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Abstract

The rapidly growing availability of electronic biomedical data has increased the need for

innovative data mining methods. Clustering in particular has been an active area of research in

many different application areas, with existing clustering algorithms mostly focusing on one

modality or representation of the data. Complementary ensemble clustering (CEC) is a recently

introduced framework in which Kmeans is applied to a weighted, linear combination of the

coassociation matrices obtained from separate ensemble clustering of different data modalities.

The strength of CEC is its extraction of information from multiple aspects of the data when

forming the final clusters. This study assesses the utility of CEC in biomedical data, which often

have multiple data modalities, e.g., text and images, by applying CEC to two distinct biomedical

datasets (PubMed images and radiology reports) that each have two modalities. Referent to five

different clustering approaches based on the Kmeans algorithm, CEC exhibited equal or better

performance in the metrics of micro-averaged precision and Normalized Mutual Information

across both datasets. The reference methods included clustering of single modalities as well as

ensemble clustering of separate and merged data modalities. Our experimental results suggest that

CEC is equivalent or more efficient than comparable Kmeans based clustering methods using

either single or merged data modalities.
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1. Introduction

Clustering is the arrangement of objects into groups (i.e., the clusters) wherein the objects in

the same cluster are more similar (in one or more characteristics) than those in other

clusters, and represents an important branch of unsupervised learning. Clustering [1–9] has

been an active area of research in data mining and machine learning due to the rapidly

growing data in different domains such as biology and clinical medicine. In biology, for

instance, there is an avalanche of data from novel high throughput and imaging

technologies. When applied to cancer images, clustering has been effective in identifying

malignant and normal breast images [10]. Biomedical publications often present the results

of biological experiments in figures and graphs that feature detailed, explanatory footnotes

and captions. This annotation comprises a simple, textual representation of the images. In

the clinical literature, a new semantic representation has evolved as a result of mapping the

words in physicians’ clinical notes to the corresponding semantic descriptors in the Unified

Medical Language System (UMLS). Each representation of the data, e.g. images, captions

and semantic descriptors, is a unique data modality generated by a particular process

wherein the objects have different features, structure and dimensionality. Although each data

modality can be used to separately define clusters, differential encoding of the features of

each modality generates assignment variability which can be interpreted as noise in the

clustering process. As a result, the partitions obtained from clustering around one data

modality will not necessarily be the same as those obtained from clustering around a

different modality. In this discussion we explore alternative methods of building clusters

around the complementary data modalities of a particular dataset to obtain more cohesive

clusters. Unlike algorithms which cluster on a single data modality, complementary

ensemble clustering (CEC) [6] creates clusters by extracting information from completely

different domains of information that describe the same data.

There have been recent efforts to perform multiple modal clustering. Chen et al. [11]

demonstrated a coclustering method using textual data that employs non-negative matrix

factorization (NMF) that draws from two data modalities: textual documents and their

corresponding categories. Their method, however, is semisupervised and requires user input

to allow the algorithm to “learn” the distance metric. Comar et al. [12] proposed the joint

clustering of multiple social networks to identify cohesive communities characterized by

reduced levels of noise. Ensemble clustering on one modality [4,5,9,13,14,17] has been

shown to be effective for improving the robustness and stability of clustering results. It

aggregates different clusters of a single data modality in a coassociation matrix that

measures the number of times each pair of data points is placed into the same cluster. In

contrast, complementary ensemble clustering (CEC) draws information from ensemble

clusters pertaining to complementary data modalities, thereby facilitating the exploitation of

different aspects of the data while simultaneously reducing the distortion characteristic of

clustering on a single modality. By integrating data from the two separate, complementary

domains, CEC constructs a coassociation matrix that more clearly identifies the underlying

clusters in a given dataset. CEC can be useful for any data described with multiple sources

of information, i.e., the complementary modalities. We use CEC to enhance the performance

of the Yale Image Finder YIF [15], an image retrieval tool developed by our lab members.
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YIF supports keyword queries based on images’ captions as well as on their visual features.

We are investigating different means to enhance the usability of our system, such as

organizing the results by image type. Rodriguez-Esteban and Iossivof [16] have proposed

the use of supervised machine learning to classify images by their type (gels, diagrams etc.),

and have presented a system which lets users make explicit choices when submitting a

search query. We aim to achieve a similar goal in YIF by replacing its search criteria with

CEC, which will group the images based on their type. We demonstrate the utility of CEC

by applying it to two clinical datasets that each has information from two modalities. The

first dataset is a subset of the YIF database that contains images and their corresponding text

captions. The second features textual notes reported by a clinical radiologist and their

corresponding semantic descriptors.

When CEC was introduced it was demonstrated using two benchmark datasets whose data

modalities were both text based. The major contribution of this paper is its application of

CEC to biomedical datasets, which often possess multiple data dimensions that are not

restricted to text. The chief advantage of CEC is enhanced clustering via the exploitation of

information from complementary data modalities.

The remainder of this paper is organized as follows. Section 2 describes related work on

ensemble clustering. A brief, conceptual derivation of CEC is presented in Section 3.

Section 5 presents experimental results and Section 6 provides summary remarks.

2. Background

Data clustering is a very difficult inverse problem and is ill posed in the sense that numerous

clustering algorithms yield different partitions. Ensemble clustering [4–6,8,9,13,14]

aggregates a number of clustering solutions obtained for a particular dataset in order to

produce an overall clustering scheme with less distortion. It has proven particularly effective

for improving the robustness and stability of clustering results. Ensemble clustering methods

use one or more clustering algorithms and variations of the associated clustering parameters

to yield a single, coassociation matrix that incorporates the incidence matrices of the distinct

clustering solutions. In Ref. [4] Fred derived a consistent data partition by examining the

coassociation matrix of clustering partitions based on majority voting. The clusters are

populated with objects whose coassociation matrix values exceed a fixed threshold. Instead

of comparing coassociation values with a fixed threshold, Fred and Jain [5], form partitions

by applying single linkage clustering to the coassociation matrix. In related work Greene et

al. [13] have shown that both the generation of the ensemble clusters and the specific base

clustering algorithm have major effects on the efficiency of ensemble clustering. Several

studies have investigated this issue. For instance Kuncheva and Hadjitodorov [14] proposed

randomly choosing the number of anticipated clusters and overproducing them for every

ensemble member. Their method increased the spread of the diversity within the ensemble,

subsequently leading to clustering with less noise. Instead of using the coassociation matrix,

Topchy et al. [8] achieved ensemble clustering from a solution of the maximum likelihood

problem for a finite mixture model of the ensemble of partitions. The space of cluster labels

is assumed to follow a mixture of multivariate multinomial distributions.
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3. Methods

This section describes complementary ensemble clustering (CEC), a recently introduced

method [6] for extracting information from different data modalities through an enhanced

form of ensemble clustering. Ensemble clustering extracts information from different

clusterings of a given data modality based on one or many clustering algorithms and their

corresponding parameters. Our implementation of single modality ensemble clustering

employs the Kmeans algorithm, a popular clustering method that partitions a set of data

points into k clusters wherein each object is assigned to the cluster with the nearest

multivariate mean. In each iteration of the ensemble the Kmeans algorithm produces a

clustering solution that is encoded into an incidence matrix based on a random sample of the

features that describe a particular modality [14]. The incidence matrices of each iteration are

subsequently aggregated into a coassociation matrix. Once all the iterations are completed,

we again apply Kmeans to the values residing in the coassociation matrix to derive

component clusters of that particular data modality. We provide an overview of the technical

details of single modality ensemble clustering in the next section.

3.1. Single modality ensemble clustering

A vector space model is used to represent the data where each data point is represented by a

vector. The collection of these vectors comprises the data matrix. Let Ai be a data matrix

that corresponds to a single data modality i. Different types of information can be encoded

in this matrix relevant to the nature of the corresponding data modality. For example, the

frequencies of the words are encountered for each text fragment in the text data while

correlation, inertia and density are computed to summarize the visual representation of the

image data. A single modality ensemble Ei is generated by repeatedly applying Kmeans to

 (includes a subset of the features of Ai) and aggregating the resulting incidence matrices

into the coassociation matrix Si. For each clustering solution, i.e., each iteration of the

ensemble, the number of features in  is randomly set between (m/2) and (m − 1), where m

is the total number of features that are randomly sampled. The coassociation matrix shows

the number of times a pair of data points is assigned to the same cluster in the ensemble. It

effectively encodes the likelihood that two data points belong to the same cluster. Formally,

it is iteratively computed as follows:

(1)

where the matrix product  is a binary 0/1 matrix that indicates whether a pair of

objects belongs to the same cluster during the tth iteration of the ensemble. The matrix

product , is also known as the incidence matrix in the literature. The incidence

matrices are not stored in our implementation because their contents are contained in the

coassociation matrix. A second application of Kmeans to the final coassociation matrix Si

yields the final clusters of the ensemble cluster Ei. This result is necessary to evaluate the

performance of CEC. Fig. 1 illustrates the single modality ensemble clustering approach.
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3.2. Complementary ensemble clustering (CEC)

CEC is an extension of ensemble clustering [6] that combines the coassociation matrices of

ensemble clusters from different modalities into one aggregate coassociation matrix that is

subsequently used for obtaining the consensus clusterings. Specifically, the joint

coassociation matrix is computed by adding the coassociation matrices of the different data

modalities. In effect, each modality of the data contributes a weighted proportion of the

overall clustering coassociation matrix.

(2)

where α is a parameter that governs the weight of each modality and n is the total number of

data modalities. Applying Kmeans to the combined coassociation matrix Scombined yields the

final clusters. Fig. 2 describes CEC for two modalities.

The CEC framework is an incremental generalization of our previous work [6], however the

previous algorithm generates a weighted co-association matrix for a single data modality.

Specifically, each incidence matrix is weighted based on the quality of its respective

Kmeans solution before being added to the coassociation matrix. In our algorithm below, we

skipped the calculation of the weighting factor since it increases the computational

complexity of the algorithm and requires more resources, especially for applications with

big datasets such as those typically found in the medical domain. The pseudo code of our

algorithm is summarized below and details are explained in the following sections.

Algorithm 1

Inputs: n: number of data modalities, Ai: one data

  modality, i={1, 2, …,n}, k: number of clusters, Max.:

  maximum number of iterations in an ensemble

Outputs: Clusters C.

1. for each data modality Ai

for j = 1 to Max do

    a. Cj ← KmeansCluster(Ai, k)

    b. Si = Si ∪ {Cj}

end

2. Scombined ← Combine(S1, S2, …,Sn)

3. C ← KmeansCluster(Scombined, k)

3.3. Ensemble clustering of merged modalities

In order to compare CEC with a similar method that draws information from multiple data

modalities, as a comparative approach we computed the ensemble clusters of the merged

modalities. In this method, the data matrices A1 and A2 are first combined, whereupon

ensemble clustering is applied to the combined matrix. This contrasts with CEC, wherein the

coassociation matrices are first generated from each data modality separately and

subsequently combined. The performance of the two methods depends on their respective
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emphases on forming a complementary ensemble cluster from various modalities versus

combining different features of the data modalities prior to the formation of clusters.

3.4. Datasets

We evaluated CEC on two biomedical datasets and demonstrated its effectiveness by

comparing its output clusters with the two sets of ensemble clusters computed for each

individual data modality. Furthermore, we compare CEC with classic Kmeans of the full

data sample and with the ensemble clustering of the two modalities merged.

3.4.1. Pubmed images dataset—This is a collection of articles from the digital archives

of Pub-Med Central (PMC). A set of 3000 images were extracted from these articles. Some

of these images, however, did not have captions. Images with no captions were dropped

from the study and 2607 were retained. The sample includes images with multiple panels

(subgraphs) as well as single panels. The images in the dataset were classified into five

different categories by annotators with domain expertise. Discrepancies among the

annotators were resolved by assigning the image to the category receiving the majority

votes. The following image categories were used in the study: experimental, graph, diagram,

clinical and others. Experimental images were defined as those depicting gel electrophoresis,

fluorescence microscopy, or tissue experimental results. Graph images include bar, line,

curve, or scatter graphs, while diagrams are comprised of pathway representations,

flowcharts and protein structures. Clinical images correspond to various medical imaging

scans (e.g. Magnetic Resonance Imaging MRI, X-ray, Computed Axial Tomography CAT).

The final category “others” contains images that do not belong to any of the above

categories such as screen snapshots and photographs. Table 1 shows the distribution of

images across the five categories. We generated two modalities for the images. In one

modality the images are represented using the pictorial and textural features computed using

the Haralick method [18]. The other modality is a Bag of Words (BOWs) [19] representation

generated from the captions of the images.

3.4.2. Radiology reports dataset—This second dataset consists of radiology reports

collected from clinical records of patients for research purposes. The radiology reports were

annotated by domain experts and classified into four categories as shown in Table 2:

abdominal MRI, abdominal CAT, abdominal ultrasound and non abdominal radiology

reports.

These reports are represented using two data modalities: Textual features BOW and Bag of

Concepts (BOCs). In the BOW modality, the reports are represented using the original

words that appear in the clinical narratives and are weighted by frequency.

In the BOC modality, the vectors are indexed by semantic concepts derived from cTAKES

[20]; a natural language processing tool that maps text to concepts from the UMLS

ontology.

Fodeh et al. Page 6

J Biomed Inform. Author manuscript; available in PMC 2014 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



3.5. Evaluation metrics

The clustering results are evaluated by comparing to gold standard annotations of images

and radiology reports. A cluster is annotated by the class label of its majority samples. We

use two measures to evaluate the quality of the clusters: micro-averaged precision and

Normalized Mutual Information (NMI). Micro-averaged precision is an average over all data

points whose default gives higher weight to those classes with many data points, and is

computed as follows:

(3)

where TP is true positive, FP is false positive, and k is the number of clusters. The second

metric is Normalized Mutual Information (NMI) which is defined as follows:

(4)

where c is the number of classes, X corresponds to the cluster assignments and Y to the class

labels. I(X;Y) is the mutual information shared by the classes and the clusters. NMI measures

the amount of information shared between X and Y, i.e. the amount of information by which

our knowledge about the classes increases upon definition of the clusters.

4. Results

We tested our method using datasets with two modalities each. Six clustering solutions were

computed for each dataset: namely, Kmeans clustering of each modality, separate ensemble

clustering of each modality, ensemble clustering of the merged modalities, and finally

complementary ensemble clustering (CEC).

4.1. Pubmed images data

Two modalities of the images were utilized for clustering. In the first modality the images

are represented using the pictorial and textural features of the Haralick method [18], in

which the contents of an image were summarized over the following 13 features: Energy,

Correlation, Inertia, Entropy, Inverse Difference Moment, Sum Average, Sum Variance,

Sum Entropy, Difference Average, Difference Variance, Difference Entropy, and

Information measures of correlation 1 and correlation 2. For computational details please

refer to [18,21]. The Haralick features of all images are stored in the Haralick matrix A1.

The second modality was the use of words and phrases within the captions corresponding to

the images as summarized by the Bag of Words (BOW) approach [19].

Based on our analysis, we observed that not all the Haralick features are equally suited for

representing the different image types, i.e. one or more of the Haralick features may be

sufficient to summarize the contents of a specific image type. Moreover different

combinations of the Haralick features led to different insights about the same image.

Ensemble clustering, which is based on the aggregation of different clustering solutions by

taking random samples of the features in each solution, adjusts for this sampling related

issue. Ensemble clustering was applied to the Haralick matrix A1 that represents the images
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to produce the clustering solutions contained within EnsembleHaralick E1. Extracted from

the corresponding captions of the images, the BOW modality is stored in a matrix called the

images captions matrix A2, in which the frequencies of the words indicate their weights.

Note that the stop words are removed from the captions and the Porter stemmer [22] and

TFIDF [23] are applied for word normalization. The captions Ensemble Cluster, E2, is then

generated by applying ensemble clustering to the captions matrix A2. Both ensemble clusters

E1 and E2 are each composed of 10 iterated solutions. We have noticed that increasing the

number of iterations beyond 10 does not tend to improve the results of the ensemble cluster

substantially. The second modality was the use of words and phrases within the captions

corresponding to the images as summarized in the Bag of Words (BOWs) approach [19].

Table 3 gives a comparison of the performance of several clustering methods: Kmeans

clusters of each data modality, the cluster ensembles of each data modality, the ensemble

clustering of merged modalities, i.e., EnsembleMerged, and CEC. Recall that in the

EnsembleMerged method the data matrices A1 and A2 are first combined and ensemble

clustering is subsequently applied to the combined matrix. This method differs from CEC,

which generates separate ensemble clusters of each data modality prior to forming a linear

combination of their corresponding coassociation matrices. We observed a marked

improvement in NMI and micro-averaged precision with CEC, which achieved values of

NMI and micro-averaged precision that were 41% and 32% better, respectively, referent to

EnsembleMerged. Unlike EnsembleMerged, which had worse performance than

EnsembleCaptions, CEC outperformed the single modality ensemble clusters

(EnsembleCaptions and EnsembleHaralick) in NMI while tying EnsembleCaptions for best

micro-averaged precision. While forming the complementary ensemble clusters, the

coassociation matrix corresponding to EnsembleCaptions was assigned a higher weight than

the EnsembleHaralick, i.e., α = 0.8. For want of a gold standard of annotation, this value of

α was learned empirically. However, if the annotations are not available, different heuristics

can be applied to optimize α. One possibility is to weight on the respective quality of the

ensemble clusters yielded by discrete data modalities, with the ensemble cluster with lowest

distortion receiving highest weight (greatest α). Another possibility is to combine the

ensemble clusters with different values of α and choose the value of α that yields the better

consensus clustering of the combined ensemble.

Interestingly, single modality ensemble clustering does not always perform better than

simple Kmeans in the performance metrics NMI and micro-averaged precision. As seen with

the images data, the EnsembleHaralick outperforms KmeansHaralick in terms of NMI but

not with respect to micro-averaged precision. In fact EnsembleHaralick yields a solution that

is only 0.5% better than KmeansHaralick in terms of micro-averaged precision. We also

explored the utility of deploying CEC in our image retrieval tool, the Yale Image Finder

(YIF), to make it a cluster based rather than instance based information retrieval tool. This

was done so that images are retrieved from the cluster as specified by their respective

queries. This modification will enable the user to request images based on image type, a

very useful query option. As a demonstration of how the proposed clustering method

performs in terms of selecting similar images the five most similar images in what we refer

to as the “experimental” clusters yielded by the different clustering methods were compared.

The most similar images in a cluster are those with the lowest distance scores among them.
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We have selected to examine the images in the cluster of type “experimental” because the

graphical characteristics of these images lend themselves to a cursory visual inspection. This

is because the “experimental” cluster contains the largest number of images yielded from

experimentation and includes those from gel electrophoresis, fluorescence microscopy, and

from samples of tissue. Because CEC consistently produced the best clusters in terms of

NMI and micro-averaged precision, we limit our comparison groups to only those resulting

from the cluster approaches that yielded the second best results in terms of NMI and micro-

averaged precision.

Specifically, we compared CEC with the EnsembleCaptions method which produced the

second best micro-averaged precision, and the KmeansCaptions method that yielded the

second best NMI as shown in Figs. 3–5.

The five most similar images In Fig. 3 are all experimental images, mostly gel and

fluorescence images. This result emphasizes the ability of the CEC method to group the gel

images in one cluster using the images’ visual features as well as their corresponding

captions. Furthermore, the similarity among the displayed images in Fig. 3 reflects the

underlying bases of the mathematical measures. The images shown in Fig. 4 corresponding

to the “experimental” cluster of the EnsembleCaptions method are not consistent as

suggested by the high micro-averaged precision score of this clustering approach. Although

this clustering method yielded the second highest average micro-averaged precision, the

high average value represents the entire group of clusters and is therefore likely attributable

to one of the non experimental clusters yielded by this approach. In fact, an examination of

the precision of the individual clusters reveals that one of the non experimental clusters was

characterized by higher precision than this cluster. For the kmeansCaptions method, whose

result is shown in Fig. 5, 80% of the five most similar images are fluorescence images which

are “experimental” type of images. Because this method exploits the captions when forming

clusters, a review of the captions corresponding to these images reveals a small number of

words that are frequently repeated, such as: fluorescence, transfect, cell, and treated. The

highly frequent appearance of this group of words mathematically increased their respective

similarities and eventually caused them to be grouped in the same cluster. Even though the

last image in Fig. 5 is not fluorescent, it was assigned to this cluster because it shared the

words (cell, treat) with the captions from the other images that happened to be fluorescent.

Evaluating this cluster, which was produced by the kmeansCaptions method, one might say

that these images are a good result from a query requesting experimental images. To

investigate the robustness of this assertion, we expanded this post hoc examination to

include the ten most similar images. We noticed that among the ten most similar images

produced by the kmeansCaptions method, only 40% of the images assigned to this cluster

were truly of the “experimental” type. On the other hand, an examination of the top ten

images in the “experimental” cluster from CEC showed that 90% of the corresponding

images were in fact experimental images. Among the clusters annotated as “experimental”

yielded by the different methods, CEC produced the most graphically cohesive set of

experimental images.
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4.2. Radiology reports data

The two modalities used for this dataset are the BOW and BOC. In the BOW modality, the

reports are represented using the original words that appear in the clinical narratives and

weighted by frequency. This data is stored in the notes and words matrix A1, to which the

cluster ensemble algorithm is applied to generate the clustering solution labeled

EnsembleWords E1. In the BOC modality the clinical notes are represented by their

semantic concepts and stored in the notes and concepts matrix A2.

The EnsembleConcepts E2 is then computed from A2. Once both ensembles (E1, E2) are

computed, their corresponding coassociation matrices are combined into one coassociation

matrix to which Kmeans is applied to produce the final clusters. Because it consistently gave

more reliable clusters than EnsembleWords, we set the α value of EnsembleConcepts to 0.8,

i.e., giving it higher weight. We plan to research the automation of learning αi such that the

each component of the cluster ensemble is weighted by its commensurate contribution to the

final clustering solution.

The results from applying the different clustering methods to the Radiology reports data are

shown in Table 4. Similar to our observations in the Pubmed data, CEC outperformed the

EnsembleMerged method in terms of NMI and micro-averaged precision. These results

emphasize the advantage of combining the ensemble clusters of individual modalities rather

than their corresponding feature sets. Furthermore, the performance of the CEC clusters was

notably better for both measures than those yielded by the KmeansWords, EnsembleWords

and KmeansConcepts solutions. For example, in terms of NMI, relative improvements of

133%, 160%, and 18% were observed, respectively. In contrast, the proposed method was

tied for best NMI performance with EnsembleConcepts. Conversely, while ensemble

clustering produced better results than Kmeans in the concepts modality, it did not maintain

that same advantage in the modality based on words in terms of NMI. This could be related

to the feature set size, i.e., the number of concepts is greater than the number of words,

which also introduces greater variability in its respective cluster ensemble solution.

Furthermore, as opposed to Micro-Averaged Precision, NMI as a measure was not capable

of capturing the difference in both solutions.

5. Discussion

Whereas the complementary ensemble clustering (CEC) framework was introduced in a

previous publication, the technique was demonstrated on two standard benchmarking

datasets that consist of text only, i.e., the publically available Reuters and Newsgroups

datasets. Those two datasets are comprised of news articles that are known to be structured

and well-written in formal English which makes the data less noisy and less challenging for

the clustering algorithm. The examples in this article demonstrate the special strengths of

CEC with regards to biomedical data. The first demonstration showed that by extracting

information from purely visual data (images) and the corresponding captions (text), CEC

was able to show as good or better performance than the reference methods. While the

reference method EnsembleCaptions did yield performance on precision that was

statistically no worse than CEC, the latter provided a statistically higher value of NMI.

Furthermore, the images selected by CEC for the experimental cluster were visually and
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thematically more cohesive than those selected by EnsembleCaptions. This visual

cohesiveness serves as a reflection of CEC’s superior performance in NMI and implies

improved effectiveness as the basis of clustering in the Yale Image Finder. In the second

dataset of radiologic data CEC did as good or better than the references methods by

clustering on information drawn from two modalities, i.e., words and concepts. Whereas the

NMI of EnsembleCaptions was no worse than that of CEC, the latter provided a statistically

higher value of precision. In summary, across these two realistically noisy biomedical

datasets, CEC provided statistically better performance in at least one clustering metric

while beating or tying the reference methods in a second metric. Several limitations of this

study merit comment. While the CEC falls short of demonstrating uniformly superior results

in all metrics, it does display an incrementally improved performance in a much more

demanding data environment. A second limitation shared by this study is the challenge of

finding the optimal value for a combination parameter or weighting factor. Often times, a

parameter is estimated empirically from the data within hand, which does not necessarily

mean that the estimated value suits other samples of the data. Because we had the gold

standard for each dataset, we utilized this information to decide which is the most

informative data modality based on two different measures. We pointed out two different

ways to estimate the combination parameters in case there is no existing information about

how to categorization the data. We systematically conducted our experiments while varying

the values of α and selected the value of 0.8, which gave more weight to the modality with

the better clusters. Such empirical selection means this value is good for this data but may

not be for any other.

6. Conclusion

In this paper, we demonstrate the utility of CEC by applying it to two biomedical datasets in

which it demonstrated equivalent or enhanced performance on two standard measures

relative to ensemble clustering based on single and merged modalities. Relative to ensemble

clustering from each discrete modality, CEC exhibited notable improvement in the Pubmed

images dataset and incremental improvement in the Radiology reports data. Compared to

ensemble clustering based on merged data modalities, in all cases CEC showed superior

performance in both datasets in at least one of two metrics. We conclude that CEC may be

advantageous for enhanced biomedical data clustering and potentially useful for data from

other domains. Because this algorithm could be computationally expensive for large data

sets, we are currently working on parallel computation of each member of the

complementary ensemble.
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Fig. 1.
Single data modality ensemble clustering.
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Fig. 2.
Complementary ensemble clustering of two modalities.
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Fig. 3.
Top 5 images in the cluster labeled with type “Experimental” and their corresponding labels or gold reference produced by

Complementary ensemble clustering method (micro-Averaged Precision = 0.474 and NMI=.189).
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Fig. 4.
Top 5 images in the cluster labeled with type “Experimental” and their corresponding labels or gold reference produced by the

EnsembleCaptions clustering method clustering (micro-Averaged Precision = 0.465).
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Fig. 5.
Top 5 images in the cluster labeled with type “Experimental” and their corresponding labels or gold reference produced by the

kmeansCaptions clustering method clustering (NMI = 0.182).
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Table 1

Pubmed images dataset. Distribution of images across the dataset.

Image type Number of images

Experimental 564

Graph 1131

Diagram 645

Clinical 86

Others 181
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Table 2

Radiology reports dataset. Classes and their distributions.

Radiology report type Number of reports

Abdominal CAT 486

Abdominal MRI 35

Abdominal Ultrasound 248

Non Abdominal 500

MRI: Magnetic Resonance Imaging.
CAT: Computed Axial Tomography.
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Table 3

Results of the different clustering methods for the Pubmed images data.

Method descriptor Clustering algorithm Data modality
utilized

Micro-Averaged
Precision* (95%
confidence interval)

NMI* (95%
confidence
interval)

KmeansHaralick Kmeans Haralick 0.338 (0.332, 0.343) 0.136 (0.135, 0.138)

KmeansCaptions Kmeans Captions 0.433 (0.43, 0.44) 0.182 (0.177, 0.186)

EnsembleHaralick Ensemble Haralick 0.340 (0.335, 0.346) 0.154 (0.153, 0.155)

EnsembleCaptions Ensemble Captions 0.465 (0.460, 0.470) 0.179 (0.177, 0.182)

EnsembleMerged Ensemble of merged
modalities

Haralick and
captions merged

0.360 (0.351, 0.370) 0.134 (0.131, 0.137)

Complementary Ensemble Clustering Linear combination of
coassociation matrices from
ensemble clustering of each
modality separately

Haralick and
captions separately

0.474 (0.468, 0.480) 0.189 (0.186, 0.192)

NMI: Normalized Mutual Information.
Bold font indicates highest performing method(s).

*
Larger is better.
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Table 4

Results of the different clustering methods for Radiology reports data.

Method descriptor Clustering algorithm Data modality
utilized

Micro-Averaged
Precision* (95%
confidence interval)

NMI * (95%
confidence
interval)

KmeansWords Kmeans Words 0.510 (0.506, 0.514) 0.236 (0.234, 0.238)

KmeansConcepts Kmeans Concepts 0.560 (0.555, 0.565) 0.468 (0.447, 0.490)

EnsembleWords Ensemble Words 0.551 (0.534, 0.567) 0.211 (0.204, 0.218)

EnsembleConcepts Ensemble Concepts 0.591 (0.588, 0.594) 0.565 (0.551, 0.579)

EnsembleMerged Ensemble of merged
modalities

Words and
concepts merged

0.589 (0.584, 0.593) 0.487 (0.485, 0.489)

Complementary Ensemble Clustering Linear combination of
coassociation matrices from
ensemble clustering of each
modality separately

Words and
concepts separately

0.609 (0.599, 0.620) 0.550 (0.540, 0.560)

NMI: Normalized Mutual Information.
Bold font indicates highest performing method(s).

*
Larger is better.
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