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Congratulations to Heisey and colleagues (2010) for an analysis of complex ecological data

within a process-oriented framework and an equally thoughtful discussion of the ongoing

challenges of linking process and pattern. Their work joins a growing literature linking

modern statistical methods for describing patterns in data with expanded sets of

ecologically-motivated mathematical models of population dynamics. My comments build

on the authors’ framework and discussion to describe a continuum that (I feel) encompasses

a conceptual path between process and pattern and illustrates how hierarchical models

provide a convenient area within which to explore this continuum.

As pointed out by the authors, interactions between observed data and proposed models

always operate in a tension between theoretical process and phenomenological pattern, a

tension increased in the past by the relatively small intersection between individuals

working in mathematical modeling and those working in statistical methodology, and the

differences in training and “that’s-how-it’s-done” assumptions perpetuated within each

group. Happily, this intersection is growing and a new literature is blossoming in the gap,

influencing both the current and next generations of researchers on both sides of the fence.

Hilborn and Mangel’s (1997) Ecological Detective set the stage for expanding the toolbox

when, as their subtitle suggests, “confronting models with data.” This call has been followed

up by ecological texts such as Ellner and Guckenheimer (2006), Clark (2007), and Bolker

(2008) and statistical texts such as Clark and Gelfand (2006) and Royle and Dorazio (2008).

These recent texts and related literature incorporate both sophisticated models and

sophisticated statistical techniques while sidestepping the ultimate futility of uniquely

inferring process from an observed pattern in favor of determining what new features the

given data pattern allows us to learn about the underlying process.

To illustrate this concept, consider Fig. 1. Starting in the box at the top left of the figure, the

true (but unknown) process generates the observed data which contain various

phenomenological associations that can be measured through traditional regressions,

correlations, or other statistical summaries. The observed data and the observed associations

within the data traditionally represent the worldview of a statistical approach to analysis. On

the right hand side of the figure, we begin with a proposed theoretical model of reality,

which generates data. The goal of the modeler is to have this proposed mathematical model
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be as representative of the true process as possible (to a level of acceptable generality). The

generated data may be compared with data observed by the modeler or reported in the

literature and the appropriateness of the proposed theoretical model typically is assessed by

comparing the generated data to the observed data via statistical tests of goodness-of-fit or

through likelihood methods. The dashed box in Fig. 1 represents this traditional worldview

of the mathematical modeler. A detailed assessment of the phenomenological associations in

either the observed or the generated data is often missing in this approach. While clearly an

oversimplification, Fig. 1 suggests that a traditional statistical approach tends to ignore

process in favor of a detailed description of pattern in the data and the revealed associations

therein, while a traditional modeling approach tends to ignore pattern beyond that readily

apparent in basic summaries of the data.

As illustrated by Heisey et al., hierarchical models are well-suited to fill the gap between

mathematical models of process and statistical summaries of pattern and such models

provide a flexible set of tools for both modelers and statisticians. A very general framework

illustrating this is provided by Berliner (1996) and expanded in Berliner et al. (2000), with

an excellent overview provided by Wikle (2003). The basic frame-work involves three

stages of the model: the data model, the process model, and the parameter model. The three

stages are linked hierarchically as follows: first, the probability distribution of any possibly

observed data is dependent on the process and some parameters ([data | process, data

parameters]), next, the probability of any given process is a function of process parameters

([process | process parameters]), and, third any prior information regarding data or process

parameters can be expressed in the distribution [data parameters, process parameters] using

bracket notation to denote any general probability distribution. The hierarchical structure

allows us to draw inference on data and process parameters via the posterior distribution:

[data parameters, process parameters | data]. A particularly nice feature of this formulation is

the link between the term “parameters” in an inverse problem setting (termed “process

parameters” in Berliner’s setting) and the different use of the term “parameters” in direct

modeling (“data parameters” in Berliner’s nomenclature). Note that the structure is fairly

standard, but its effective implementation can be far from routine, often involving complex

computing to implement.

While the Berliner structure is an attractive conceptual link between data (pattern) and

process, in real applications such as that of the authors, the hierarchical structure also allows

a mechanism for building a bridge between pattern and process, a bridge composed of

probabilistic elements to summarize the impact of unobserved elements and/or data

restrictions. Most often these elements are defined as random effects which induce, say,

similarity between repeated observations on the same experimental unit or spatial correlation

between observations taken at neighboring locations. Such random effects fit into the

general framework above where the collection of data parameters includes the random

effects, i.e., [data | process, data parameters] can be expanded to read: [data | process, data

parameters, random effects][random effects | random effect parameters]. In this setting the

random effects reflect an intermediate model structure bridging the gap between process and

data to reflect, for example, spatial correlation between observed data elements via a spatial

model for [random effects | random effect parameters]. These random effects may “soak up”
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elements of the process that are not readily observed in the data, yet are elements that

influence observations nonetheless. The conditionally autoregressive (CAR) model is an

example: CAR random effects allow spatial similarity between observations, similarity that

may (on the process level) be due to local behavior that reaches across regional boundaries.

The CAR model is not a direct process model of such features, rather the CAR model is

flexible enough to capture the resulting impact of such features as best it can. In other

words, the random effects may not capture the process directly (the process is not a CAR

model) but instead they capture additional echoes of the process within the observed data by

adding another layer or texture to the pattern.

While the value of hierarchical formulations is generally recognized, some discussion

remains regarding the appropriateness of Bayesian or classical implementations. Briefly, in

addition to the role of prior distributions, the two approaches also differ on which

components comprise the likelihood. For the classical statistician, the likelihood includes the

distribution of the data and the distributions of the random effects. For the Bayesian, the

random effect distribution represents a first level of prior distributions. While the distinction

is primarily definitional, it reflects a distinction between the goals and approaches typical to

each approach. That is, the Bayesian maintains a relatively simpler likelihood often

comprised of conditionally independent components, while the classical statistician

incorporates the dependencies induced by random effects into the likelihood to be

maximized. The authors point out that an advantage of a Bayesian formulation is that it

allows for model-specified motivation of penalties to the likelihood resulting from random

effects and a transparent mechanism for data to inform on the level of smoothing.

Regardless of mode of implementation, the hierarchical framework clarifies that all

inference involves an intersection of available data, proposed models (statistical and

mathematical), and associated assumptions. When all three elements align, model-based

inference provides analytic possibilities that expand farther than design-based analysis in

complex observational settings, but it is important to stress that model-based inference will

only go as far as the underlying models allow. That is, a complex model structure allows

complex inference, but only within the possibilities allowed by the models, data, and

assumptions. For instance, consider the authors’ use of CAR priors to allow spatial

smoothing. CAR models are flexible in allowing spatial correlation among observations, but

CAR models are also dependent on the underlying neighborhood structure and the

geographic units under consideration. In particular, CAR models do not scale up or down in

space and it is difficult to use CAR-based results to transfer results from the relatively large

regions under consideration in the authors’ analysis to either smaller or larger subdivisions

of the study area. The authors’ choice of regions has some advantages in terms of the

palatability some simplifying assumptions, namely, assumptions of locational accuracy

limited to the scale of relatively large areas and assumptions of no animal movement

between regions (a result of the assumption of a constant hazard over the lifetime of an

individual animal). However, scaling the process up or down will require both a redefinition

of the process model (to address the situation where these assumptions are no longer

realistic) and a different spatial structure.
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This line of thought leads to a few specific comments regarding the authors’ analysis. First,

does frailty represent part of the process or a random effect to better describe the pattern?

From the discussion above, I argue that frailty serves to build a better bridge between pattern

and process, but it is not inherently a model of process. I feel that frailty allows the statistical

model to move closer to the underlying process but it still involves a description of

phenomenological pattern observed in the data. It provides a better and more informative

description, to be sure, but not a complete solution to the puzzle. Second, the authors’

decision to work with the cumulative hazard has the advantage of parameterizing the model

at the level desired for conclusions, not necessarily at the finest level possible. This choice

defines the process at a level where the model will inform directly on the impact of proposed

actions, rather than at the individual animal/environment level at which the disease operates

(e.g., individual-based modeling as in Grimm and Railsback [2005]). In short, as illustrated

by the authors, one parameterizes initially for process, but should be willing to

reparameterize as needed for analytic convenience or computational efficiency, provided

one can get back to the process parameters of interest. Third, the authors’ discussion of

predicted declines illustrates that, even though inference is based on a process-defined

model, our conclusions often involve describing a phenomenological pattern in the results

through the lens of the fitted model.

In conclusion, I applaud the authors’ thoughtful work in better linking process to pattern.

While no single analysis will completely reveal process from pattern, analyses such as these

illustrate how process-defined structures and inference based on hierarchical elements can

work together to provide a longer, more stable bridge between the two.
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Fig. 1.
Potential links between statistical and modeling viewpoints. Solid-line boxes indicate elements of the process-to-pattern flow for

a real system (left side) and a modeled system (right side). Dotted boxes outline the elements of primary concern to traditional

mathematical modelers (model to generated data to observed data) and to traditional statistical modelers (observed data to

observed associations). Double-headed arrows indicate areas of traditional (goodness of fit) and potential (similar associations?)

application of statistical comparisons to assess reliability and accuracy of modeled outcomes.
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