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Abstract

DNA methylation is a well-recognized epigenetic mechanism that has been the subject of a

growing body of literature typically focused on the identification and study of profiles of DNA

methylation and their association with human diseases and exposures. In recent years, a number of

unsupervised clustering algorithms, both parametric and non-parametric, have been proposed for

clustering large-scale DNA methylation data. However, most of these approaches do not

incorporate known biological relationships of measured features, and in some cases, rely on

unrealistic assumptions regarding the nature of DNA methylation. Here, we propose a modified

version of a recursively partitioned mixture model (RPMM) that integrates information related to

the proximity of CpG loci within the genome to inform correlation structures from which

subsequent clustering analysis is based. Using simulations and four methylation data sets, we

demonstrate that integrating biologically informative correlation structures within RPMM resulted

in improved goodness-of-fit, clustering consistency, and the ability to detect biologically

meaningful clusters compared to methods which ignore such correlation. Integrating biologically-

informed correlation structures to enhance modeling techniques is motivated by the rapid increase
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in resolution of DNA methylation microarrays and the increasing understanding of the biology of

this epigenetic mechanism.
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Introduction

DNA methylation has emerged as one of the most widely studied epigenetic states due to its

role in regulating gene expression and gene expression potential. While DNA methylation is

a normal and essential process for human development, aberrant methylation patterns have

been linked to pathogenesis and progression of various human diseases, as well as a wide

variety of exposures (Joubert et al., 2012; Langevin et al., 2012; Zhai et al., 2012). Altered

methylation patterns in the context of human health have highlighted the possibility of using

DNA methylation for the purposes of diagnostics, in which profiles of DNA methylation are

used for risk assessment, early disease detection, and disease recurrence monitoring (Laird,

2003). Similar to analyses involving microarray-based gene expression data, unsupervised

clustering of DNA methylation data is often used to identify altered methylation profiles.

Although a number of clustering methods have been applied to DNA methylation data

(Houseman et al., 2008; Grigoriu et al., 2011; Mousa et al., 2012), many of the methods

used to date do not incorporate known biological relationships of measured features, and in

some cases, make unrealistic assumptions regarding the underlying biology of DNA

methylation data. The rapid emergence of epigenetics literature and the increasing interest in

the use of profiles of DNA methylation for diagnostic purposes, underscores the importance

of continued advances in analytical tools that incorporate known features of DNA

methylation.

Genome-wide DNA methylation is often studied using large-scale microarrays. The Illumina

GoldenGate and Infinium Human Methylation27 arrays (Illumina, San Diego, CA, USA)

simultaneously measure cytosine methylation at 1505 and 27,578 CpG sites, respectively,

providing a glimpse of DNA methylation in important regulatory regions. Illumina's most

recent methylation assay, the 450K Infinium Methylation BeadChip, interrogates the

methylation status of 485,533 CpG sites per sample at single-nucleotide resolution, covering

96% of CpG Islands, with additional coverage in island shores (<2 Kb from CpG Islands)

and the regions flanking them. Methylation measurements from the Illumina technologies

are typically quantified using the average β value, a continuous variable, calculated as the

average of several replicates (i.e., several beads per sample), and lying between zero

(unmethylated) and one (methylated).

Unsupervised clustering of DNA methylation data is often used for the identification of

methylation subgroups, or groups of samples with a similar methylation profile across a

collection CpGs. Although there is no universal consensus on the best clustering method for

array-based DNA methylation data, Siegmund et al. (2003) argue that model-based methods

for clustering via finite mixture models are preferred to their non-parametric counterparts.
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Along these lines, Houseman et al. (2008) proposed the recursively partitioned mixture

model (RPMM), a computationally efficient model-based hierarchical method of clustering

high-dimensional data. This methodology has been shown to perform effectively for DNA

methylation data and has to date, been applied in a number of different settings (Christensen

et al., 2011; Hinoue et al., 2012; Koestler et al., 2012). One principal advantage of this

method is that it provides a convenient framework for robustly estimating the number of

classes K or clusters in the data, a fundamental issue in problems involving clustering (Chen,

1995). Moreover, RPMM allows for the attainment of subject-specific posterior probabilities

of class membership, which can be helpful in understanding a subjects relative propensity

within each of the predicted classes, as demonstrated in Koestler et al. (2010). Despite these

advantages, RPMM is limited by its reliance on the assumption of class conditional

independence (i.e., the methylation status of CpG sites are assumed to be independent

conditional on class membership), which when violated, may lead to an overestimation the

true number of classes, resulting in an over-fit solution (Lindsay et al., 1991). We further

note that metric-based hierarchical clustering algorithms using the Euclidean distance-metric

remain unaffected by correlation between features, as the expected value of the Euclidean

distance depends only on the trace of the variance-covariance matrix (hence only the

diagonal terms). This is further described in the Appendix (Section 6).

The assumption of class conditional independence provides an opportunity to advance the

existing RPMM framework for DNA methylation data, for which correlation of methylation

between neighboring probes may be pronounced. Indeed several recently published studies

have reported high correlation in the methylation status of neighboring CpG sites, which is

most pronounced between pairs of closely located CpG sites and decreases as function of

their distance in base pairs (Ehrich et al., 2008; Nautiyal et al., 2010). In a study of DNA

methylation among 27 epithelial ovarian tumors and 15 ovarian cancer cell lines,

Houshdaran et al. (2010) reported that DNA methylation measurements from multiple

probes representing different CpG sites associated with the same gene (related probes)

exhibited large correlation (mean Pearson correlation: 0.64 for related pairs of probes and

0.04 for unrelated pairs). Consistent with this finding, we observed distinct distributions of

correlation between related pairs of probes and unrelated pairs using methylation data from

158 mesothelioma tumors (Christensen et al., 2009) (mean Pearson correlation: 0.40 for

related pairs of probes and 0.07 for unrelated pairs). Although several recently published

works have proposed statistical approaches that incorporate the dependency structure

between neighboring CpGs (Laurila et al., 2011; Kuan and Chiang, 2012), very little

attention has been given toward the application of such information within unsupervised

clustering methods. Given the prominent role of unsupervised clustering in revealing

underlying structure in large-scale genomic data and the promise of such techniques for

identifying clinically/biologically important profiles of DNA methylation (Banister et al.,

2011; Marsit et al., 2011; Koestler et al., 2012), we aimed to understand whether

incorporating correlation between pairs related probes within the framework of RPMM

improves clustering performance (as measured by accurate estimation of the true number of

clusters, model goodness-of-fit, and clustering consistency) and the ability to detect

biologically meaningful clusters.
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Here, we propose Gaussian- and beta-distributed RPMMs that incorporate correlation

between neighboring CpG sites. Motivated by the findings of Houshdaran et al. (2010), our

proposed methodologies (1) permit the methylation status among CpG sites associated with

the same gene to be correlated, (2) while assuming independence between CpG sites

associated with different genes. We examine the clustering performance and computational

complexity of the proposed methods compared to alternative model-based and non-

parametric clustering techniques in simulation as well as in the analysis of four independent

array-based methylation data sets. We also investigate the ability of our proposed

methodology to identify biologically meaningful clusters using case/control data collected

from two independent studies of cancer: a head and neck squamous cell carcinoma

(HNSCC) (Langevin et al., 2012) and a bladder cancer data set (Marsit et al., 2011). The

methods described were implemented in R version 2.13 (http://cran.r-project.org/) statistical

language and are freely available on the first authors website. See Appendix for details.

Statistical methods

As previously mentioned, methylation levels in Illumina methylation assays are quantified

by the β value and are approximately continuous distributed, lying between zero and one,

with values of zero indicating an unmethylated locus and values of one representing a

methylated locus. To this end, the beta distribution is a natural distribution for modeling the

observed β values. However, the maximum likelihood estimatior of the beta distribution

parameters does not have a closed form and thus relies on numerical methods such as the

Newton-Raphson or Fisher scoring algorithm (Ji et al., 2005). An alternative approach

involves modeling the transformed β values [i.e., arcsine square-root transformation as in

Rocke (1993); Houseman et al. (2009) or logit transformation as in Kuan et al. (2012)] using

a normal distribution. While there are moderate gains in computational efficiency inherent to

the later approach, the log-likelihood of the transformed-normal distribution may be more

sensitive near the boundaries compared to the log-likelihood of the beta distribution

(Verkuilen and Smithson, 2012). We consider both of the above approaches – specifically,

we propose a class of modified RPMMs that incorporate correlation in the methylation

values between CpG sites associated with the same gene where a (1) modified Gaussian

RPMM is assumed and fit to the resulting transformed β values and (2) a modified beta

RPMM is assumed and fit to the untransformed β values.

Gaussian distributed RPMM with within-gene correlation

Let Yij represent the methylation β value for subject i ∈ {1,2,...,n} and CpG locus

. Let  represent the subset of CpG loci that are associated with

gene g, where g ∈ {1,2,...,G} and G is the total number of genes. Assuming that there are Jg

elements contained in , we define Zij to be the appropriately transformed methylation β

value for subject i, loci j (i.e., ). Then Zi is a J×1 vector of transformed

methylation values for subject i and Zig represents Jg×1 vector corresponding to the Jg

transformed methylation β values for subject i among loci associated with gene g. We

assume the following distribution,
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where θkj is a vector of parameters that depends on both class k and gene g. Note that the

present version of the Gaussian RPMM assumes that 

where  is the variance of loci j associated with gene g for class k. Our modified version

assumes a more flexible covariance structure for Σgk. Specifically, letting , where

j=1,2,...,Jg, we assume (class notation suppressed),

– 

– Cov(zigj,zigj′)=ρgjj′σjσj′, where j ≠ j′

– Cov(zigj,zig′j′)=0

where g ≠ g′ and j ≠ j′ where |ρgjj′|≤1 represents the correlation between loci j and j′, both

of which are associated with gene g. Figure 1 helps make these ideas more transparent. This

figure depicts three genes, each of which has varying numbers of CpG sites for which

methylation measurements are available. Our modeling strategy allows for correlation in the

methylation among CpG sites associated with the same gene, while assuming the

methylation of CpG sites associated with different genes to be independent. For instance,

within Gene 1, we allow there to be correlation between the methylation levels at CpG sites

L1, L2, and L3, but assume the methylation of these sites to be independent of CpG sites L1

and L2 among Gene 2.

Under the assumption that Ci=k with probability ηk and , and that the

methylation status of unrelated probes is independent conditional on class membership, the

likelihood contribution from subject i is given by

(1)

where ς=(η1,..., ηK–1, θ11,..., θ1G, θ21,..., θKG) is a vector of model parameters. With

observed data , the conventional mixture model approach involves

maximizing the full-data log-likelihood,

(2)

with respect to ς. This is easily achieved using an expectation-maximization (EM) algorithm

(Dempster et al., 1977). Briefly, this involves initializing the procedure with an N×K matrix

of weight W=(wik) whose rows sum to one. The rows reflect initial guesses at class

membership probabilities across for each subject. Thus, for each k, we set  and

maximizing the quantity (2) with respect to ς. At each iteration we recompute weights wik
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and iterate until  does not change. The final weight, wik represents the posterior

probability that subject i belongs to class k.

Since the number of classes K is typically unknown, one might decide on the number of

classes by fitting mixture models for a range of possible values of K, computing the

resulting BIC statistics and selecting the value of K that corresponds to the minimum BIC.

The entire operation has approximate complexity , where Kmax is the maximum

number of classes attempted. Houseman et al. (2008) proposed a recursive alternative to

conventional mixture model approach based on a weighted-likelihood version of (2) that

typically has complexity no more than NJK log K. Briefly, RPMM recasts the conventional

mixture model formulation into a hierarchical framework [a model-based version of the

HOPACH algorithm van der Laan and Pollard (2003)], where the first step of RPMM,

representing the top of the tree, involves fitting a 1-class model to the entire dataset. The

BIC from the resulting model is then computed and compared to the BIC resulting from a 2-

class mixture model fit to the entire data (first branch of the tree). If the BIC from the 2-class

model is less than the BIC from the 1-class model, we continue recursion. Under the

assumption that the resulting classes from the previous 2-class model can be further split,

and that each subject belongs to the subsequent splits only with probability equal to the

weight assigned from the previous split, the weighted-likelihood EM algorithm is applied

recursively to obtain two new classes (next branch in the tree). As before we compare the

BIC from the previous split to the new split and continue recursion if the BIC from the new

split is less than the BIC from the previous split, suggesting a more parsimonious

representation of the data. As previously described, recursion can be terminated early if the

split leads to a less parsimonious representation of the data or if the classes under

consideration comprise a small number of pseudo-subjects. The later is used as a safeguard,

due to the fact that mixture models become unstable with small weights (representing a

small number of pseudo-subjects).

The final clustering solution consists of K classes, with the final  assembled from the

individual vectors , as well as the posterior probabilities of class membership for each

subject among each of the terminal classes (i.e., ).

Beta distributed RPMM with within-gene correlation

We consider an approach based on a generalized linear mixed effects model (GLMM)

formulation for integrating within-gene correlation among CpG sites within a beta

distributed RPMM. Using the notation introduced in Section 2.1, and assuming that subject i

belongs to class k (i.e., Ci=k, k ∈ {1,2,...,K}), we have that Yij ~ β(αkj,βkj), where αkj>0 and

βkj>0. The parameters αkj and βkj can be formulated in terms of the mean, μkj, and the

dispersion parameter, ψkj>0 in the following way:

Koestler et al. Page 6

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2014 May 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Therefore, a beta distribution can also be uniquely determined by its mean and dispersion.

Considering a set  of Jg CpG loci, all of which are associated with gene g, we propose the

following random intercept model:

(3)

where h(.)is an appropriate link function (e.g., logit, probit, complementary log-log, etc.),

, and . In model (3), μikgj represents the mean methylation for loci

 among subject i belonging to class k, vkgj corresponds to the overall mean

methylation for locus j within class k, and aikg is a random effect term, representing the

subject-specific deviation from the CpG-specific population mean (among CpG sites

associated with gene g) for class k. In model (3), the methylation values for subject i are

independent only conditional on the random effect aikg. Following the typical development

of GLMM models (Breslow and Clayton, 1993), we integrate out the random effects and

maximize the marginal log-likelihood:

such that,

(4)

where ς is a vector of model parameters, p(aigk) is the pdf of a normal distribution with

mean 0 and variance  and  is the likelihood of yigj given aigk. The

integral in equation (4) can be approximated by Gaussian-Hermite quadrature (Kennedy and

Gentle, 1980). The marginal log-likelihood expressed above can then be incorporated into

the RPMM framework described above and estimation proceeds as discussed in Section 2.1.

As before, the final clustering solution provides an estimate K, , and the posterior

probabilities of class membership for each subject among each of the terminal classes.

Implementation

Simulation studies

We considered a simulation study to assess the clustering performance and computational

efficiency of the proposed within-gene correlated RPMM relative to the standard RPMM,

where “standard RPMM” refers to the RPMM methodology that assumes class-conditional

independence. Our simulation study used the mesothelioma cancer data set described in

Christensen et al. (2009) to simulate realistic methylation data. Briefly, this dataset consisted

of 158 subjects diagnosed with mesothlelioma. Each of the 158 subjects were profiled for

the methylation status of approximately 1500 CpG loci associated with over 800 cancer

related genes using the Illumina GoldenGate methylation array. We began by selecting two

genes (ZMYND10 and ZP3), each of which contained DNA methylation measurements for
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two CpG loci (thus, a total of four CpG sites were selected). For the most part, the selection

of these specific genes was arbitrary, however we sought to select genes with CpG sites

whose methylation exhibited moderate to high correlation. For both the selected genes, the

correlation in methylation among the CpG sites associated with that gene was 0.43. Note

that the correlation of DNA methylation at individual CpGs between these two genes was

low, consistent with other studies (Houshdaran et al., 2010). We next fit a beta-distributed

RPMM to the mesothelioma cancer data subset consisting of the CpG loci from the two

selected genes. This resulted in four classes, which were then trimmed to two classes by

considering only the top-level split. We then estimated the within-class mean and dispersion

parameters for each of the considered CpG loci as well as the variance of the random effect

terms using the random intercept model described in Section 2.2. Based on the para meter

estimates, we then simulated methylation data for two classes (50 subjects per class) and

proceeded by fitting standard Gaussian and beta RPMMs (StanGaussian and StanBeta,

respectively), Gaussian and beta RPMMs fit to the within-gene average methylation value

across CpGs (AvgGaussian and AvgBeta, respectively), the within-gene correlated Gaussian

and beta RPMMs (CorrGaussian and CorrBeta, respectively), and Ward's hierarchical

clustering (Ward, 1963) to the simulated data. For Ward's hierarchical clustering we used the

Euclidean distance metric and assigned class labels to samples based on pruning the

resulting tree dendogram to two classes. For the the StanGaussian and CorrGaussian

methods, the simulated methylation β values were transformed to an approximate Gaussian

distribution using an arcsine square-root transformation (Rocke, 1993).

We considered a total of 100 simulations; for each simulation we assessed the clustering

performance and computational efficiency of the seven considered methods. We used the

adjusted Rand index to access the similarity between the true class membership and

predicted class membership (Rand, 1971) and for each method (excluding Ward's

hierarchical clustering), compared the predicted number of classes, K̂, to the true number of

classes (i.e., K=2). The computational efficiency was determined by recording the amount of

time (in seconds) it took to cluster a single simulated dataset. All analyses were performed

in R version 2.11 using a computing cluster containing quad-core Nehalem processors and

24 GB of DDR-3 memory (1333 GHz).

Table 1 contains the average adjusted Rand index and computational time for each of the

seven methods considered. Most notably, we see that the StanGaussian, StanBeta,

CorrGaussian, and CorrBeta have substantially improved adjusted Rand index compared to

Ward's hierarchical clustering and the RPMM methods fit to the average methylation values

for each gene (i.e., AvgGaussian and AvgBeta). The later result is not entirely surprising, as

clustering subjects using the average within-gene methylation would be expected to result in

loss of information, which is even more pronounced given the small number of genes used

in our simulation. Also, although the data used in this simulation study were simulated from

a beta random intercept model, consistent with the within-gene correlated beta RPMM

described in Section 2.2, the CorrGaussian method demonstrated the best clustering

performance across the four methods. In particular, the adjusted Rand index was

significantly higher for the CorrGaussian method compared to all other methods (P<0.0001

for all) using a Wilcoxon signed-rank test. Although the adjusted Rand index was
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appreciably higher for the CorrBeta model than for the StanGaussian (P=0.0022) and

StanBeta (P=0.0681), this was only at the expense of much greater computational cost,

having a computational time that was 200–2000 times greater compared to the other RPMM

methods. We further note that CorrGaussian and CorrBeta methods exhibited substantial

improvement in estimating the true number of classes (>95% accuracy for both) (Figure 2).

This contrasts with the StanGaussian and StanBeta methods which tended to overestimate

the true number of classes and the AvgGaussian and AvgBeta methods which tended to

underestimate the number of classes. The former is expected based on the results of Lindsay

et al. (1991), which suggest overestimation of the true number of classes when the

assumption of class-conditional independence is violated.

This simulation study represented a relatively small scale analysis, using only a total four

CpG loci for subsequent clustering. In general clustering of array-based methylation data

would include many more CpG loci (Houseman et al., 2008; Christensen et al., 2009, 2011),

rendering the CorrBeta method as a substantial computational burden given that the

complexity of RPMM is on the order of J, where J represents the number of CpG loci used

for clustering. For this reason and because the within-gene correlated Gaussian RPMM

demonstrated greater promise with respect to predicting true class membership, we focus our

attention on only the CorrGaussian method in our subsequent data application.

Data application

Description of data sets—We compared the clustering performance of the proposed

within-gene correlated Gaussian RPMM (CorrGaussian) against the other RPMM-based

methods using four array-based DNA methylation data sets. To gain an understanding of the

robustness of the proposed methodology to array type and to provide insight regarding

clustering performance and consistency across multiple methylation data sets, we considered

array-based methylation data sets that were acquired using both the Illumina GoldenGate

and the Infinium Human Methylation27 array technologies. As previously described, the

GoldenGate methylation array simultaneously profiles the methylation status of over 1500

CpG loci, associated with approximately 800 cancer related genes, whereas the Infinium

Human Methylation27 methylation array assesses the methylation status of over 27,000

CpG loci, associated with approximately 14,000 genes.

The first data set, which we refer to as the Glioma data set, is described in detail in

Christensen et al. (2011). Briefly, the Glioma data set consisted of 131 subjects with glioma

(glioblastomas, astrocytomas, oligodendrogliomas, oligoastrocytomas, ependymomas, and

pilocytic astrocytomas). Each of the 131 samples in the Glioma data set were profiled for the

methylation status within the tissue of origin using the Illumina GoldenGate methylation

array. The second data set, which we refer to as the Mesothelioma data set, consisted of 158

mesothelioma tumor samples derived from two, independent series of mesothelioma cases

(Christensen et al., 2009). Similar to the Glioma data set, methylation data on each of the

158 samples in the Mesothelioma data set were obtained using the Illumina GoldenGate

methylation array. The third data set we considered, which we refer to as the Bladder data

set, is described in Marsit et al. (2011) and consisted of 223 incident bladder cancer cases

and 237 controls. For each of the subjects in the Bladder data set, DNA methylation was
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assessed in peripheral blood using the Illumina Infinium Human Methylation27 methylation

array. The fourth data set was consisted of methylation data on 92 head and neck squamous

cell carcinoma (HNSCC) cases and 92 controls (Langevin et al., 2012). We hereafter refer to

this data set as the HNSCC data set. Similar to the Bladder data set, each subject was

profiled for the status of DNA methylation in peripheral blood using the Illumina Human

Methylation27 methylation array.

Mahalanobis distance was used to screen outliers and all CpG loci on X and Y chromosomes

were excluded from the analysis, leaving a final 1413 autosomal CpG loci representing 773

unique genes and 26,486 autosomal CpG loci representing 13,890 unique genes, for the

GoldenGate and Infinium Human Methylation27 arrays respectively (Houseman and Coull,

2004). As our analysis compares the proposed within-gene correlated Gaussian RPMM to

the standard Gaussian RPMM, methylation β values were transformed using an arcsine

square-root transformation to more closely approximate a Gaussian distribution (Rocke,

1993; Houseman et al., 2009). The untransformed methylation β values were used to fit the

standard beta RPMM.

Description of data analysis—We investigated both the clustering performance and

ability of the CorrGaussian method to detect biologically meaningful clusters. To evaluate

the clustering performance, we computed and compared model goodness-of-fit and

clustering consistency across the RPMM-based methods. Specifically, for each of the four

methylation data sets considered (Glioma, Mesothelioma, Bladder, and HNSCC) we

considered 100 separate analyses for a range of different numbers of randomly selected

genes. More precisely, for each of the 100 separate analyses, we randomly selected M

unique genes (M={10, 50, 100, 500}), from the total number of genes for that data set.

Subsequent clustering analysis by CorrGaussian, StanGaussian, and StanBeta was then

based on CpG loci associated with those genes. For the AvgGaussian and AvgBeta methods,

Gaussian- and beta-distributed RPMMs were fit to the within-gene average methylation,

computed as the mean methylation among the CpGs associated with a given gene. We then

compared the model goodness-of-fit and clustering consistency for each of the four data sets

across the 100 separate analyses for each selection of M.

Model goodness-of-fit statistics were using to provide insight toward model preference

given the data. As RPMM-based methods are likelihood-based clustering algorithms, we

compared the goodness-of-fit of the StanGaussian and CorrGaussian methods using the

Bayesian information criterion [BIC, Schwartz (1978)], which has been widely used for

model selection in mixture model problems (Dasgupta and Raftery, 1998; Fraley and

Raftery, 2002). The StanBeta, AvgGaussian, and AvgBeta methods were not included in this

comparison as the BICs obtained from these methods is not directly comparable to the BICs

for the StanGaussian and CorrGaussian methods. It should be noted that for each of the

considered methods, the BIC used to assess goodness-of-fit was computed based on the

terminal nodes, or otherwise, the final clustering representation. In addition to comparing the

model goodness-of-fit among CorrGaussian and StanGaussian methods, we also computed

and compared the number of estimated methylation classes for these two methods as well as

the other RPMM-based methods.
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Though in general, the resulting clustering solutions will not be identical for a different

group of randomly selected genes, there should be some degree of consistency between the

clustering solutions (depending on the particular data used for clustering and the total

number of features used to cluster), representing the true underlying structure of the data.

Generally speaking, for a particular clustering algorithm, the higher the degree of clustering

consistency across a different group of randomly selected genes, the greater the propensity

of that algorithm for identifying and representing the true underlying structure of the data.

As in our simulation study, we used the adjusted Rand index for assessing clustering

consistency. In addition to comparing the clustering consistency between the various RPMM

methods, we also compared the clustering consistency among several non-parametric

alternatives. We included two versions of Ward's hierarchical clustering as well as the

Hierarchical Ordered Partitioning and Collapsing Hybrid (HOPACH) clustering algorithm

(Ward, 1963; van der Laan and Pollard, 2003). The two versions of Ward's hierarchical

clustering that we considered, referred to as Ward1 and Ward2, were based on two different

methods of pruning the resulting hierarchical clustering solution. For a particular analysis,

the Ward1 and Ward2 methods consisted of assigning class labels to subjects by cutting the

resulting tree dendogram at the appropriate height such that the number of resulting clusters

were equal to the number of estimated clusters based on the StanGaussian and CorrGaussian

methods, respectively. We also included HOPACH in this comparison, since it represents a

non-parametric hierarchical clustering method that combines the strengths of both

partitioning and agglomerative clustering methods. Similar to the methods based on RPMM,

HOPACH automatically estimates the number of clusters K. For each of the non-parametric

methods considered, Euclidean distance was used as the dissimilarity metric.

We assessed the clustering consistency across the various methods by taking the average of

the pairwise adjusted Rand index across each of the 100 separate analyses [i.e., 100×(100–

1)/2 pairwise comparisons] for each specification of the number of randomly selected genes

for clustering, M. Significant differences with respect to the adjusted Rand index across the

clustering methods was assessed using a bootstrap procedure (Arcones and Gine, 1992).

Specifically, letting Q represent the total number of separate analyses (Q=100), we sampled

Q times with replacement from the q={1,2,...,Q} separate analyses, computed the

corresponding Q(Q–1)/2 pairwise adjusted Rand indices and from those estimates,

calculated the resulting average adjusted Rand index for each bootstrap sample. This

effectively resulted in a distribution of average adjusted Rand index for each of the

considered clustering methods.

Using the two case/control cancer data sets (i.e., Bladder and HNSCC), we evaluated the

ability of the RPMM-based methods for detecting biologically meaningful clusters.

Specifically, within the Bladder and HNSCC data sets, CpG loci were rank-ordered based on

variance and the genes associated with the top (M={10, 50, 100, 500}) most variable CpG

loci were selected for subsequent clustering analysis. The resulting clusters tested for their

association with cancer case/control status using a χ2 test. P-values were recorded for each

selection of M and compared across the RPMM-based methods.

Data application results—Table 2 and Figure 3 contain the results for goodness-of-fit

and clustering consistency, respectively, for our data application. As noted in Table 2, for
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each of the considered datasets and across varying numbers of randomly selected genes (i.e.,

M={10, 50, 100, 500}), the CorrGaussian method consistently outperformed the

StanGaussian method in terms of goodness-of-fit. For a fixed data set, the differences in

goodness-of-fit between these two methods appeared to increase a function of the number of

randomly selected genes used for subsequent clustering analysis. This is likely due the

potential of the CorrGaussian method to capture the features of DNA methylation data,

which becomes more pronounced when applied to a larger pool of selected genes. To put the

results on goodness-of-fit between the CorrGaussian and StanGaussian methods into a

possibly more meaningful context, we note that across the various analyses considered in

our data application, the CorrGaussian had a lower BIC compared to StanGaussian on

average, 94% of the time. We further note the tendency of CorrGaussian method to result in

a fewer number of estimated classes compared to the StanGaussian and StanBeta methods.

This is to be expected as violations of the assumption of class-conditional independence

result in overestimation of the true number of classes.

As illustrated in Figure 3, for each of the considered datasets and across varying numbers of

randomly selected genes (i.e., M={10, 50, 100, 500}), the methods based on RPMM

consistently resulted in more favorable clustering consistency compared to their non-

parametric counterparts. Most notably though was the clustering consistency performance of

the CorrGaussian method relative to the other methods. We note that the standard errors for

the adjusted Rand index may be overly optimistic; as such, a bootstrap procedure was used

to test for significant differences in adjusted Rand index between the various methods.

Using the bootstrap method described above, considering 1000 bootstrap samples for each

method, we tested the significance of the adjusted Rand index obtained from each of the

methods. With some exceptions, the CorrGaussian method resulted in a significantly higher

adjusted Rand index compared to the other methods across the various data sets and

numbers of randomly selected genes M. For all data sets (M=10), there was no significant

difference in the adjusted Rand index between the StanBeta, StanGaussian and

CorrGaussian methods, however the AvgBeta method exhibited significantly higher

clustering consistency in the Glioma data set. In addition, for the Mesothelioma and Baldder

data sets (M=50, 100), there was no significant difference in the adjusted Rand index

between the StanBeta, AvgGaussian, and CorrGaussian methods.

While our assessment of clustering performance demonstrated that CorrGaussian has

improved goodness-of-fit over the StanGaussian, estimates on average, a fewer number of

clusters compared to the methods that do not incorporate within-gene correlation, and in

general, improved clustering consistency relative to competing approaches, the biological

relevance of clusters identified by this method remains unclear. To examine this more

thoroughly we focused our attention on the two cancer case/control data sets – Bladder and

HNSCC – and investigated the extent to which the CorrGaussian method identifies clusters

that are more strongly related to cancer case control status. Despite the selection of M and

across both data sets, the CorrGaussian method tended to consistently identify clusters that

were significantly associated cancer case/control status (100% with P<0.05) Figure 4. While

the other RPMM-based identified clusters that were significantly associated with case/

control status, this was typically only observed in instances where the number of genes used
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for clustering was relatively large (i.e., M={100, 500}) Figure 4. We further note that the

clusters identified by CorrGaussian method had the smallest P-value 75% of the time, which

suggests that incorporating within-gene correlation may lead to an improved ability to

differentiate biologically meaningful clusters.

Discussion

DNA methylation is a widely studied epigenetic mechanism that has substantially

contributed to our understanding of the role epigenetic alterations play in the development

and progression of a vast array of different human diseases. In particular, profiles of DNA

methylation have served to elucidate the mechanisms by which epigenetic changes might

lead to aberrant gene expression patterns and disease (Laird, 2010). Recent advancements in

high-throughput technology have enabled the simultaneous assessment of DNA methylation

at single-site CpG resolution for thousands to hundreds of thousands of CpG loci. Such data

is amenable to studying profiles of DNA methylation based on hundreds or thousands or

more CpG loci. Compared to the identification of methylation makers at individual CpG

dinucleotides, profiles of DNA methylation enable an understanding of the co-regulation of

methylation across many CpG sites, often facilitating a more thorough understanding of the

underlying biological processes and cellular pathways critical in states of human health and

disease.

Unsupervised clustering of samples on the basis of their methylation information is a

common approach for the identification of profiles of DNA methylation. Presently, there are

a number of different methods for clustering high-dimensional array-based DNA

methylation data, both non-parametric and parametric model-based methods; however,

many of these existing methods do not incorporate known biological relationships of

measured features and often rely on questionable assumptions regarding the biology of DNA

methylation. We and others (Ehrich et al., 2008; Houshdaran et al., 2010; Nautiyal et al.,

2010) have observed distinct patterns in the correlation of the methylation status between

pairs of related probes (neighboring CpG sites) and pairs of unrelated probes (non-

neighboring CpG sites). In light of these observations and since most array-based

methylation platforms contain information regarding the genomic location of measured

features, we proposed a modified version of RPMM that incorporates known biological

features of DNA methylation data. As the existing RPMM framework assumes class-

conditional independence of methylation for CpG sites, we proposed two modified versions

of RPMM (a Beta and Gaussian version) which (1) allow correlation in methylation for

neighboring CpG sites (i.e., CpG sites associated with the same gene), but (2) assume

independence in methylation for non-neighboring CpG sites (i.e., CpG sites associated with

different genes). While it would be ideal to assume a fully unstructured covariance structure,

the nature of array-based DNA methylation prevents us from such (  setting).

We evaluated the clustering performance of our proposed modified within-gene correlated

RPMMs relative to the standard RPMMs using both simulations and four array-based

methylation data sets. In our comparisons, we also included a naive approach to handling the

observed within-gene correlation between CpG sites, wherein a standard RPMM was fit to

the within-gene average methylation, calculated as the mean methylation among the CpGs

Koestler et al. Page 13

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2014 May 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



associated with that gene (AvgGaussian and AvgBeta methods). Briefly, our simulation

study suggested improved clustering performance of the modified within-gene correlated

RPMMs relative to the RPMMs that assume class-conditional independence of features. The

within-gene correlated Gaussian RPMM had most favorable clustering performance among

the considered clustering methods followed by the within-gene correlated Beta RPMM.

However, the principal limitation of our proposed modified RPMMs was their

computational efficiency relative to the standard RPMMs. This was quite pronounced for the

within-gene correlated Beta RPMM, which had an average computational time of 200–2000

times that of the standard RPMMs. What was particularly concerning was the performance

of the AvgGaussian and AvgBeta methods simulation, which exhibited the poorest

performance in terms of correctly identifying true class membership.

Using four array-based methylation data sets, we assessed the clustering performance, via

goodness-of-fit and clustering consistency, for the RPMM-based methods. The results

indicated improved goodness-of-fit for CorrGaussian compared to StanGaussian across the

different data sets and for different numbers of randomly selected genes for clustering.

These findings are significant in that they demonstrate robustness in goodness-of-fit for of

our proposed method across different data sets and across different platforms for array-based

DNA methylation profiling (Illumina GoldenGate and Infinium Human Methylation27

arrays). We also compared the clustering consistency across the RPMM-based methods and

included in this comparison: two methods based on Ward's hierarchical clustering, and

HOPACH. With some exceptions, our results demonstrated significantly improved

clustering consistency RPMM-based methods over their non-parametric counterparts, and

above all, notable gains among CorrGaussian. While these results speak to the potential for

improvements in model-fit and clustering consistency for the CorrGaussian method, what is

most important to researchers is the extent to which incorporating within-gene correlation

leads to an improved ability to detect biologically meaningful clusters. In both data sets

considered, the CorrGaussian method consistently identified clusters that were significantly

associated with cancer case/control status. Although the other RPMM-based methods did

well in this respect, they tended to fall short when the number of genes used was low. A

potential reason for this discrepancy is that differences in the correlation among CpGs that

define biologically important subgroups would be missed by methods that do not

incorporate correlation – a feature that the proposed CorrGaussian method is well suited to

detect.

As previously described, the principal limitations of the within-gene correlated RPMMs is

their computational efficiency relative to the standard RPMMs. While this was not a major

issue with respect to the within-gene correlated Gaussian RPMM, it was a substantial

limitation for the within-gene correlated Beta RPMM. The computational burden of the

within-gene correlated Beta RPMM is largely due to fact that it relies upon numerical

quadrature for evaluating the integral in equation (4) and is particularly prone to flat

likelihoods arising from little information regarding the variance component, . Since

each level of recursion within the RPMM framework may consist of numerous weighted EM

iterations, thus multiple maximization of likelihoods involving quadrature, the

computational efficiency of the methodology becomes severely compromised. While the
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methods we proposed allow for correlation in methylation between CpG sites associated

with the same gene, the framework we have developed is also extensible for situations in

which one seeks to model correlation in methylation of CpG sites as a function of their

genomic distance. For instance, assuming CpG sites are ordered based on their genomic

location, one could use Gaussian or exponential autoregressive covariance structure that

captures desired relationships in methylation. Although this method was not used here,

preliminary investigations demonstrate the feasibility of such methods. We also note that the

methods we propose could be combined with a Semi-Supervised RPMM (Koestler et al.,

2010) procedure for Illumina's most recent 450K Infinium Methylation BeadChip;

particularly, to identify patterns of methylation among biologically important genomic

regions (as opposed to individual CpGs). This represents a relevant application of the

proposed modified RPMM, as the class-conditional independence assumption will obviously

fail for denser arrays.

The modified versions of RPMM we proposed incorporate important biological

relationships between profiled CpG sites, information which is often ignored by other

methods. The proposed within-gene correlated Gaussian RPMM demonstrated appreciable

gains in clustering performance, goodness-of-fit, and clustering consistency relative to the

standard versions of RPMM and therefore represents an attractive method for clustering

array-based DNA methylation data.

Appendix

The formula below makes explicit two facts about the Euclidean metric: (1) it remains

unaffected by autocorrelated loci (since its expectation depends on the variance-covariance

matrix only through the diagonal); and (2) it is influenced by all loci, including those that are

non-informative and possibly noisy (with noisy loci contributing the most, even if they are

not informative).

For independent random vectors Y1 and Y2,

With δj=1(θ1j=θ2j), the following equations make clear that in correctly-specified mixture

models, non-informative loci have no influence on classification (via posterior class

membership probability):
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where . Consequently, terms that depend on  factor out of the empirical

Bayes formula for classification via posterior class membership probability:

Code for implementing the proposed methods was written in the R statistical language

(http://cran.r-project.org/) and be found on the first author's website (http://bio-

epi.hitchcock.org/faculty/koestler.html). Instructions for downloading and usage are

provided there.
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Figure 1.
Illustration of the assumed covariance structure for DNA methylation data. The methylation status was assessed for three CpG

loci associated with Gene 1 (L1, L2, and L3), two CpG sites associated with Gene 2 (L1 and L2), and a single CpG site

associated with Gene 3 (L1). We allow correlation between the methylation of CpG sites associated with the same gene,

however assume the methylation status of CpG sites associated with different genes to be independent. Blue represents a

methylated CpG site and yellow represents an unmethylated CpG site.
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Figure 2.
Distribution of the number of estimated classes (i.e., K̂) across 100 simulations for RPMM-based methods. The true number of

classes is two (i.e., K=2).
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Figure 3.
Results comparing the clustering consistency of Ward1, Ward2, HOPACH, StanGaussian, StanBeta and CorrGaussian for M

randomly selected genes. The adjusted rand-index represents the mean pairwise adjusted rand-index across 100 separate

analyses. The 95% CI for the adjusted rand-index is displayed for each of the methods.
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Figure 4.
Bar plots depicting the –log10(P-value) obtained from testing the association between the identified classes and cancer case/

control status. Red-dotted line represents the –log10(0.05).
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Table 1

Average adjusted Rand index and computing time for seven considered methods.

Method Avg. adjusted Rand index (s.e.) Avg. computation time (s)

StanGaussian 0.71 (0.014) 2

StanBeta 0.73 (0.013) 8

AvgGaussian 0.13 (0.141) 0.71

AvgBeta 0.11 (0.132) 0.73

CorrGaussian 0.79 (0.010) 22

CorrBeta 0.76 (0.010) 4549

Ward 0.29 (0.017) 0.004
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Table 2

Results comparing the goodness of fit of the and number of classes estimated for the RPMM-based methods. Δ

BIC represents the mean difference in BIC between the CorrGaussian and StanGaussian methods and K̂

represent the mean over 100 separate analyses.

Dataset M Δ BIC Avg. K̂

StanGaussian StanBeta AvgGaussian AvgBeta CorrGaussian

Glioma 10 –427 9.4 7.8 5.8 5.1 7.6

Glioma 50 –17,741 14.1 11.4 9.8 8.3 12.1

Glioma 100 –5825 15.7 11.6 11.8 9.6 12.2

Glioma 500 –20,100 13.1 12.4 11.6 10.5 3.1

Meso 10 –491 7.2 6.2 4.6 4.2 5.1

Meso 50 –2287 8.4 6.8 6.1 5.5 6.5

Meso 100 –6111 9.1 6.9 6.5 5.8 6.8

Meso 500 –46,521 11.5 7.9 8.0 5.5 4.0

Bladder 10 –899 13.7 13.1 10.9 10.7 11.4

Bladder 50 –6138 18.5 17.2 19.1 17.6 13.2

Bladder 100 –13,415 19.2 16.8 20.2 18.5 12.4

Bladder 500 –45,565 19.2 17.6 18.2 17.6 6.6

HNSCC 10 –308 6.1 6.0 5.8 5.8 5.2

HNSCC 50 –819 6.1 6.0 7.1 6.8 4.9

HNSCC 100 –1647 6.2 5.5 7.1 6.6 4.4

HNSCC 500 –7327 5.7 5.8 7.9 6.0 4.0
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