Âp̂ (w, z1, z2). We refer to this as the weighting function estimator. The

settings for approximation were chosen via exploratory analysis, which indicated that the

approximation error with these settings was small and did not improve appreciably with

larger samples of the X or W in the computationally feasible range, or with additional knots

in the spline.

We consider two other estimators. One, the ideal estimator, is the standard inverse

probability-weighted estimator with the unknown propensity scores estimated using the

correct functional form and the error-free X. Obviously, this estimator would not be feasible

in applications and is included as a benchmark for assessing the cost of measurement error,

as this would be the standard estimator had X been observed. The other estimator we

consider, the naïve estimator, is the standard inverse probability-weighted estimator with the

unknown propensity scores estimated using the correct functional form and the error-prone

W.
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We evaluated the performance of three estimators, the ideal, naïve, and weighting function

estimators, by assessing the balance of the means of the covariates between the treatment

and control groups, as well as the estimated treatment effects for each of three constructed

outcomes. The weights should balance the means of all the variables, so that the difference

between the weighted, the treatment and the control group means of X, Z1 and Z2 should

equal zero. Similarly, because there are no true treatment effects, the estimated treatment

effects on the outcomes should be zero. We consider the bias, variance and mean squared

error of the estimated treatment effects from the different weighting estimators for each of

the three constructed outcomes.

Figure 1 presents the results of the assessment of covariate balance. As expected, the ideal

estimator has small bias for all three covariates while the naïve estimator has substantial bias

for X, approximately 0·11, but very small bias for Z1 and Z2. The weighting function

estimator has small bias for all three covariates, as would be expected from Theorem 3.

Figure 1 also shows the distribution of the estimated standardized treatment effects for the

tobit outcome. Results for the other outcomes are similar and are given in the Supplementary

Material. The treatment effects resemble the balance figure for X. The weighting function

estimator performs similarly to the ideal estimator, with small bias, while the naïve estimator

has notable bias. The variances across the different estimators are comparable but are

slightly lower for the naïve estimator; however, that estimator has mean squared error 60–

98% larger than that of either the ideal or the weighting function estimator due to its large

bias. The mean squared errors for the ideal and weighting function estimators are

approximately equal.

4. Discussion

Although our simulation study clearly demonstrates that our approach yields an estimator

which can perform well in applications, methods for inference need to be investigated and

the bootstrap is an obvious approach. We tested such an approach, using 100 bootstrap

replicates for our first Monte Carlo iteration to estimate a standard error of our treatment

effect estimates for the three outcomes. Across outcomes, the bootstrap standard error

estimate ranged from about 90% to 120% of the standard error estimated from the Monte

Carlo simulation. We find this encouraging, given the error in both the bootstrap and the

Monte Carlo estimates, but more research is needed on the use of the bootstrap in this

context.

Our simulation study suggests that the estimator can work when the parameters of the

measurement distribution are estimated unbiasedly. More research is needed to determine

whether the method is robust with respect to distributional assumptions about measurement

error and how to adapt the method when treatment assignment and outcomes depend on

latent covariates which are measured through multiple indicators (Raykov, 2012).

Future research will also need to explore the robustness of the method with respect to errors

in the propensity score model and develop methods for modelling the propensity score

function when the functional form is unknown. Common approaches use the distributions of

covariates to select variables, terms and the functional form of the propensity score function
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(Dehejia & Wahba, 1999). However, it is not clear if the distribution of the error-prone

covariates can proxy for the distributions of the error-free variables. Similarly, work is

needed on tuning the simulation in the approximation of the weighting function.

Another area of future research is application of the weighting function estimator in the

presence of heteroskedastic measurement error, for example where Wi = Xi + Ui with

. Theorem 1 and its corollaries extend naturally to this setting by allowing the

weighting function to depend on i. However, this may affect the existence of solutions to

(1), because the equation would depend on more than just the difference between X and W.

Finally, the estimator needs to be extended to the case of multiple error-prone covariates.

Theorem 1 can be extended, but work is needed to adapt the estimation methods and the

existence of solutions to a multivariate version of (1).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Proof of Theorem 1

The expected value of Rg(Y ) A(W, Z) equals

(A1)

(A2)
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(A3)

Equality (A1) follows from Assumption 1 and condition (1); equality (A2) follows from

Assumption 2; and equality (A3) follows from Assumption 3.

Proof of Corollary 1

Divide the numerator and denominator in (2) by n. By Theorem 1 with g(Y ) = Y and the

weak law of large numbers, the numerator converges in probability to μ. Similarly, using

Theorem 1 with g(Y ) = 1, the denominator converges in probability to 1. By Slutsky’s

theorem, the ratio converges in probability to μ.

Proof of Corollary 2

By definition, when Ti = 1 we have Yi,obs = Yi1 and when 1 − Ti = 1 we have Yi,obs = Yi0.

Hence, by Corollary 1, the first term on the right-hand side of (3) converges in probability to

μ1, and the second term converges in probability to μ0.
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Fig. 1.
Box plots of the differences between the weighted treatment and control group means of X, Z1 and Z2, along with standardized

treatment effect estimates for the tobit outcome, for three weighted estimators.
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