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Circulating sCD36 is associated with unhealthy fat distribution
and elevated circulating triglycerides in morbidly obese
individuals
L Knøsgaard1, SB Thomsen2, M Støckel3, H Vestergaard2 and A Handberg1,4

BACKGROUND: The recently identified circulating sCD36 has been proposed to reflect tissue CD36 expression, and is upregulated
in case of obesity, insulin resistance and hepatic steatosis. The aim of this study was to explore the effect of weight loss secondary
to bariatric surgery in relation to sCD36 among morbidly obese individuals. Furthermore, we investigated the levels of sCD36 in
relation to obesity-related metabolic complications, low-grade inflammation and fat distribution.
METHODS: Twenty morbidly obese individuals (body mass index (BMI) 43.0±5.4 kg m� 2) with a referral to Roux-en-Y gastric
bypass were included. Anthropometric measurements and fasting blood samples were collected at a preoperative baseline visit
and 3 months after surgery. sCD36 was measured by an in-house assay, whereas insulin sensitivity and the hepatic fat accumulation
were estimated by the homeostasis model assessment (HOMA-%S) and liver fat percentage (LF%), respectively.
RESULTS: Postoperatively, BMI was reduced by 20% to 34.3±5.2 kg m� 2 (Po0.001). sCD36 was reduced by 31% (P¼ 0.001) and
improvements were observed in the amount of fat mass (Po0.001), truncal fat mass (Po0.001), circulating triglycerides (P¼ 0.001),
HOMA-%S (P¼ 0.007), LF% (P¼ 0.001) and the inflammatory marker high-sensitive C-reactive protein (P¼ 0.005). sCD36 correlated
with triglycerides (r¼ 0.523, P¼ 0.001) and truncal fat mass (r¼ 0.357, P¼ 0.026), and triglycerides were found to be an
independent predictor of sCD36. At baseline, participants with the metabolic syndrome had a higher LF% and higher levels of the
inflammatory biomarker YKL-40 (P¼ 0.003 and P¼ 0.014) as well as a tendency towards higher levels of sCD36.
CONCLUSION: sCD36 was reduced by weight loss and associated with an unhealthy fat accumulation and circulating triglycerides,
which support the proposed role of sCD36 as a biochemical marker of obesity-related metabolic complications and risks.
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INTRODUCTION

Obesity is a major, increasing problem worldwide, and a great
threat to the general health, leading to increased morbidity and
mortality.1,2 Metabolic complications and comorbidities, such as
cardiovascular disease, type 2 diabetes mellitus (T2DM), insulin
resistance and hepatic steatosis are commonly seen in relation to
obesity.3 Abdominal obesity is generally considered as an
unhealthy fat accumulation and seems to be important in
insulin resistance as well as a contributing factor to the
metabolic syndrome; a condition, which describes the presence
of a cluster of risk factors associated with diabetes and
cardiovascular disease.3,4 In a 16 year follow-up study among
healthy women, it was reported that 61% of new T2DM-cases
could be attributed to obesity, and the risk of T2DM was found
increased with an increasing body mass index (BMI).5 Likewise, the
prevalence of non-alcohol related hepatic steatosis (non-alcoholic
fatty liver disease) is high among obese individuals as well as
patients with T2DM.6–8

Activation of the innate immune system and the establishment
of a low-grade inflammatory state are considered to have a role in
the common pathogenesis of obesity and insulin resistance and
the subsequent development of T2DM.9–11 It has been
hypothesized that adipocyte hypertrophy, as a result of adipose

tissue expansion, leads to a local hypoxic condition, which may
have a crucial role in the initiation of the inflammatory processes,
and in which macrophage infiltration and proinflamatory
cytokines seem to contribute to the impairment of the normal
adipocyte function.8,12 The relations between circulating lipids and
obesity are not completely understood, but particularly the levels
of free fatty acids (FFA) and triglycerides are considered to be
elevated in case of obesity, especially due to the increased volume
of adipose tissue, a reduced FFA clearance13,14 as well as the
obesity-induced insulin resistance and thus increased lipolysis.

CD36 is a multifunctional membrane protein expressed by
many cell types.15 The receptor has an important function in the
facilitation of fatty acid uptake, which precedes the secretion and
storage as triglycerides, and thus contribute to insulin resistance in
muscle-, fat- and liver cells, respectively.16–20 Beside the function
as a fatty acid translocase, CD36 is proposed to be involved in the
inflammatory responses in both adipocytes and macrophages
during complications of diet-induced obesity.21 Recently, a non-
cell bound circulating form of CD36 (sCD36) has been identified
and proposed to reflect tissue CD36 expression.22,23 Measures of
liver fat content and the severity of steatosis were recently
reported to be associated with circulating levels of sCD36,24,25 and
further connections between sCD36 and insulin resistance, BMI as
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well as obesity-driven low-grade inflammation have been
proposed.22,24,26,27

High-sensitive C-reactive protein (hsCRP), an unspecific marker
of systemic and subclinical inflammation, is found to be related to
obesity.28 YKL-40 is a locally produced glycoprotein involved in
inflammation and endothelial dysfunction, and it seems to be of
pathogenic importance in the low-grade inflammation that
precedes the development of cardiovascular disease.29 Several
clinical studies have described elevated YKL-40 levels in subjects
with diabetes or cardiovascular conditions, including an
association between YKL-40 and both all-cause and
cardiovascular mortality.29

Bariatric surgery is currently the only treatment of morbidly
obese subjects resulting in a long term, sustained weight loss and
thus a decreased volume of visceral adipose tissue and metabolic
improvements, especially in relation to the glucose metabolism
and insulin sensitivity.30–32 In order to study the relationship
between CD36 and fat accumulation and distribution, and to
substantiate previous findings of sCD36 as a risk marker of
components in the metabolic syndrome, we investigated the
relations between sCD36 and insulin sensitivity, fat distribution,
plasma lipids, ectopic hepatic fat accumulation and obesity-driven
low-grade inflammation among morbidly obese individuals before
and after gastric bypass. Our hypotheses were that sCD36 would
decrease along with surgically induced weight loss and would be
associated with central obesity as well as obesity-related
metabolic complications, such as insulin sensitivity, ectopic
hepatic fat accumulation, and levels of circulating triglycerides.

MATERIALS AND METHODS
Study population and clinical examinations
Twenty morbidly obese subjects referred to bariatric surgery were included
in the study. Of surgery-related reasons, the participants had lost
approximately 8% of their body weight before inclusion in this study.
They all met the Danish criteria for bariatric surgery:X20 years of age and
BMIX40 kg m� 2 or BMIX35 kg m� 2 and comorbidities (two participants
had T2DM, one hypertension and three arthrosis). All patients were
dismissed within 24 h after surgery and no patients suffered from
postoperative complications.

The participants were examined twice; at baseline before the operation
and 3 months postoperatively. At both visits, following an overnight fast,
venous blood samples were collected, measures of weight and height
were retrieved, and the body content of fat mass was measured using a full
body dual-energy X-ray absorptiometry scanner. Weight and dual-energy
X-ray absorptiometry-scan are missing from one participant at the
3 months follow-up visit.

The study was approved by the Danish Data Protection Agency
(id. 00908 HEH.750.86-4) and the ethics committee in the Capital Region
of Denmark (H-3-2009-100), and informed written consent was obtained
from all participants prior to inclusion.

Surgical procedure
Surgery was performed at the Hamlet Hospital, Copenhagen, Denmark by
either of two surgeons with expertise in Roux-en-Y gastric bypass, using a
standard laparoscopic Roux-en-Y gastric bypass technique. The main
characteristics of the Roux-en-Y gastric bypass were construction of a
gastric pouch of approximately 25 ml, a biliopancreatic limb of 60 cm and a
Roux-limb of 120 cm.

Biochemical analysis
Circulating plasma sCD36 was measured in duplicates using an in-house
enzyme-linked immunosorbent assay as previously described.22 sCD36
concentrations are expressed relative to a plasma pool in arbitrary units.
Internal controls were run in quadruplicate on each plate. Intra- and
combined intra- and interassay coefficients of variation for this assay were
around 6 and 16.4%. Serum YKL-40 was measured by an enzyme-linked
immunosorbent assay method (Quidel, San Diego, CA, USA), with intra-
and interassay coefficients of variation of 5.8% and 6.0%, respectively.
hsCRP was measured with a highly sensitive, latex-particle-enhanced

immunoturbidimetric assay (DAKO, Glostrup, Denmark). Remaining
biochemical parameters (hemoglobin, leukocytes, alanine aminotransferase,
aspartate aminotransferase, glycosylated hemoglobin, plasma glucose,
connecting peptide, serum insulin, total cholesterol, high-density
lipoprotein, low-density lipoprotein and triglycerides) were analyzed
using routine standardized methods in our biochemical laboratory.

Insulin sensitivity
Insulin sensitivity was estimated using the homeostasis model assessment
(HOMA-%S) (http://www.dtu.ox.ac.uk/homacalculator/index.php).

Liver fat percentage
Liver fat percentage (LF%) is based on an algorithm used to predict the
degree of fat accumulation in hepatocytes based on the presence of the
metabolic syndrome and T2DM as well as fasting insulin and the liver
enzymes aspartate aminotransferase and alanine aminotransferase.33

Statistics
Continuous variables are presented as mean±s.d. Paired and unpaired
nonparametric statistical analyses were used for differences between the
pre- and postoperative states and the presence or absence of the
metabolic syndrome at baseline, respectively. Correlations were analyzed
by a nonparametric correlation test on pooled data (Spearman’s rho
correlation’s test). Multiple regression analyses were performed to identify
independent variables predicting sCD36 as the continuous dependent
variable. Statistical analyses were two-sided, and P-valuesp0.05 were
considered statistically significant. All analyses were made with the
statistical software package SPSS (version 11.5 SPSS; Chicago, IL, USA).

RESULTS
Weight loss and improvements in body fat distribution and
circulating plasma lipids 3 months after bariatric surgery
Selected clinical and biochemical data from the pre- and 3 months
postoperative visits are presented in Table 1. At the baseline visit,
the mean age was 41.2±11 years, the average BMI was
43.0±5.4 kg m� 2 and 13 of the participants were defined as
having the metabolic syndrome.4 Following surgery, an average
weight loss of 23.9 kg was observed after 3 months, and thus a
significant decrease in BMI of 20%. Furthermore, the amount of
body fat and the fat distribution were improved by highly
significant decreases in fat mass (30%), in particular the truncal fat
mass (33%). Along with the surgically induced weight loss, the

Table 1. Clinical and biochemical characteristics of the study
population pre- and 3 months postoperatively

Preoperatively Postoperatively P-value

Weight 120.0±18.1 96.1±17.4w o0.001*
BMI (kgm� 2) 43.0±5.4 34.3±5.2w o0.001*
Hemoglobin (mmol l� 1) 8.5±0.5 8.4±0.6 0.14
Leukocytes (mia l� 1) 8.4±2.2 7.0±1.6 o0.001*
ALT (U l� 1) 31±14 29 ±16 0.754
AST (U l� 1) 30±8 31±12 0.812
HbA1c (%) 5.9±0.4 5.8±0.6 0.131
Plasma glucose (mmol l� 1) 5.7±0.9 5.3±1.2 0.161
C-peptide (pmol l� 1) 1196±560 894±554 0.120
Serum insulin (pmol l� 1) 172±149 82±66 0.023*
Total cholesterol (mmol l� 1) 4.9±1.0 4.5±0.9 0.027*
HDL (mmol l� 1) 1.1±0.3 1.1±0.3 0.659
LDL (mmol l� 1) 3.0±0.9 2.8±0.7 0.299
Triglycerides (mmol l� 1) 1.7±0.6 1.3±0.4 0.001*
Fat mass (kg) 54.8±11.0 38.5±11.4w o0.001*
Truncal fat (g) 26.6±4.0 17.9±4.9w o0.001*

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotrans-
ferase; BMI, body mass index; C-peptide, connecting peptide; HbA1c,
glycosylated hemoglobin; HDL, high-density lipoprotein; LDL, low-density
lipoprotein. Values are mean±s.d. *Significant P-values. n¼ 20, except
w (n¼ 19).
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circulating lipids, total cholesterol and triglycerides decreased
significantly by 8% and 24%, respectively. At baseline, 45% had
elevated levels of triglycerides (triglyceridesX1.7 mmol l� 1 or
150 mg dl� 1 34). Positive correlations were found between levels
of circulating triglycerides and fat mass (r¼ 0.376, P¼ 0.018),
including truncal fat (r¼ 0.366, P¼ 0.022) as well as between
triglycerides and BMI (r¼ 0.363, P¼ 0.023).

sCD36 decreased markedly following bariatric surgery and
associations with anthropometric characteristics and circulating
triglycerides were observed
After bariatric surgery, a 31% reduction in circulating sCD36 was
found (P¼ 0.001, Figure 1). At the baseline visit, the participants
defined as having the metabolic syndrome had a non-significant,
but 30% higher plasma concentration of sCD36 (P¼ 0.097).
Significant positive correlations were found between sCD36 and
the anthropometric measurements: weight (r¼ 0.322, P¼ 0.045),
fat mass (r¼ 0.358, P¼ 0.025) and truncal fat mass (r¼ 0.357,
P¼ 0.026), respectively, whereas sCD36 tended to associate with
BMI (r¼ 0.281, P¼ 0.083). Among the circulating lipids, a
significant correlation was found between circulating sCD36 and
triglycerides (r¼ 0.523, P¼ 0.001).

Increased insulin sensitivity and associations between sCD36 and
plasma glucose were observed after bariatric surgery
Following bariatric surgery, improvements in insulin sensitivity,
estimated by a markedly 41% increase in HOMA-%S (42.7% vs
60.4%, P¼ 0.007) were observed. HOMA-%S correlated
negatively with the anthropometric measurements fat mass
(r¼ � 0.362, P¼ 0.024), truncal fat (r¼ � 0.366, P¼ 0.022), and
BMI (r¼ � 0.390, P¼ 0.014). Furthermore, negative correlations
between HOMA-%S and the circulating lipids triglycerides
(r¼ � 0.433, P¼ 0.005) and total cholesterol (r¼ � 0.313,
P¼ 0.049) were observed. No significant association was found
between sCD36 and insulin sensitivity, whereas sCD36 and fasting
plasma glucose were significantly correlated (r¼ 0.382, P¼ 0.015).

Decreased LF% along with weight loss and improved insulin
sensitivity after bariatric surgery
At the baseline visit, the average LF% was 7.9% and 3 months after
the surgery, it was significantly decreased by 57% (P¼ 0.001,
Figure 2). Participants with the metabolic syndrome had at
baseline a higher LF% of 55%, compared with participants without
the metabolic syndrome (P¼ 0.003, Figure 2). Correlations were
observed between LF% and truncal fat mass (r¼ 0.383, P¼ 0.016),
BMI (r¼ 0.388, P¼ 0.015), weight (r¼ 0.359, P¼ 0.015), triglycer-
ides (r¼ 0.313, P¼ 0.049), hsCRP (r¼ 0.315, 0.048) and fasting

plasma glucose (r¼ 0.569, Po0.001), respectively; whereas LF%
tended to be associated with fat mass (r¼ 0.290, P¼ 0.074) and
sCD36 (r¼ 0.284, P¼ 0.075).

Inflammatory markers and bariatric surgery
A 53% reduction in hsCRP was observed postoperatively
(P¼ 0.005), whereas no significant changes were found among
the levels of YKL-40 (Figure 3). Significant positive correlations
were observed between hsCRP and weight (r¼ 0.489, P¼ 0.002),
BMI (r¼ 0.463, P¼ 0.003), fat mass (r¼ 0.462, P¼ 0.003), truncal
fat mass (r¼ 0.490, P¼ 0.002) and leukocytes (r¼ 0.520,
P¼ 0.001), as well as the circulating lipids total cholesterol
(r¼ 0.350, P¼ 0.027) and triglycerides (r¼ 0.447, P¼ 0.004).
hsCRP and HOMA-%S were inversely correlated (r¼ � 0.452,
P¼ 0.003). Associations between plasma YKL-40 and
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Figure 1. Circulating plasma levels of sCD36. Levels of sCD36 are
expressed as means and error bars represent±s.d. Gray bars
show the concentrations of sCD36 at the preoperative baseline visit
(Pre, n¼ 20) and 3 months postoperatively (Post, n¼ 20), *P¼ 0.001.
White bars & show baseline levels of sCD36 in relation to the
presence (þMS, n¼ 13) or absence (� MS, n¼ 7) of the metabolic
syndrome. þMS, presence of the metabolic syndrome; �MS,
absence of the metabolic syndrome.
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Figure 2. Hepatic fat accumulation estimated by LF%. LF% are
expressed as means and error bars represent±s.d. Gray bars
show LF% at the preoperative baseline visit (Pre, n¼ 20) and 3
months postoperatively (Post, n¼ 20), *P¼ 0.001. White bars &
show baseline LF% in relation to the presence (þMS, n¼ 13) or
absence (�MS, n¼ 7) of the metabolic syndrome, **P¼ 0.003.
þMS, presence of the metabolic syndrome; �MS, absence of the
metabolic syndrome.
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Figure 3. The inflammatory biomarkers hsCRP and YKL-40. Levels of
hsCRP and YKL-40 are expressed as means and error bars
represent±s.d. Gray bars show levels of hsCRP and YKL-40 at
the preoperative baseline visit (Pre, n¼ 20) and 3 months post-
operatively (Post, n¼ 20). White bars & show baseline levels of
hsCRP and YKL-40 in relation to the presence (þMS, n¼ 13) or
absence (�MS, n¼ 7) of the metabolic syndrome. (a) *P¼ 0.005.
(b) *P¼ 0.014. þMS, presence of the metabolic syndrome; �MS,
absence of the metabolic syndrome.
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anthropometric data, insulin sensitivity and biochemical para-
meters were not found. Participants with the metabolic syndrome
at baseline had significantly higher levels of YKL-40 (P¼ 0.014),
wheras no differences were observed in hsCRP levels (Figure 3).
No significant correlations were demonstrated between sCD36
and the inflammatory markers hsCRP and YKL-40.

Multiple regression analyses
The dependency of sCD36 as a function of truncal fat mass,
triglycerides, leukocyte count and LF% was tested by multiple
regression analysis, and the only independent predictor of sCD36
was triglycerides (b¼ 0.500, P¼ 0.001).

DISCUSSION
In this study, we aimed to investigate the role of sCD36 in relation
to obesity and its metabolic complications. To our knowledge, no
previous studies have examined the effect of weight loss on the
circulating levels of sCD36 in adults. Previous studies have
documented that sCD36 was significantly elevated among obese
and diabetic subjects, and that BMI has been shown to increase
across sCD36 quartiles in a large healthy population.22,24 The
present study population consisted of morbidly obese adults
undergoing bariatric surgery. Along with significant weight loss
and improvements in metabolic disturbances, fat distribution,
and hepatic fat accumulation, we observed a marked reduction in
circulating sCD36. The levels of sCD36 were found to
be associated with an unhealthy fat distribution as well as
circulating levels of triglycerides. The findings are in line with the
proposed important role of CD36 in the development of metabolic
complications to obesity15,23 and further support circulating
sCD36 as a potential indicator of these complications.23,24,35

The pathogenesis underlying the adverse metabolic impacts of
obesity is not fully understood. Low-grade inflammation and
accumulation of ectopic fat in the arterial wall, as well as in the
liver and muscles, which may lead to insulin resistance, seem to
have an important role.8 Both an oversupply of FFA in the
circulation and obesity-related low-grade inflammation are
identified as important factors in the development of insulin
resistance.13,14,36,37 CD36 is important for increased fat uptake in
the gut and accumulation in the liver.20,38 The FFA in the
circulation are derived from either lipoprotein particles containing
large amounts of triglycerides (chylomicrons from the gut and
very-low density lipoprotein particles from the liver) or from local
lipolysis in adipose tissues.13 Compared with subcutaneous fat,
visceral adipose tissue is highly metabolically active as well as
more insulin resistant and thus less sensitive to the insulin
mediated inhibition of lipolysis, resulting in high portal fatty acid
fluxes to the liver.3,37 The amount of truncal fat, measured by dual-
energy X-ray absorptiometry-scan can, to some extent, be
assumed to reflect the presence of the primary intraabdominally
localized visceral adipose tissue, knowing that obese subjects
present substantial amounts of subcutaneous fat in the region as
well. The associations between triglycerides and fat mass, truncal
fat mass as well as hepatic fat accumulation in this extremely
obese study population, support the notion that overload of
visceral fat cells is associated with increased levels of circulating
triglycerides and ectopic fat accumulation,34 and this adverse
effect of obesity could be affected in a positive direction by
surgically induced weight loss. CD36 may be involved in this
ectopic fat accumulation, as we, along with decreased sCD36 after
weight loss and improvements in fat distribution, found
correlations between sCD36 and circulating triglycerides, like
previously shown.22,24,26 Furthermore, correlations between sCD36
and body fat, and notably sCD36 and the amount of truncal fat
supported results from a study on patients with polycystic ovary
syndrome,27 as well as the proposed role of sCD36 as a biomarker

of the metabolic syndrome and its associated risks. Overall, high
levels of sCD36 can be considered as reflecting a protective role of
CD36 against elevated levels of circulating triglycerides, especially
seen in relation to extensive amounts of lipolytic and
metabolically active visceral adipose tissue, or considered as a
result of a secondary and obesity-related metabolic process.

Another pivotal point is the low-grade inflammation related to
the metabolic complications of obesity, and the pathogenesis of
insulin resistance. The transcription of CD36 is linked to impaired
insulin signaling in macrophages.39 In contrast to previous
results,22,24,26,27 this study demonstrated no associations
between circulating sCD36 and insulin sensitivity, even though a
41% improvement in HOMA-%S was observed and that gastric
bypass is known to improve insulin sensitivity within a few days
after surgery.30–32 This lack of consistency may be due to the
methods used to predict the sensitivity for insulin on the cellular
level. Previous correlations between sCD36 and insulin sensitivity
were based on the dynamic hyperinsulinemic euglycemic clamp
technique, which is regarded as the golden standard of measuring
insulin sensitivity, opposite the HOMA in the present study, an
algorithm based on basal steady-state glucose and insulin or
connecting peptide concentrations. Due to the method
differences, measurements from two methods may not be
directly comparable.40

The estimated hepatic fat accumulation decreased markedly
after gastric bypass surgery and the subsequent weight loss. This
is in line with,41 another study concerning bariatric surgery
reporting a reduction in hepatic steatosis of around 50%
measured by magnetic resonance imaging. In addition to
correlations with anthropometric measurements, especially the
amount of truncal fat, we found that LF% correlated to fasting
plasma glucose, indicating that the ectopic hepatic fat
accumulation is related to the presence of an unbalanced
glucose homeostasis. The obesity-related overload of FFA in the
circulation, particularly the increased portal flow, may exceed the
metabolic capacity of the cells, resulting in accumulation of FFA
and intermediates of the FFA-metabolism and in a negative
impact on the insulin-signaling-pathway.37 Especially in the
hepatocytes, the elevated FFA causes an increased synthesis of
triglycerides, accumulation of toxic lipid products, a development
of inflammatory conditions and hepatic insulin resistance,
respectively. Therefore, this may result in an impaired insulin
mediated inhibition of hepatic gluconeogenesis, lipogenesis and
triglyceride secretion through very-low density lipoprotein
production.42,43 Diet-induced obesity and fatty acids exposure in
rodents have been attributed to an increased cellular CD36
expression, and found to be associated with an increased
secretion and storage of triglycerides.18,19 In humans, the
expression of CD36 is found to be significantly associated with
both insulin resistance and the degree of steatosis.44 A direct
association between sCD36 and LF% has previously been
demonstrated in a large study of healthy individuals,24 and,
additionally, sCD36 has been shown to be the most important
predictor of liver steatosis determined by microscopy, in a study of
patients with hepatitis C.25 The present findings of elevated sCD36
along with LF% in individuals with the metabolic syndrome
support the importance of CD36 in the accumulation of hepatic
fat, and the supposed potential of circulating sCD36 as a surrogate
marker of complications to the metabolic syndrome, such as
steatosis, diabetes35 and the risk of atherosclerosis.24,45

In addition to the function as a fatty acid translocase, the
expression of CD36 has previously been associated with adipose
tissue inflammation, through the promotion of a proinflammatory
cytokine expression, in a study regarding diet-induced obesity.21

Furthermore, an association between sCD36 and the inflammatory
cytokine interleukin-6 has previously been reported.26 We
measured the inflammatory markers hsCRP and YKL-40. hsCRP
has previously been shown to be related to abdominal obesity
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and hsCRP as well as YKL-40 have been related to T2DM and
insulin resistance.28,46 No associations were found between sCD36
and hsCRP or YKL-40 in the present study. However, hsCRP levels
decreased significantly following gastric bypass and weight loss,
and in consistence with a previous study,46 strong correlations
between hsCRP and anthropometric measurements, circulating
lipids and insulin sensitivity were found. Conversely, the
inflammatory biomarker YKL-40 was unaffected by weight loss, a
finding which is in conflict with a previous, and almost similar
study,47 where a 31% decrease in YKL-40 was observed after
bariatric surgery and a mean follow-up of 17.4 months. However,
only few details about the apparently in-house method used for
YKL-40 measurement are given in this study, and thus lack of
consistency among YKL-40 assays may partly account for the
discrepant results. In addition, the follow-up period of 17.4 months
may impact YKL-40 different from 3 months follow-up as in the
present set-up. In addition, another study found that only diet-
induced, but not surgically induced weight loss, resulted in a
decrease of circulating YKL-40 levels,48 which supports our results
in the present study. YKL-40 in relation to obesity has not
previously been investigated in any great detail, and further
studies are required to explain the role of this inflammatory
biomarker in relation to obesity and weight loss. If the
inflammatory markers as well as sCD36 were evaluated in
participants with or without the metabolic syndrome, levels of
YKL-40 were found to be significantly higher in the presence of
the metabolic syndrome. Furthermore, the levels of sCD36 tended
to be higher in participants with the metabolic syndrome, whereas
no differences of hsCRP levels were found. This might indicate that
hsCRP levels reflect a state of systemic subclinical inflammation,
which is not necessarily linked to the metabolic syndrome, as
opposed to the levels of sCD36 and YKL-40, which, to a larger
extent, reflect the metabolic disturbances at different levels and
the resulting metabolic morbidity.

A weakness of this study is the small sample size, which
increases the risk of type 2 error and may explain the borderline
significant results and the lack of consistency to previous studies.
Due to the weight loss before surgery, the participants were
already in a catabolic state at the time of inclusion, which may
lead to an underestimation of the metabolic effects related to
weight loss. LF% is based on an algorithm predicting liver fat
content as measured by magnetic resonance imaging. However,
this algorithm only predicts half of the variability in magnetic
resonance imaging measured liver fat,33 and more reliable results
would have been achieved by magnetic resonance imaging or by
direct histological measurement of liver cell fat content in liver
biopsies.

For the first time, we reported decreasing levels of sCD36
following bariatric surgery, along with weight-loss-related meta-
bolic improvements, including improvements in fat distribution
and ectopic hepatic fat accumulation. Despite associations
between sCD36 and an unhealthy fat distribution, triglycerides
were the only independent predictor of sCD36, indicating a
relation to the obesity-related dyslipidemia. The results of our
study support the proposed role of the membrane receptor CD36
in the development of some of the complications to diet-induced
obesity, and with circulating sCD36 as a measurable biochemical
marker of these complications. Our results must be verified in
larger study populations, and experimental studies are needed to
further determine the mechanisms and roles of sCD36 in the
development of obesity-related complications.
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