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Abstract

Assessing between-study variability in the context of conventional random-effects meta-analysis

is notoriously difficult when incorporating data from only a small number of historical studies. In

order to borrow strength, historical and current data are often assumed to be fully homogeneous,

but this can have drastic consequences for power and Type I error if the historical information is

biased. In this paper, we propose empirical and fully Bayesian modifications of the commensurate

prior model (Hobbs et al., 2011) extending Pocock (1976), and evaluate their frequentist and

Bayesian properties for incorporating patient-level historical data using general and generalized

linear mixed regression models. Our proposed commensurate prior models lead to preposterior

admissible estimators that facilitate alternative bias-variance trade-offs than those offered by pre-

existing methodologies for incorporating historical data from a small number of historical studies.

We also provide a sample analysis of a colon cancer trial comparing time-to-disease progression

using a Weibull regression model.
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1 Introduction

1.1 Background

Clinical trials are not designed without consideration of earlier results from similar studies.

Prior distributions derived from historical data, data from previous studies in similar

populations, can be used prospectively to provide increased precision of parameter

estimates. Our understanding of the “standard care” group in a trial can almost always be

augmented by information derived from previous investigations. In a seminal article, Pocock

(1976) considers incorporating historical control data into clinical trial analysis given that it

satisfies six “acceptability” conditions. Conventionally, acceptable evidence from multiple

trials is synthesized using random-effects meta-analyses (Spiegelhalter et al., 2004, p.268).

Such borrowing of strength to assess “population averaged” effects in the full comparative
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evaluation of a new treatment has long been encouraged by the Center for Devices and

Radiological Health (CDRH) at the U.S. Food and Drug Administration (FDA); see http://

www.fda.gov/cdrh/osb/guidance/1601.html.

However, for the case of just a few historical studies, this approach is overly sensitive to the

hyperprior distribution on the variance parameter that controls the amount of cross-study

borrowing. Furthermore, with only one historical study, assessing the uncertainty of the

between-study variability is difficult (Spiegelhalter, 2001; Gelman, 2006). Therefore,

implementing the conventional meta-analytic approach to borrow strength from only one

historical study requires informative prior distributions that may have drastic consequences

for power and Type I error.

In this paper we propose empirical and fully Bayesian modifications to the “commensurate

prior” approach (Hobbs et al., 2011) and extend the method to regression analysis using

general and generalized linear regression models, in the context of two successive clinical

trials. Throughout the paper we assume that the current trial compares a novel intervention

to a previously studied control therapy that was used in the first trial, and thus historical data

are available only for the control group. Furthermore, commensurate priors are constructed

to inform about fixed regression effect parameters.

The goal of our proposed methodology is to formulate Bayesian hierarchical models that

facilitate more desirable bias-variance trade-offs than those offered by pre-existing

methodologies for incorporating historical data from a small number of historical studies.

Sutton and Abrams (2001) consider empirical Bayesian methods in meta-analysis.

Alternative solutions include “robust” Cauchy priors (Fúquene et al., 2009), meta-analytic-

predictive methods (Neuenschwander et al., 2010), and power priors (Ibrahim and Chen,

2000; Neelon and O’Malley, 2010). Proper implementation of power prior models for non-

Gaussian data requires formidable numerical computation that may prohibit their use in

practice for clinical trial design. Therefore, we do not consider the commensurate power

prior methodology proposed by Hobbs et al. (2011).

1.2 Connection to meta-analysis

Before developing our method, we briefly discuss the conventional random-effects meta-

analytic approach for incorporating historical data. Let y denote a vector of i.i.d. responses

of length n from patients enrolled in a current trial, such that  where di is

an indicator of novel treatment. Suppose that we have patient-level data for patients assigned

to the current control arm from H historical trials. Let y0,h denote response vectors of length

n0,h for the historical data, , where h = 1, …, H. Suppose that current

trial’s objective is to compare the novel treatment to the previously studied control, and thus

the posterior distribution of λ is of primary interest for treatment evaluation. Historical data

is incorporated for the purpose of facilitating more precise estimates of μ and λ.

The conventional random-effects meta-analytic approach for borrowing strength from the

historical data (see e.g. Spiegelhalter et al., 2004, p.268) assumes that μ0,1, …, μ0,H, and μ

are exchangeable:
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The model allows for both between-study heterogeneity and within-study variability.

Parameters ξ and η2 characterize the population mean and between-study variance,

respectively. The estimate of ξ is a weighted average of the observed historical and current

study effects, with weights .

The estimates of the μ0,h and μ are “shrunk” toward ξ by an amount depending on the

relative between-study and within-study variances. Following Spiegelhalter et al. (2004, p.

94), B = σ2/(σ2+η2) controls the amount of shrinkage of the estimate of μ towards ξ.

Relatively small values of η2 suggest that the data provide little evidence for heterogeneity

with respect to the effect of control among the trial populations. This results in more

borrowing of strength from the historical data. Fixing η2 = 0 induces a model that assumes

“full homogeneity.”

Often the data provides sufficient information to estimate location parameters μ, μ0,h, ξ, and

within-study variances  and σ 2 using common noninformative prior distributions, h = 1,

…, H. Table 1 lists common noninformative and “weakly informative” prior distributions

for η2 suggested by Spiegelhalter et al. (2004, p.170), Gelman (2006), and Daniels (1999).

The first option for p(η2) considered by Spiegelhalter et al. (2004) is a uniform prior

distribution with a relatively large range (a = 100). Gelman (2006) does not recommend it

because it tends to unduly favor higher values, resulting in excessive heterogeneity.

Spiegelhalter et al. (2004) also consider the inverse gamma prior for η2 with both

hyperparameters small, say ∊ = 0.001. This prior distribution is often used because it is

proper and conditionally conjugate. However, it is sharply peaked near zero and thus

induces strong prior preference for homogeneity. As detailed in Gelman (2006), inferences

with this prior are sensitive to the choice of ∊ for datasets in which homogeneity is feasible,

and in the limit (∊ → 0) results in an improper posterior density.

Both authors consider a uniform density on η, which is equivalent to p(η2) ∝ 1/η (Gelman,

2006). Assuming a uniform prior on the scale of η facilitates more homogeneity. However,

for small H this prior tends overestimate heterogeneity. Gelman (2006) proposes a “weakly

informative” half-Cauchy prior distribution on η with scale parameter, b, as a sensible

compromise between the inverse gamma and uniform priors. For large values of b, (e.g. 25),

this family of prior distributions has better behavior near 0, compared to the inverse gamma

family; gentle slopes in the tails constrain the posterior away from large values and allow the

data to dominate.

Daniels (1999) derives properties of the proper uniform shrinkage prior, which is equivalent

to assuming a U(0, 1) prior on the shrinkage parameter, B. One attractive property of

“uniform shrinkage” is that the density is maximized at zero, but less sharply peaked

compared to the inverse gamma family. However, in this context, it requires identical

within-study variances , for h = 1,…, H, which is an undesirable assumption.
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Denote the difference between the current and hth historical intercept, or unknown bias

(Pocock, 1976), by Δh = μ−μ0,h, and let Δ = (μ−μ0,1, …, μ−μ0,H). Denote the parameter

vector , let  = (y, y0) denote the collection of current and

historical response data, where y0 = (y0,1, …, y0,H), and let L( |θ) denote the joint

likelihood. Figure 1 illustrates the propriety of each of the aforementioned prior distributions

for η2 in this context on the scale of log(η2). The left plot portrays the relative prior

densities, p{log(η2)} ∝ η2p(η2). The plot illustrates each prior’s relative proclivity for

homogeneity. In this context, assuming η2 is uniform over the interval [0, 100] induces a

preference for heterogeneity, while the excessive tail behavior of the inverse gamma prior,

which is characterized by a vertical dotted line on the far left side, induces a preference for

homogeneity. The other three alternatives induce varying compromises. The center and right

plots of Figure 1 contain marginal posterior distributions for log(η2) for truly unbiased

historical data for H = 1 and = 3 historical trials. Specifically, the plots depict

where θtr contains fixed Δtr = 0. We also set true parameters λtr = 0 and

; fixed historical sample sizes n0,h = 60, and current sample size n =

180, and assumed equal allocation of patients to treatment and control in the current trial.

The log-transformation of η2 facilitates comprehensive characterization of the distributions

over a vast portion of the parameter space. However, given the asymmetry of the parameter

space (i.e., in this context homogeneity is realized for values < −3) it is difficult to assess

uncertainty on the log-scale. Thus, legends in the center and right plots of Figure 1 provide

approximate posterior standard deviations on the scale of η2 in parentheses.

Figure 1 illustrates the primary drawback to using meta-analysis to incorporate historical

data from one historical study. Looking from the left to center plots reveals that relatively

little Bayesian updating of p{log(η2)} has occurred despite the fact that the historical data is

unbiased. The uniform prior on η2 is relatively unchanged, while the inverse gamma prior

results in a posterior that covers a wide range of homogeneity, yet it is still very diffuse

given that its posterior standard deviation on the η2 scale is greater than 400, 000. The

center plot reaffirms the aforementioned authors’ preferences for the uniform standard

deviation, half-Cauchy, or uniform shrinkage priors, which facilitate sensible compromises.

Yet, even these posteriors are still diffuse, facilitating little borrowing of strength from the

historical data in this setting. The right plot illustrates that for H = 3, a relative

“convergence” to the preference for homogeneity begins to emerge, although the priors still

systematically influence the relative degree of homogeneity.

The remainder of the paper proceeds as follows. Section 2 introduces our proposed

commensurate prior models and evaluates their frequentist properties for Gaussian data.

Section 3 introduces general linear and general linear mixed models for Gaussian data. Then

in Section 4 we expand the method to include non-Gaussian responses for generalized linear

and generalized linear mixed models. Section 5 offers an illustrative time-to-event analysis
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that demonstrates the benefit of our proposed method, while Section 6 evaluates the

frequentist and Bayesian operating characteristics of our method using simulation. Finally,

Section 7 concludes, discusses our findings, and suggests avenues for further research.

2 Commensurate prior models

Hobbs et al. (2011) consider the simple case involving incorporation of data from one

historical trial into the analysis of a single-arm trial. The authors define the location

commensurate prior for μ to be the product of the historical likelihood and a normal prior on

μ with mean μ0 and precision or “commensurability parameter” τ. The general formulation

follows from Pocock (1976), who suggested that historical parameters are biased

representations of their concurrent counterparts. Pocock (1976) also suggested that models

for incorporating historical information must account for unknown bias Δ = μ−μ0 in the

historical data. The commensurate prior is essentially a structural prior distribution that

describes the extent to which a parameter in a new trial varies about the analogous

parameters in a set of historical trials when the direction of the bias is unknown. The

approach assumes that the current analysis should borrow strength from the historical data in

the absence of evidence for heterogeneity. Thus, lack of evidence for large absolute bias, |Δ|,

relative to the data’s informativeness, implies commensurability. A one-to-one relationship

exists between the commensurability parameter and the between-study variance parameter

η2 for the random-effects meta-analytic models discussed in the previous section for the

case of one historical study. Pocock (1976) proposes repeated analysis under several fixed

values of 1/τ, while Hobbs et al. (2011) propose a fully Bayesian approach that assumes a

diffuse uniform prior distribution on log(τ).

There are two issues with the pre-existing formulation. First, the diffuse prior of Hobbs et al.

(2011) on log(τ) (an attempt at objectivity) is actually quite informative, in that it strongly

favors either full homogeneity or heterogeneity (on the scale of η, nearly 83% of the a priori

probability is placed on values less than 0.05 or larger than 10, the effective range for

substantial to very little shrinkage). Second, the historical likelihood should perhaps more

properly be considered data instead of a component of the prior. Nevertheless, Hobbs et al.

(2011) demonstrate that analysis using commensurate priors may lead to more powerful

procedures than an analysis that ignores the historical data, even when Type I error is

controlled at 0.05. Henceforth, we proceed with two modifications of the preceding

commensurate prior methodology. We consider the historical data to be a part of the

likelihood, and propose new empirical and fully Bayesian modifications for estimating τ
from the data. Our proposed commensurate prior models lead to preposterior admissible

estimators that facilitate alternative bias-variance trade-offs from those offered by pre-

existing methodologies for incorporating historical data from a small number of historical

studies. The proposed methodology provides the most gains for the case of only one

historical study. Before applying this methodology in practice we must assess frequentist

properties in the context of other important factors, such as potential disparities in sample

size among the historical and current studies.
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2.1 One historical study

As demonstrated in Subsection 1.2, in a random-effects meta-analysis it is difficult to

estimate η2 if the number of historical studies is small. As illustrated in Figure 1, for only

one historical trial in the above context, the data provide very little information about η2.

Yet, if evidence regarding the efficacy and safety profile of the current control arm derives

from a single study because data is exceptionally expensive, the patient population is sparse,

or the therapy is unusually hazardous, then it may be highly desirable to facilitate more

borrowing of strength from the existing evidence. This is especially true if the trial

implements adaptive decision rules that are designed to minimize the number of patients that

are exposed to the inferior treatment. Consequently, in practice inference often proceeds

under the assumption of full homogeneity, η2 = 0, which violates Pocock’s (1976)

proposition that one must allow for unknown bias in the historical controls. Assuming

homogeneity yields designs with undesirable frequentist operating characteristics.

Let θ denote the parameter vector . For H = 1, the joint posterior

distribution under the commensurate prior model is proportional to

(1)

Throughout this paper we refer to μ ~ N(μ|μ0, 1/τ ) as the commensurate prior, and to p(μ0)

as the initial prior, since it characterizes information before the historical data was observed.

The commensurate prior assumes that μ is a non-systematically biased representation of μ0.

For one historical study a one-to-one relationship exists between τ and the meta-analytic

between-study variance, η2: τ = 1/(2η2). Larger values of τ indicate increased

commensurability, and induce increased borrowing of strength from the historical data.

Define , and

If we assume a flat prior for μ0 (no initial information), reference priors for the within-study

variances, , the joint posterior in (1) can be written as
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(2)

where Γ−1 denotes the inverse gamma distribution. We can reduce dimensionality in the

numerical marginalization of θ by replacing the product of the initial prior and the historical

likelihood with a normal approximation; Section 4 discusses this approach in generality for

generalized linear models. Subsection 2.3 proposes fully Bayesian as well as empirical

approaches for estimating τ.

2.2 Multiple historical studies

For H > 1 historical studies, we propose an extension of the commensurate prior model in

the previous subsection that assumes homogeneity among the historical studies by

formulating the commensurate prior for μ conditional on the historical population mean.

Usually data from only a few historical studies will be available. If the historical studies are

markedly heterogenous, one may need to consider whether the historical data satisfies

Pocock’s “acceptability” conditions (Pocock, 1976), or fix the degree of heterogeneity to

acknowledge the conflict.

Following our previous notation, the parameter vector contains one parameter for the

historical population mean, μ0: so that , where μ0,1 = … =

μ0,H = μ0. Denote the hth historical within-study variance divided by the sample size by

. The relationship between τ and the meta-analytic between-study variance

η2 is more complicated than before. For H > 1, τ−1 characterizes the meta-analytic between-

study variability, plus the difference between the summed variability among the sample

means ȳ and the ȳ0,hs, and the population mean (previously ξ) when heterogeneity is

estimated η2 versus when full homogeneity is assumed,

Moreover, constraining the H historical means, μ0,h, to be equal to each other but perhaps

not to the current mean, μ inserts an asymmetry into the model that is not present in the

usual exchangeability model. As in the previous section, the data typically provide sufficient

information to estimate parameters λ, μ0, σ, and σ0,h (given no initial information) under

common noninformative prior distributions, h = 1, …, H. The joint posterior distribution is

proportional to
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(3)

The joint posterior distribution follows from (2) by replacing  with

 ȳ0 with , and  with

, where 

2.3 Estimation of τ

In this subsection we propose empirical and fully Bayesian methods for estimating τ, and

evaluate frequentist properties of the corresponding models for estimating λ in the context

of our proposed commensurate prior model.

2.3.1 Empirical Bayesian—In this subsection we consider parametric empirical Bayesian

(EB) estimation (see e.g. Morris, 1983; Kass and Steffey, 1989; Carlin and Louis, 2009) in

the context of our proposed commensurate prior models. Define .

For known σ2 and v0, the marginal distribution of the current and historical data given

hyperparameter τ, m(y, y0|τ ) = ∫θq(θ|τ, y, y0)dθ, follows from (2) and (3) as

(4)

EB inference for θ proceeds by replacing the scalar hyperparameter τ in (2) and (3) with its

marginal maximum likelihood estimate (MMLE). Larger values of τ indicate an increasing

lack of empirical evidence for heterogeneity, and lead to increased borrowing of strength

from the historical data. Figure 2 contains marginal distributions of the data in (4) for three

observed values of |Δ̂ |, where Δ̂ = μ̂−μ̂0 under the scenario that produced Figure 1 for one

historical study. For sufficiently small |Δ̂ |, m(y, y0|τ ) is monotonically increasing as a

function of τ, evident in the left plot corresponding to the case when Δ̂ = 0. It follows that

arg maxτ>0 m(y, y0|τ ) = ∞, if . The center and right plots reveal that larger

values of |Δ̂|, yield more peaked, unimodal functions.

Let ν = τ−1. We propose fixing ν* at the value that maximizes the marginal density of the

data in (4), restricted to a pre-specified interval capturing the effective range of borrowing of

strength. This leads to the following estimate for ν:

(5)

where 0 < lν < uν. Bounding the MMLE precludes full homogeneity when evidence for

heterogeneity is not strong. That is, decreasing (increasing) lν will induce more (less)

borrowing of strength from the historical data when unrestricted maximization results in
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infinite 1/ν*. Restricting ν* ∈ [2(0.052), 2(102)], which corresponds to η ∈ [0.05, 10] for

one historical study, usually captures the effective range of borrowing of strength. However,

these limits should be selected via formal evaluation of the induced frequentist operating

characteristics and bias-variance trade-offs in context.

Let  = (y, y0) denote the current and historical data, and 

denote a set of fixed parameters characterizing a true state of the model. Define

. Given θtr, Z2 follows a non-central χ2 distribution,

. Let FZ2|θtr (·) denote its cumulative density function.

The probability that ν* is fixed at lν in the EB inference of θ is .

Various maximization techniques can be used to estimate ν* for the intractable case when

variances are unknown, including Markov chain Monte Carlo (MCMC) methods considered

by Geyer and Thompson (1992) and Doucet et al. (2002). EB inference typically

“underestimates” variability in θ, since posterior uncertainty in ν* is unacknowledged in the

analysis. However, in the following sections we demonstrate that our EB procedure has

several desirable properties when compared to conventional random effects meta-analytic

models.

2.3.2 Fully Bayesian—The EB procedure yields approximate full homogeneity when

evidence for heterogeneity is not strong (although this can be adjusted via careful selection

of the lower bound, lν). However, even for this scenario approximate full homogeneity may

not be warranted. In this subsection we discuss fully Bayesian estimation in the context of

our proposed commensurate prior models. By accounting for prior uncertainty when

estimating τ, the fully Bayesian approach takes full account of uncertainty in the parameter

estimates. Specifically, we consider two families of priors for τ, a conditionally conjugate

gamma distribution, as well as a variant of the “spike and slab” distribution introduced by

Mitchell and Beauchamp (1988) for variable selection.

For known σ2 and u0, the marginal posterior distribution of τ|y, y0 follows from (2) and (3)

as

(6)

Assuming a flat prior on τ clearly leads to an improper posterior, e.g.

 and for  is

divergent.

A default choice for p(τ ) is the gamma family of distributions, p(τ ) = Γ (cτ̃, c), since, from

(1) and (3), it leads to the following conjugate full conditional posterior distribution,
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(7)

For this parameterization τ̃ > 0 can be thought of as a prior guess at τ, while scalar c > 0

represents degree of confidence, with a smaller value corresponding to weaker prior belief.

We also propose an alternative prior for τ that derives from the aptly named “spike and

slab” distribution (Mitchell and Beauchamp, 1988). As the nomenclature suggests, the

distribution is locally uniform between two limits, 0 ≤  <  except for a bit of probability

mass concentrated at point > . Let p0 denote the prior probability that  ≤ τ ≤ . Then,

formally, the prior assumes

(8)

The reason that the spike and slab approach is appropriate in this context derives from the

fact that sufficiently small values of Δ̂ result in marginal densities of the data (4) with nearly

flat, gradually decreasing slopes as functions of τ, for sufficiently large τ. This is illustrated

in the left plot of Figure 2. Therefore, given little evidence for heterogeneity, the

marginalized likelihood prefers a large value for τ, but is virtually flat over a vast portion of

the parameter space, providing little information to distinguish among values. This suggests

a sensible approach may be to choose one carefully selected large value of τ (a “spike”), that

characterizes commensurability. We demonstrate in the following sections that, when

properly calibrated, this prior yields desirable frequentist properties. While the fully

Bayesian methods are at less risk of dramatically overestimating τ, all of our methods are

somewhat subjective and can therefore produce poor results if the model is incorrectly

specified (the usual Bayesian “good model” assumption), thus making model checking an

important component of this approach in practice.

2.3.3 Point estimation of λ—In this subsection we evaluate the proposed empirical and

fully Bayesian commensurate prior models for estimating λ under squared error loss (SEL)

and compare results to the full homogeneity model and the associated “no borrowing” model

that ignores the historical data completely. Recall that we have assumed that the current

trial’s objective is to compare a novel treatment to the previously studied control therapy.

Thus, posterior inference on the novel treatment effect parameter, λ, is of primary interest.

Let = (y, y0), and define

(9)
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(10)

For known σ2 and u0, it follows from (2) and (3) that the marginal posterior distribution of

λ, τ|  can be represented as the following product:

(11)

If the historical data are ignored, the marginal posterior for λ|y follows as

(12)

Let  denote a set of fixed parameters. The preposterior risk under

squared error loss (Carlin and Louis, 2009, p. 433), conditional on θtr is

(13)

Under fully Bayesian inference, the marginal posterior expectation of λ|  follows as (λ)

= ∫ λ̂τ q(τ| )dτ. EB inference sets (λ) = λ̂
1/ν*, where ν* is defined in (5). The no

borrowing and homogeneity models result in (λ) = λ̂
0 and λ̂∞, respectively.

Preposterior risk (13) can be simulated using the following relationships derived from the

conditional likelihood of |θtr,

(14)

(15)

Figure 3 contains preposterior risk under SEL and bias as functions of Δtr resulting from

inference under no borrowing, full homogeneity, as well as empirical and fully Bayesian

commensurate prior models for H = 1, 2, and 3 historical studies under the same scenario

that produced Figure 1: n = 180, nd = 90, n0,h = 60, (σtr)2 = 1 and .

Results are shown for an EB commensurate model that restricts ν* ∈ [2(0.052), 2(102)] =

[0.005, 200], a fully Bayesian model that assumes a spike and slab prior for τ with

hyperparameters,  = 0.005,  = 2,  = 200, and p0 = 0.99, as well as two fully Bayesian

models assuming gamma priors for τ with hyperparameters c = τ̃−1 and τ̃ = 100, and 20,

respectively.
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Under no borrowing the posterior mean of λ|  is unbiased. Therefore, preposterior risk

under SEL for the no borrowing inference follows from (12) as (σtr)2/{nd (1 – nd/n)}, and

thus is constant as a function of Δtr. The plots reveal that all models obtain preposterior

biases of zero when Δtr = 0. Assuming homogeneity a priori offers maximal variance

reduction in this context, and thus is associated with the largest reductions in preposterior

risk for Δtr near zero. Therefore, the resulting estimator is preposterior admissible. However,

homogeneity leads to prohibitively biased estimators with sharply, monotonically increasing

preposterior risk for |Δtr| > 0, rapidly trumping the gains in variance reduction. The top row

of plots in Figure 3 reveal that preposterior risk for homogeneity exceeds no borrowing in

this context for H = 1, 2, and 3 when |Δtr| > 0.2, > 0.16, and > 0.1, respectively.

In contrast to the no borrowing and homogeneity models, the commensurate prior models

offer preposterior admissible estimators, with alternative bias variance trade-offs that

facilitate more borrowing of strength for Δtr near zero and less borrowing for large values of

|Δtr|. Numerous alternative bias variance trade-offs are attainable via adjustment to the

model hyperparameters.

2.4 Comparison to meta-analysis

This subsection compares frequentist properties of our proposed commensurate prior models

(2) and (3) with results for the meta-analysis models in Section 1.2 for the scenario that

produced Figure 1 for the case when sampling level variances are unknown. Tables 2 and 3

augment Figure 3 and synthesize the relative bias-variance trade-offs when using the

corresponding posterior expectation of λ|  as an estimator. Table 2 contains the percent

change from no borrowing in preposterior risk under SEL given θtr for the five meta-

analysis models, our proposed EB and fully Bayesian commensurate prior models, and the

model that assumes full homogeneity. Negative values indicate reductions in preposterior

risk. Table 3 contains the corresponding preposterior bias. Results are shown for H = 1, 2,

and 3 historical studies and fixed true values of Δtr indicating various degrees of historical

bias. Results are shown for fixed true standard deviation values . The

spike and slab prior uses the same hyperparameters that were proposed in the previous

subsection with the exception of p0 which we now adjust to 0.7. If the historical data is

ignored, the marginal posterior for λ|y now follows as

(16)

As in the previous subsection, preposterior risk under SEL given θtr follows as

. Note that marginal posteriors for λ|  corresponding to the

commensurate prior models discussed in the previous subsection are now intractable due to

required marginalization of the sampling variances.

First we consider the case when Δtr = 0. For the case of one historical study, Table 3 shows

that all estimators are unbiased, yet Table 2 reveals that the meta-analysis estimators

correspond to only slight reductions in preposterior risk under SEL, with the exception of
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the inverse gamma prior. In contrast, the commensurate models facilitate relatively large

reductions in preposterior risk compared to the first four meta-analytic models. As in Figure

3, the gamma prior facilitates the largest reductions in preposterior risk, nearly approaching

the reduction produced by highly subjective, full homogeneity.

When H > 1, inference using the uniform standard deviation and half-Cauchy priors in the

meta-analysis framework provides considerably more reduction in preposterior risk than for

H = 1. The inverse gamma prior facilitates even more reduction in preposterior risk. The

uniform variance and uniform shrinkage priors offer considerably less reduction in

preposterior risk. The commensurate prior models still facilitate more borrowing of strength

than the first four models for meta-analysis leading to estimators with more reduction in

preposterior risk, but less reduction than that obtained by full homogeneity.

When 0 < Δtr ≤ 0.5, the tables suggest that preposterior risk and bias are non-decreasing in

H for all models. The highly subjective homogeneity model yields highly biased estimators

corresponding to substantial increases in preposterior risk. The gamma model estimator is

most biased among the commensurate prior estimators, which leads to large increases in

preposterior risk for Δtr = 0.5. The spike and slab model estimator provides perhaps the best

overall bias-variance trade-off among the commensurate prior estimators, given that it is

least biased and results in relatively smaller increases in preposterior risk. Moreover, it

provides equal or less bias than the half-Cauchy meta-analysis prior estimator when H > 1.

Among the meta-analysis models, only the inverse gamma prior facilitates meaningful

variance reduction from borrowing of strength for the case of one historical study. However,

when Δtr = 0.5 the inverse gamma meta-analysis prior results in an increase in relative

preposterior risk that is nearly two and three times larger than that for the spike and slab

commensurate prior estimator for H = 2 and = 3, respectively.

3 General linear models

In this section we introduce general linear and general linear mixed commensurate prior

models for Gaussian response data in the context of two successive clinical trials. In

addition, we assume that both trials identically measure p – 1 covariates representing fixed

effects which are to be incorporated into the analysis. As before, we assume that the second

(current) trial compares a novel intervention to a previously studied control therapy that was

used in the first trial, and thus historical data are available only for the control group.

Furthermore, commensurate priors are constructed to inform about fixed regression effect

parameters.

3.1 Fixed effect models

Assume y0 is a vector of n0 responses from patients in the historical study of an intervention

that is to be used as a control in a current trial testing a newly developed intervention for

which no reliable prior data exist. Let y be the vector of n responses from subjects in both

the treatment and control arms of the current trial. Suppose that both trials are designed to

identically measure p – 1 covariates of interest. Let X0 be an n0 × p design matrix and X be

an n × p design matrix, both of full column rank p, such that the first columns of X0 and X

are vectors of 1s corresponding to intercepts.
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Suppose  and y ~ Nn(Xβ + dλ, σ2) where λ is the (scalar) treatment

effect and d is an n × 1 vector of 0 – 1 indicator variables for the new treatment. Let yi,Xi, di

represent data corresponding to the ith subject in the current trial, i = 1, …, n.

Commensurability in the linear model depends upon similarity among the intercepts and

covariate effects. Yet, the strength of empirical evidence for heterogeneity among the

current and historical data may vary across covariates. We formulate the commensurate

linear model by replacing τ in Section 2 with a vector τ = (τ1, …, τp) containing a

commensurability parameter, τg, for each associated pair of parameters in βg and β0g. The

commensurate priors follow as , for g = 1, …, p, and the βgs are

assumed a priori independent.

Let  and Δ = β–β0, let diag{u} denote the diagonal matrix consisting of

the elements of vector u, and let Ia denote the identity matrix of dimension a. The joint

posterior distribution of θ|τ, y, y0 follows as proportional to

(17)

Let β̂λ = (XTX)−1XT (y–dλ) and , and .

Under a flat prior, the full conditional posterior for λ is proportional to N (λ̂β, σ2/nd). Let Vτ
denote the precision matrix that results from averaging the commensurate prior over the

historical likelihood:

(18)

Thus, assuming a flat initial prior and marginalizing β0 results in a conditional posterior for

β|y, y0, λ, σ2, , τ proportional to

(19)

Notice that the full conditional posterior mean for λ, λ̂β, is a function of residuals (y – Xβ),

whereas the conditional posterior mean of β in (19) is an average of the historical and

concurrent data relative to the estimated commensurability parameter vector τ. As τ
approaches 0, the posterior for β converges to a normal density with mean β̂λ and variance

, recovering the standard result from linear regression that ignores all of the

historical data. In this case, λ̂β also converges to the “no borrowing” estimate of the

treatment effect. Moreover, as τg approaches infinity, for all g = 1, …, p, precision

, fully incorporating the historical data, recovering full homogeneity. Full

conditional posteriors for β0, σ2, and  under noninformative priors are provided in

Appendix A.
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3.2 Mixed models

In this subsection, we extend the model to include random effects. We begin with a familiar

and useful one-way ANOVA model. Then following McCulloch and Searle (2001, p.156),

we give the linear mixed model for general variance-covariance structures between and

within levels of the random components.

3.2.1 One-way random effects model—Following the notation of Browne and Draper

(2006), suppose y0jk = μ0 + u0k + ∊0jk, where  for k = 1, …, n0j, j = 1, …,

m0, and . Variance component  represents the conditional variance of

y0jk|u0j, while the marginal variance of y0jk follows as . Note that observations from

different subjects are assumed to be uncorrelated. The model for responses in the current

trial follows yig = μ + ui + diλ + ∊ig, for g = 1, …, ni; i = 1, …, m, where  and

. As before, di = 1 indicates treatment and di = 0 corresponds to the standard

of care for the ith subject in the current trial. Therefore, fixed effects μ and λ represent the

intercept and treatment effect for a patient receiving the new intervention. Given no initial

information, the commensurate prior for μ is proportional to a normal distribution with mean

μ0 and precision τ.

Following the recommendations of Gelman (2006), we use independent noninformative

uniform priors on σu0 and the current random-effects standard deviation, for large m (≥ 5),

which is equivalent to a product of inverse-χ2 densities with −1 degrees of freedom,

. For small m (< 5), we use the half-Cauchy prior discussed in Section

1.2.

Let θ denote the parameter vector. The joint posterior distribution for θ|τ, y, y0 is

proportional to

(20)

where 1u is a 1 × u column vector of 1s, and Ju is a u × u matrix of 1s. The Gibbs sampler is

implemented by sampling the latent variables u0j and ui.

To ease the subsequent algebra required to marginalize (20), note that  times the inverted

marginal estimated historical covariance for all observations in subject j,

, is equal to , which has n0j − 1 eigenvalues

equaling 1 and one non-unit eigenvalue equal to , where . Similarly,

 has ni − 1 eigenvalues equaling 1 and one non-unit eigenvalue equal to

, where . Let
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(21)

After marginalizing μ0, the conditional posterior for μ|λ, u0, u, , τ is proportional to

. Full conditional posteriors for the remaining parameters can be found

in Appendix B.

Several alternative prior specifications for the correlation structure may be more natural for

incorporating prior information on the variance components. For example, we could

formulate our prior opinion about the model smoothness by specifying a prior on the

variance ratio,  or the degrees of freedom it induces (Hodges and Sargent, 2001). For

discussion about degrees of freedom and how they can be used to sensibly determine

variance component priors, as well as the general marginal posterior for the variance ratio,

see Reich and Hodges (2008), and Cui et al. (2010).

3.2.2 Linear mixed model—The one-way random effects model presented above is a

special case of a linear mixed model for which between-subject observations are

independent, all within subject observations have identical covariance (compound symmetry

within groups), and there are no fixed regression effects (only intercepts). In this subsection

we extend to the general linear mixed model.

Following the notation presented above, denote  and . Suppose X0

and X are n0 × p and n × p design matrices such that the first columns contain vectors of 1s

corresponding to the intercepts, β and β0 are vectors of identically measured regression

coefficients of length p representing fixed covariate effects, and d is an n × 1 new

intervention indicator. Furthermore, let u0, u and Z0, Z denote m0 × 1 and m × 1 random

effects vectors and their respective n0 × m0 and n × m design matrices for the historical and

current data.

Adopting the notation of McCulloch and Searle (2001, p.156), we formulate the general

linear mixed model by first assuming normally distributed random effects with covariances

D0 and D, u0 ~ N (0, D0) and u ~ N (0, D). Models for the historical and concurrent

responses are y0 = X0β0 + Z0u0 + ∊0 and y = Xβ + Zu + dλ + ∊, where ∊0 ~ Nn0 (0, R0) and ∊
~ Nn(0, R); R0 and R represent the conditional covariances of y0|u0 and y|u. The marginal

covariances for y0 and y are  and Σ = ZDZT + R, respectively. The

precision matrix Vτ in (18) follows as

(22)
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The conditional posterior distribution for β|λ, D0, R0, D, R, τ is proportional to

(23)

where β̃λ = (XTΣX)−1XT (y − dλ), and , are the usual integrated

least squares estimates. Treating the random effects as latent variables and adopting

conjugate Wishart priors for D−1 and R−1 and their historical counterparts, namely D−1 ~ W

(ϕD̃, ϕ) and R−1 ~ W(ρR̃, ρ), posterior inference may proceed via the Gibbs sampler. The

remaining full conditional posteriors can be found in Appendix C.

If we assume that observations are uncorrelated across subjects, the covariance structures

simplify to , and . The resulting model extends

the one-way random effects model above to incorporate fixed covariate effects. Using the

same priors as before, the full conditional posteriors for  and  follow as

 and

. See Kass and Natarajan (2006) for an

empirical Bayes approach using an inverted Wishart prior on Σ for general covariance

structures and design matrices.

4 Generalized linear models

In this section we extend the methodology to incorporate generalized linear models for non-

Gaussian error distributions. The methodology is generalized to include data from

exponential families assuming Gaussian approximations of the product of the initial prior

and historical likelihood using the Bayesian Central Limit Theorem (see e.g. Carlin and

Louis, 2009, p.108). For a flat initial prior, the approximation takes mean equal to the

historical MLE and variance equal to the inverted observed Fisher information matrix. These

approximations are used frequently in Bayesian analysis for data assumed to follow from

exponential families (Spiegelhalter et al., 2004, p.23; Gelman et al., 2004, p.101). While

computational methods can handle the full model, the approximations facilitate dimension

reduction for the numerical problem of estimating the crucial MMLE of τ when using EB

inference, since β0 is readily marginalized analytically.

We first present the general method for fixed effects models, and then discuss logistic

regression models for binary outcomes and a Weibull regression model. We then extend the

general method to incorporate random effects, and illustrate in two important specific cases:

a probit regression model for binary outcomes, and a Poisson regression model for count

data. The Weibull regression model is used to analyze patient-level data from two

successive colorectal cancer trials in Section 5 for both the approximate and full

commensurate prior models.
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4.1 Fixed effect models

Let y0 and y denote column vectors of length n0 and n consisting of independent

measurements from a distribution that is a member of the exponential family, fY (y). That is,

we suppose  and  such that the log-likelihoods are of form

(24)

(25)

for j = 1, …, n0 and i = 1, …, n (McCulloch and Searle, 2001, p.139). Following the notation

of Section 3, let g(μ0) = X0β0 and g(μ) = Xβ + dλ, for known “link” function g() where E

[y0] = μ0 and E [y] = μ.

Using the Bayesian Central Limit Theorem, we replace the product of the initial prior and

historical likelihood, fY0 (y0|β0)p(β0), with an asymptotic normal approximation, p̂(β0|y0).

This density is an approximate sequential Bayesian update of the initial prior for β0. For a

flat initial prior, the approximation takes mean equal to the historical MLE (computed

numerically via Newton-Raphson or Fisher scoring) and variance equal to the inverted

observed Fisher information matrix, , where Ŵ0 =

W0(μ̂
0) is an n0 × n0 diagonal matrix having jj–element

(26)

where , for j = 1, …, n0 (McCulloch and Searle, 2001,

p.141). Following Subsection 3.1, the commensurate prior for β is proportional to Np(β0,

diag{τ}−1). Let θ denote the general parameter vector, θ = (β, β0,ν, ν0,λ). Assuming a flat

prior for λ, the approximate joint posterior distribution of θ|τ, y, y0 is proportional to

(27)

After marginalizing over β0, the precision matrix in (18) follows as,

(28)

and the posterior distribution of β, λ|τ, y, y0 is proportional to
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(29)

Non-Gaussian data results in intractable non-conjugate full conditional distributions,

therefore posterior inference requires alternative MCMC sampling methods (see e.g. Carlin

and Louis, 2009), such as the Metropolis algorithm.

4.1.1 Binary response—Let y0 and y denote the historical and current data such that y0j ~

Ber {π0(X0j)}, π0(X0j) ∈ [0, 1], for j = 1, …, n0, and yi ~ Ber {π (Xi, di)}, π (Xi, di) ∈ [0, 1],

for i = 1, …, n. The logistic link function transforms the expectations of y0 and y such that

 and . The diagonal elements of Ŵ0 in (27)

and (28) now consist of the estimated historical sampling variance, Ŵ0jj = π̂
0(X0j) {1 −

π̂0(X0j)}, where π0̂(X0j) = (1 + e−X0jβ̂0)−1. Assuming a flat prior for λ, the posterior

distribution of β, λ|τ, y, y0 is proportional to

Sampling proceeds by Metropolis, though switching to a probit link function can lead to

closed form full conditionals (Albert and Chib, 1993). Fúquene, Cook, and Pericchi (2009)

propose an approach using a robust Cauchy prior for univariate logistic models.

4.1.2 Time-to-event response—Following the notation of Kalbfleisch and Prentice

(2002, p.52), data for the historical and current trials consist of triples (t0j, δ0j, X0j) for j = 1,

…, n0 and (ti, δi, Xi) for i = 1, …, n. Here, t0j, ti > 0 are the observed, possibly censored,

failure times; δ0j, δi are noncensoring indicators (0 if censored, 1 if failure); and X0j and Xi

are row vectors of p covariates associated with historical subject j and current subject i. Let

t ̃0j and t̃i be the underlying uncensored failure times, with corresponding densities f(t0j) and

f(ti). Denote the survival functions for the jth historical and ith current individuals by Pr(t̃i >
t) = F (t) and Pr(t̃0j > t0) = F (t0).

Log-linear models are commonly used for analyzing time-to-event data. Suppose y0 =

log(t0) = X0β0 + σ0e0 and y = log(t) = Xβ + dλ + σe where e0 = (y0 − X0β0)/σ0 and e = (y −

Xβ − d λ)/σ. Assuming that censoring times are conditionally independent of each other and

of the independent failure times given X0 and X (noninformative censoring), the historical

and current data likelihoods follow as  and

. Assuming a flat prior for λ, the commensurate prior

model follows from (27) where ML estimates for β0 and σ0 are computed numerically via

Newton-Raphson or Fisher-Scoring; see Kalbfleisch and Prentice (2002, p.66–69). For

discussion about censoring mechanisms see Kalbfleisch and Prentice (2002, p.193) or Klein

and Moeschberger (2003, p.63).
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Weibull regression arises when e0 and e are assumed to follow the extreme value

distribution, f(u) = exp {u − exp (u)}. This results in a parametric regression model which

has both a proportional hazards and an accelerated failure-time representation. The hazard

function, h(t) = −d log F(t)/dt, is monotone decreasing for shape parameter σ > 1, increasing

for σ < 1, constant for σ = 1. We assume commensurate priors for both the regression

coefficients, β, and log transformation of the shape parameter, σ. Let 

and ζ = {βT, log(σ)}T denote column vectors of length p + 1. Let e0, δ0, and exp(e0) − δ0

denote vectors of length n0 such that the jth element is equal to e0j, δ0j, and exp(e0j) − δ0j, j

= 1, …, n0. ML equations for the historical coefficients follow as

 and . Let ê0j = (y0j −

X0jβ̂0)/σ0̂. The observed Fisher information matrix, Ψ̂
0(ζ̂0), follows as

(30)

where Ê0 is the vector of length n0 containing elements Ê0j = (ê0j +1) exp{ê0j − log(σ̂
0)}−

δ0j/σ̂0, and the diagonal elements of Ŵ0 are , for j = 1, …, n0 (see

Breslow and Clayton, 1993). Assuming no initial prior information for ζ0 and that the prior

on λ is flat, the posterior distribution for ζ, λ|τ, y, y0 follows directly from (29) by replacing

 in (27) and (28) with Ψ̂
0(ζ̂0). Note that the exponential model is a special case

where σ0 = σ = 1, since this leads to probability density functions for t0 and t following

 and  where μ0 = exp(X0β0) and μ = exp(Xβ + dλ);

t0/μ0 is a vector of length n0 with jth element equal to t0j/exp(X0jβ0), and similarly, t/μ is a

vector of length n with ith element equal to ti/exp(Xiβ + diλ).

4.2 Mixed models

As with the general linear models in Section 3, we now extend our generalized linear model

to the mixed model case. Following the notation of Subsection 3.2, let y0j and yi denote

response vectors of lengths n0j and ni consisting of conditionally independent measurements

given random effects u0j and ui, j = 1, …, m0; i = 1, …, m, where u0 and u are vectors of

length m0 and m. For generalized linear mixed models, we assume the conditional

distributions of y0 given u0 and y given u have p.d.f.s from the exponential family,

 and , where log fY0 (y0|u0) and log fY (yi|u)

follow (24) and (25). In addition, assume that the random effects follow distributions u0 ~

fU0 (u0) and u ~ fU (u). The marginal likelihoods follow as

 and .

Assuming that the conditional means are E (y0|u0) = μ0 and E (y|u) = μ, let g(μ0) = X0β0 +

Z0u0 and g(μ) = Xβ + dλ + Zu, where g() is a known link function (note that Z0, Z, X0, X, d
and parameters D, D0 are defined in Subsection 3.2.2). Following Subsection 4.1 for

normally distributed random effects, u0 ~ N (0, D0) and u ~ N (0, D), the posterior
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distribution of β, λ|τ, y, y0, follows from (29) with Ŵ0 in (27) and (28) replaced by

. See McCulloch (1997), McCulloch and Searle (2001, p.263), or

Breslow and Clayton (1993) for algorithms for computing ML estimates for fixed effects

and prediction of random effects.

4.2.1 Binary response—Suppose that the historical responses follow y0jk|u0j ~ Ber

{π0(X0j)}, where y0jk denotes observation k for the jth patient, k = 1, …, n0j, j = 1, …, m0.

The current responses follow yig|ui ~ Ber {p(Xig, di)}, where yig denotes observation g for

the ith patient, g = 1, …, ni, i = 1, …, m. Since the logit link function was discussed in

Section 4.1.1, we will consider the probit link. Given u0 ~ N (0, D0), the probit uses the

standard normal c.d.f., Φ(), to transform the means of y0 and y such that π0(X0, Z0) =

Φ(β0X0 + Z0u0) and p(X, d, Z) = Φ(Xβ + dλ + Zu). The posterior distribution of β, λ|τ, y, y0

follows from (29) by replacing Ŵ0 in (27) and (28) with , and setting

where ϕ() is the standard normal p.d.f. (McCulloch and Searle, 2001, p.136).

4.2.2 Count response—Suppose that the historical responses follow

, where log(μ0jk) = X0jkβ0 + u0j and . Here,

y0jk denotes the kth count observed for the jth patient, where k = 1, …, n0j and j = 1, …, m0.

Similarly, let yig denote the gth count observed for the ith patient, where

, log(μig) = Xigβ + ug, and , for g = 1, …, ni and i =

1, …, m. The posterior distribution of β, λ|τ, y, y0 follows from (29) by replacing Ŵ0 in

(27) and (28) with , and setting

5 Case study: analysis of successive colon cancer trials

In this section, we illustrate our method using data from two successive randomized

controlled colorectal cancer clinical trials originally reported by Saltz et al. (2000) and

Goldberg et al. (2004), respectively. The initial trial randomized N0 = 683 patients with

previously untreated metastatic colorectal cancer between May 1996 and May 1998 to one

of three regimens: Irinotecan alone; Irinotecan and bolus Fluorouracil plus Leucovorin

(IFL); or a regimen of Fluorouracil and Leucovorin (5FU/LV) (“standard therapy”). IFL

resulted in significantly longer progression-free survival and overall survival than both

Irinotecan alone and 5FU/LV and became the standard of care treatment (Saltz et al., 2000).
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The subsequent trial compared three new (at the time) drug combinations in N = 795 patients

with previously untreated metastatic colorectal cancer, randomized between May 1999 and

April 2001. Patients in the first drug group received the current “standard therapy,” the IFL

regimen identical to that used in the historical study. The second group received Oxaliplatin

and infused Fluorouracil plus Leucovorin (abbreviated FOLFOX), while the third group

received Irinotecan and Oxaliplatin (abbreviated IROX); both of these latter two regimens

were new as of the beginning of the second trial.

Both trials recorded two bi-dimensional measurements on each tumor for each patient at

regular cycles. The Saltz trial measured patients every 6 weeks for the first 24 weeks and

every 12 weeks thereafter until death or disease progression, while the Goldberg trial

measured every 6 weeks for the first 42 weeks, or until death or disease progression. We

computed the sum of the longest diameter in cm (“ld sum”) for up to 9 tumors for each

patient at baseline. In both trials, disease progression was defined as a 25% or greater

increase in measurable tumor or the appearance of new lesions.

This section offers a fixed effects time-to-event analysis using the Weibull regression model

presented in Subsection 4.1.2 to compare disease progression among the FOLFOX and IFL

regimens. The historical data consists of the IFL treatment arm from the initial study, while

the current data consists of patients randomized to IFL or FOLFOX in the subsequent trial.

For simplicity, we omit data from the Irinotecan alone and 5FU/LV arms in the Saltz study,

and the IROX arm in the Goldberg study. The model incorporates baseline ld sum as a

predictor.

We restricted our analysis to patients that had measurable tumors and observed baseline

covariates bringing the total sample size to 586: 224 historical and 362 current observations.

Among the current patients, 176 are controls (IFL) and 186 are patients treated with the new

regimen (FOLFOX). Figure 4 contains Kaplan-Meier estimated time to progression curves

for subjects on each treatment regimen in both trials. The plots suggest that the time to

progression experience for subjects on IFL was similar in both the Saltz (left panel) and

Goldberg trials (center), and that FOLFOX (right) is associated with somewhat prolonged

time-to-progression.

Following the log-linear model notation of Subsection 4.1.2 for progression times t0 and t,
let y0 = X0β0 + σ0e0 and y = Xβ + dλ + σe, where y0 = log(t0) and y = log(t); here, X0 and X

are n0 × 2 and n × 2 design matrices with columns corresponding to (1, ld sum at baseline),

and d is the FOLFOX indicator. Thus, the β0 and β parameters contain intercepts as well as

a regression coefficient corresponding to the baseline covariate, while exp(λ) represents the

acceleration factor associated with FOLFOX. Note that since F(t|d = 1) = F (teλ|d = 0) for

all t, a negative value is indicative of decreased survival. Exploratory data analysis on the

covariate and age at baseline suggested that the trials enrolled patients from comparable

populations. The first, second, and third quartiles for baseline tumor sum are 5, 8.5, 12.8 in

the Saltz trial and 4.7, 7.9, 12.7 in the Goldberg trial; for age they are 54, 62, 69 in the Saltz

trial and 53, 61, 69 in the Goldberg trial.
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Table 4 summarizes results from separate and pooled classical linear regression fits to the

historical (t0, X0) and current (t, X, d) data. The “current” values constitute a “no borrowing”

analysis. Results from the current data alone suggest that the estimated acceleration factor

corresponding to FOLFOX is highly significant at the 0.05 level. Point estimates (posterior

means) and posterior standard deviations corresponding to both the Gaussian approximation

and full commensurate prior models are provided in Table 5. The fully Bayesian spike and

slab model uses the same hyperparameters for p(τ) that were used to produce Tables 2 and 3

in Section 2.4. For the EB model , for j = 1, 2, and 3 denote the MMLEs of the

commensurability parameters corresponding to the intercept, regression coefficient for ld

sum at baseline, and log-shape parameters, respectively. The  s were maximized over a

restriction to the interval (0.005, 200), the same interval used in Section 2.3. Table 5 reveals

that posterior inferences using the Gaussian approximated and full MCMC models provide

congruous results in this context. Posterior distributions for the τs are highly right-skewed,

with large standard deviations inducing compromises among the evidence supplied by the

historical and current data.

Incorporating the Saltz data into the analysis of the Goldberg trial using our proposed

method leads to more precise parameter estimates (i.e., reductions to the posterior standard

deviation for the FOLFOX effect of nearly 9%, 8%, and 5% for the EB, spike and slab, and

gamma models, respectively). The two fully Bayesian commensurate prior analyses offer

relatively similar amounts of borrowing of strength from the historical data. Moreover, these

models provide considerably less borrowing of strength than that provide by pooling, which

facilitates a 16% reduction in posterior standard deviation for estimating the FOLFOX

effect. The EB procedure leads to more precise, naive estimates, and thus more borrowing of

strength overall when compared to the fully Bayesian results. However, EB inference

actually leads to less borrowing of strength from the historical data for estimating log(σ).

Note that our commensurate prior models estimate time-to-progression to be nearly

exp(0.43) times larger on average in the FOLFOX group, and since the posteriors for log(σ)

are less than 0, the hazard rates are increasing slightly over time. This finding is consistent

with those of Goldberg et al. (2004), who determined FOLFOX to have superior time-to-

progression and response rate compared to IFL.

6 Simulation study

In this section we use simulation to evaluate the Bayesian and frequentist operating

characteristics of our proposed empirical Bayesian commensurate prior model for the

challenging case of one historical study. Figure 5 plots coverage and width of the 95%

highest posterior density (HPD) intervals for λ by  for the Gaussian (left) and

exponential (right) time-to-event models described in Sections 3 and 4. Results for Gaussian

data are compared for the no borrowing, half-Cauchy meta-analytic, EB commensurate, and

homogeneity models under simulated data for n0 = 90 historical patients, equal allocation of

n = 180 current patients, and fixed true parameters, μtr = 0, and . Results for the

exponential model are compared for the no borrowing, EB commensurate, and homogeneity

models simulated for μtr = 2, n0 = 200, and equal allocation of n = 100 current patients.

Hobbs et al. Page 23

Bayesian Anal. Author manuscript; available in PMC 2014 May 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5 reveals that all four of the Gaussian models (left) provide 95% highest posterior

density coverage and achieve their minimum interval widths when the historical data are

unbiased, Δtr = 0. As |Δtr| > 0, we see that the interval widths increase. While coverage for

the relatively conservative half-Cauchy models deviates little from the no borrowing model,

the highly subjective full homogeneity model provides increasingly poorer coverage. The

EB commensurate prior model offers a sensible compromise that offers more precision

given lack of strong empirical evidence for heterogeneity, yet protects against poor coverage

provided that the historical data is estimated to be highly biased. Results for the exponential

model given in the right column of Figure 5 follow the same general trends. A referee

encourages us to remind the reader that coverage probabilities of EB intervals are sometimes

too small (Carlin and Louis, 2009, Chapter 5); we would expect our fully Bayesian spike

and slab or gamma prior models would perform slightly better in this regard.

Next we present a sensitivity analysis for the four Gaussian models. Following Freedman et

al. (1984), suppose the parameter space of λtr is partitioned into three intervals

characterizing three true states of nature: λtr < −δ implies failure, −δ ≤ λtr ≤ δ implies

equivalence, and λtr > δ implies efficacy. Suppose that the current trial analysis evaluates

decision rules using posterior tail densities such that

(31)

We approximated the probability surfaces of the four stopping rules in (31) using simulation

for a myriad of true values of  and λtr for no borrowing, half-Cauchy meta-

analytic, EB commensurate, and homogeneity models. We formulated a metric that

facilitates comprehensive assessment of the four models by synthesizing the amount of

probability allocated to the correct and incorrect decision spaces. Let  = (y, y0) denote the

collection of current and historical response data, and let L( |θ) denote the joint likelihood,

where . Let I(a) denote the indicator function of the event a, and let ϕ(·|

θtr) denote the probability of a decision rule given a fixed set of parameters, θtr i.e.

(32)

For fixed true values σtr, , and  the metric of comparison follows as
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(33)

where c ∈ [0, 1] is a positive scalar that weights the relative importance of an inconclusive

result. The metric M(c) ∈ [−1, 1], a generalized version of expected 0 – 1 loss, is evaluated

for c = 1/2 and δ = 0.33 under prior p(Δtr) = N(0, s2), for three values of s: s = 0, 1, 30,

characterizing likely degrees of bias. All results are computed for p(λtr) = N(0, 1/4). Larger

values of M(c) indicate overall more desirable probability allocation among the four

decision rules. The prior distributions on Δtr and λtr essentially weight the relative

importance of different subsets of the decision rule probability surfaces.

Table 6 summarizes the simulation results for M(c) in (33). The top portion of the table

contains results for the unrealistic case of a priori absolute certainty that the historical data

is unbiased. In this scenario the highly subjective full homogeneity model exceeds our

proposed EB commensurate model by 0.03. This occurs largely because borrowing of

strength in this context yields unbiased results for λ. For the more likely cases when the a

priori assessment of historical bias is more uncertain in the middle and bottom portions of

Table 6, the EB commensurate model provides the best overall probability allocation as

measured by M(c), while the highly subjective full homogeneity model provides the least

desirable results. These results are sensitive to alternative weights we might subjectively

assign to the outcomes we are penalizing.

7 Discussion

In this paper, we provided empirical and fully Bayesian modifications of commensurate

prior formulations (Hobbs et al., 2011), and extended the method to facilitate linear and

generalized linear models. The proposed models are shown to lead to preposterior

admissible estimators that facilitate alternative bias-variance trade-offs than those offered by

pre-existing methodologies for incorporating historical data from a small number of

historical studies. The method was also used to analyze data from two recent studies in

colorectal cancer.

Future work looks toward extending the methodology to include time-dependent covariates,

smoothed hazards, multiple events, Bayesian semi-parametric Cox models as e.g. Ibrahim,

Chen, and Sinha (2001, p.47), and non-normal formulations of the commensurate prior

itself. We are also currently pursuing the use of commensurate priors with adaptive

randomization that allows the sample size or allocation ratio in the ongoing trial to be altered

if this is warranted. For example, if historical and concurrent controls emerge as

commensurate, we might assign fewer patients to the control group, thus enhancing the

efficiency of the ongoing trial by imposing “information” balance.
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Appendix A

Full conditional posterior distributions for β0, σ, and σ0 assuming noninformative priors for

the commensurate prior linear model presented in Subsection 3.1 are as follows:

Appendix B

Here we present full conditional posterior distributions corresponding to the commensurate

prior one-way random effects model presented in Subsection 3.2. Let
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and . Full conditional posteriors for μ0, λ, u, u0,  and

 follow as:

Appendix C

Here we present full conditional posteriors for the general commensurate prior linear mixed

model presented in Subsection 3.2. The full conditional posteriors for λ, β0, u, u0, D−1,

, R−1, and  follow as:

where || . || denotes the inner product.
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Figure 1.

Prior distribution for log(η2) and posterior distributions for log(η2) for truly unbiased historical data:  for H =

1 and = 3 historical studies. Values in parentheses are approximate posterior standard deviations on the scale η2.
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Figure 2.
Marginal density of y, y0 |τ (4) as a function of τ for three values of |Δ̂|, where Δ̂ = μ̂ – μ̂0 and σ2 = 1, u0 = 1/n0, n0 = 60, n =

180, nd = 90.
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Figure 3.
Preposterior risk under squared error loss and bias as functions of Δtr for H = 1, 2, and 3 historical studies.
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Figure 4.
Separate Kaplan-Meier curves for time to disease progression corresponding to subjects on IFL in the Saltz trial (left), IFL in the

Goldberg trial (center), and FOLFOX in the Goldberg trial.

Hobbs et al. Page 32

Bayesian Anal. Author manuscript; available in PMC 2014 May 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5.
Coverage and width of 95% HPD intervals for λ by Δtr or exp(Δtr) for Gaussian and exponential data for one historical study.
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Table 1

Common priors for η2

prior form

uniform variance p(η2) = U(0, a)

inverse gamma p(η2) = G−1(∊, ∊)

uniform standard deviation

half-Cauchy p(η) ∝ (η2 + b)−1

uniform shrinkage

p(η2) ∝ σ2/{(σ2 + η2)2}, , for all h
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