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Abstract

The organization of the human cerebral cortex has recently been explored using techniques for 

parcellating the cortex into distinct functionally coupled networks. The divergent and convergent 

nature of cortico-cortical anatomic connections suggests the need to consider the possibility of 

regions belonging to multiple networks and hierarchies among networks. Here we applied the 

Latent Dirichlet Allocation (LDA) model and spatial independent component analysis (ICA) to 

solve for functionally coupled cerebral networks without assuming that cortical regions belong to a 

single network. Data analyzed included 1,000 subjects from the Brain Genomics Superstruct 

Project (GSP) and 12 high quality individual subjects from the Human Connectome Project 

(HCP). The organization of the cerebral cortex was similar regardless of whether a winner-take-all 

approach or the more relaxed constraints of LDA (or ICA) were imposed. This suggests that large-

scale networks may function as partially isolated modules. Several notable interactions among 

networks were uncovered by the LDA analysis. Many association regions belong to at least two 

networks, while somatomotor and early visual cortices are especially isolated. As examples of 

interaction, the precuneus, lateral temporal cortex, medial prefrontal cortex and posterior parietal 

cortex participate in multiple paralimbic networks that together comprise subsystems of the default 

network. In addition, regions at or near the frontal eye field and human lateral intraparietal area 

homologue participate in multiple hierarchically organized networks. These observations were 

replicated in both datasets and could be detected (and replicated) in individual subjects from the 

HCP.
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 Introduction

Distributed neocortical brain areas form large-scale networks that exhibit complex patterns 

of divergent and convergent connectivity (e.g., Pandya and Kuypers, 1969; Jones and 

Powell, 1970; Mesulam 1981; Ungerleider and Desimone, 1986; Goldman-Rakic, 1988; 

Felleman and Van Essen, 1991). A major challenge in systems neuroscience is to make 

sense of these connectivity patterns to infer functional organization. In the visual system, 

connectivity patterns suggest a separation of processing into largely parallel, but interacting, 

hierarchical pathways (Ungerleider and Desimone, 1986; Felleman and Van Essen, 1991). In 

contrast, the association cortex comprises networks of widely distributed and densely 

interconnected areas without rigid hierarchical organization (Goldman-Rakic, 1988; 

Selemon and Goldman-Rakic, 1988; but see Badre and D'Esposito, 2009).

Resting-state functional connectivity MRI (rs-fcMRI) provides a powerful, albeit indirect, 

approach to make inferences about human cortical organization (Biswal et al., 1995). 

Despite its limitations (Buckner et al., 2013), we and others have used functional 

connectivity to estimate cortical network patterns (e.g., Damoiseaux et al., 2006; Margulies 

et al., 2007; He et al., 2009; Smith et al., 2009; van den Heuvel et al., 2009; Bellec et al., 

2010; Power et al., 2011; Yeo et al., 2011).

The majority of functional connectivity studies have focused on dissociating functionally 

distinct networks or modules (Greicius et al., 2003; Beckmann et al., 2005; Salvador et al., 

2005; Damoiseaux et al., 2006; De Luca et al., 2006; Fox et al., 2006; Dosenbach et al., 

2007; Margulies et al., 2007; Seeley et al., 2007; Calhoun et al., 2008; Smith et al., 2009; 

van den Heuvel et al., 2009; Doucet et al., 2011; Rubinov and Sporns, 2011; Varoquaux et 

al., 2011; Craddock et al., 2012). Fewer studies have examined the relationships among 

different functional networks (Sepulcre et al., 2012a; Sporns et al., 2013). For example, Fox 

et al. (2005) and Fransson (2005) have investigated the antagonistic relationship between the 

default and task-positive networks. Others (Meunier et al., 2009; Doucet et al., 2011; Lee et 

al., 2012) have investigated the (spatial) hierarchical relationship across functional networks.

We previously employed a mixture model that relied on a winner-takes-all assumption to 

map network topography in the human cerebral cortex (Yeo et al., 2011). Each brain region 

was assigned to a single, best-fit network allowing us to derive connectivity maps that 

emphasize the interdigitation of parallel, distributed association networks. The key features 

of this parallel organization are that (1) each association network consists of strongly 

coupled brain regions spanning frontal, parietal, temporal, and cingulate cortices, and (2) the 

components of multiple networks are spatially adjacent (Yeo et al., 2011; also see Vincent et 

al., 2008, Power et al., 2011).

However, it is unlikely that the brain is simply parcellated into a discrete number of 

nonoverlapping networks (Mesulam 1998). Interactions across networks, as well as the 

existence of ‘convergence zones’ of regions that participate in multiple networks, are likely 

important features of brain organization (Pandya and Kuypers, 1969; Jones and Powell, 

1970; Mesulam 1998; Beckmann et al., 2005; Bullmore and Sporns, 2009; Spreng et al., 
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2010; Fornito et al., 2012; Sepulcre et al., 2012b; Power et al., 2013). Relevant to this point, 

we have observed variability in the goodness of fit of certain regions to their winner-takes-all 

network (Figures 8 and 10 of Yeo et al., 2011), consistent with the notion that certain brain 

regions might participate in multiple networks (Beckmann et al., 2005; Sporns et al., 2007; 

Andrews-Hanna et al. 2010; Leech et al., 2011; Rubinov and Sporns, 2011).

Here, we address the possibility of multiple network membership by applying latent 

Dirichlet allocation (LDA; Blei et al., 2003) and spatial Independent Component Analysis 

(ICA; Calhoun et al., 2001; Beckman et al., 2004) to examine the topography of overlapping 

networks. This is an important consideration because network topography may change 

substantially from our original estimates (Yeo et al., 2011) if constraints are relaxed to 

permit overlapping networks. Conversely, unbiased estimation of network topography may 

broadly confirm previous estimates and allow us to investigate the interactions and overlaps 

among networks.

 Materials and Methods

 Overview

We applied the LDA model to resting-state data from 1,000 healthy young adults from the 

Brain Genomics Superstruct Project (GSP), as well as to 12 high quality, high-resolution 

individual subject datasets from the Human Connectome Project (HCP; Van Essen et al., 

2013). The large sample size in GSP and the multiple sessions of individual HCP subjects 

permitted us to quantify patterns of cortico-cortical coupling that reveal insights into 

interactions within and across functional networks. Analyses proceeded in four stages. First, 

we applied the mixture model (Yeo et al., 2011) and LDA model (Blei et al., 2003) to both 

the GSP and HCP group datasets, in order to examine how cortical network organization 

changes as regions are permitted to participate in multiple networks (Figure 1). For this 

analysis, the GSP and HCP datasets were used to provide independent replication samples. 

Next, we further analyzed several cortical regions participating in multiple sub-networks 

(Figures 2 to 4). We then exploited the high quality, multi-session HCP data to determine if 

network organization can be estimated and replicated in individual subjects (Figures 5 and 

6). This increased the confidence that the discovered network organization was not merely a 

consequence of averaging across subjects. Additional control analyses confirmed similar 

network organization regardless of whether global signal regression was performed during 

preprocessing (Supplemental Figure 7) and across degenerate (i.e., not highest likelihood) 

network estimates (Figures 7 and 8).

 Datasets

The GSP subjects were between ages 18-35 (mean age = 21.3; 42.7% male). Participants 

underwent one or two runs of eyes open rest (EOR). Analyses of the GSP data have been 

published previously (e.g., Buckner et al., 2011; Yeo et al., 2011; Choi et al., 2012). The 

HCP subjects were between ages 26-35 (mean age estimate = 30.9; 16.7% male). HCP only 

provides aggregated data concerning age, hence mean age can only be estimated. HCP 

participants underwent two runs of passive fixation (FIX) in each of two separate sessions, 

for a total of four runs (~24 h interval between sessions).
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 GSP MRI Data Acquisition and Preprocessing

Data were acquired on 3T Tim Trio scanners (Siemens, Erlangen, Germany) using a 12-

channel phased-array head coil. Functional data consisted of gradient-echo echo-planar 

images (EPI) sensitive to blood oxygenation level-dependent (BOLD) contrast. Parameters 

for the resting data were: repetition time (TR) = 3,000 ms, echo time (TE) = 30 ms, flip 

angle (FA) = 85°, 3 × 3 × 3 mm voxels, field of view (FOV) = 216, and 47 axial slices 

collected with interleaved acquisition. Slices were oriented along the anterior commissure-

posterior commissure plane. Functional runs lasted 6.2 min (124 time points). Structural data 

included a multiecho T1-weighted magnetization-prepared gradient-echo (MP-RAGE) 

image (van der Kouwe et al., 2008).

fMRI processing steps included 1) discarding the first four frames of each run, 2) correcting 

for slice acquisition-dependent time shifts in each volume with SPM2 (Wellcome 

Department of Cognitive Neurology, London, UK), and 3) correcting for head motion using 

rigid body translation and rotation parameters (FSL; Jenkinson et al., 2002; Smith et al., 

2004). This was followed by standard functional connectivity preprocessing (Fox et al., 

2005; Vincent et al., 2006; Van Dijk et al., 2010). Linear trends over each run were removed 

and a low-pass temporal filter retained frequencies below 0.08 Hz. Spurious variance was 

removed using linear regression with terms for head motion, whole brain signal, ventricle 

signal, white matter signal and their derivatives.

Individual participants’ T1 scans were reconstructed into surface representations using 

FreeSurfer (http://surfer.nmr.mgh.harvard.edu; Fischl 2012). Functional data were registered 

to structural images using FreeSurfer's FsFast package (Greve and Fischl, 2009; http://

surfer.nmr.mgh.harvard.edu/fswiki/FsFast). The structural preprocessing and structural-

functional data alignment steps were described in Yeo et al. (2011). Functional data were 

projected onto the FreeSurfer surface space (2 mm mesh), smoothed on the surface using a 6 

mm full-width half-maximum kernel, and were then downsampled to a 4 mm mesh.

 HCP MRI Data Acquisition and Preprocessing

HCP data were part of the HCP initial October 2012 public data release (http://

www.humanconnectome.org/data). Data were acquired on a 3T Skyra scanner (Siemens, 

Erlangen, Germany) using a standard 32-channel head coil. The scanner has a customized 

SC72 gradient insert and a customized body transmitter coil with 56 cm bore size. The HCP 

Skyra has the standard set of Siemens shim coils (up to 2nd order). Functional data consisted 

of gradient-echo EPI sensitive to BOLD contrast. Parameters for the resting data were: TR = 

720 ms, TE = 33.1 ms, FA = 52°, 2 × 2 × 2 mm voxels, FOV = 208 × 180 mm, and 72 

oblique axial slices alternated between phase encoding in a right to left direction in one run 

and phase encoding in a left to right direction in the other run (Feinberg et al., 2010; Moeller 

et al., 2010; Setsompop et al., 2012; Xu et al., 2012). Each functional run lasted 14.55 min 

(1200 time points). Structural data included a T1-weighted MP-RAGE image. Parameters 

for the structural scan were as follows: TR = 2400 ms, TI = 1000 ms, TE=2.14 ms, FA = 8°, 

0.7 × 0.7 × 0.7 mm voxels and FOV = 224 × 224 mm. More details of the acquisition 

strategy can be found in Van Essen et al. (2012).
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We utilized the fMRI preprocessed data released by the HCP (Glasser et al., 2013). fMRI 

processing steps included 1) gradient distortion correction (Jovicich et al., 2006), 2) motion 

correction, 3) distortion correction, 4) registration to the T1 scan (Greve and Fischl, 2009), 

5) spline resampling to FSL MNI152 2mm space using FSL FNIRT (Jenkinson et al., 2002; 

Smith et al., 2004), and 6) intensity normalization to mean of 10000 and bias field 

correction. This was followed by standard functional connectivity preprocessing as in the 

GSP dataset. The preprocessed fcMRI data were projected from FSL MNI152 space onto 

the FreeSurfer surface space (1mm mesh), smoothed using a 6-mm full-width half-

maximum kernel and downsampled to a 4mm mesh. The nonlinear mapping between FSL 

MNI152 volumetric space and FreeSurfer surface space is detailed in Buckner et al. (2011).

 Clustering

The method of clustering cerebral cortical data has been previously described (Yeo et al., 

2011). Briefly, for each subject, the Pearson's product moment correlation was computed 

between each surface vertex (N = 18715) and 1175 uniformly distributed cortical regions of 

interest (ROIs). The “connectivity profile” of each surface vertex was its functional coupling 

to these ROIs. Each participant's 1175 × 18715 matrix of correlations was binarized to retain 

the top 10% of correlations before summing across subjects to obtain an overall group 

estimate P. Therefore, the ith row and jth column of the matrix P was the number of subjects 

whose correlations between the ith vertex and jth ROI are within the top 10% of correlations 

(within each individual subject). In other words, each matrix component took on integer 

values from 0 to 1000 in the GSP dataset. The connectivity profiles were clustered using a 

mixture of von Mises-Fisher distributions (Lashkari et al., 2010; Yeo et al., 2011). We 

repeated the clustering algorithm 1000 times with different random initializations and 

selected the estimate with best model likelihood. For more details, we refer readers to 

Lashkari et al. (2010) and Yeo et al. (2011). Because our previous analyses (Yeo et al., 2011) 

identified solutions with 7 and 17 network clusters to be particularly stable, we adopted 

these for the present study.

 Latent Dirichlet Allocation (LDA)

LDA was first introduced in the text mining literature (Blei et al., 2003). The application of 

LDA to estimate overlapping modules (networks) in graphs has been previously proposed 

(Zhang et al., 2007). Here, we employed LDA to estimate cortical networks from resting-

state fMRI data.

Like spatial independent component analysis (ICA; Beckmann and Smith, 2004), LDA 

permits a brain region to belong to multiple networks. Both ICA (Beckmann and Smith, 

2004) and LDA (Hoffman et al. 2010) seek to factorize a matrix M into a product of two 

matrices W and H. Because there are an infinite number of ways to factorize a matrix, 

additional constraints are required.

In the case of spatial ICA applied to fMRI, the spatial weights of the estimated networks 

(components) are constrained to be independent (Beckman et al., 2005; Calhoun et al., 

2001), but can take on negative values. LDA is closely related to non-negative matrix 

factorization (Hoffman et al. 2010). When applied to resting-state fMRI data in this paper, 
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LDA constrains the spatial weights of the estimated networks to be non-negative (in addition 

to other constraints). We refer interested readers to Blei et al. (2003) for the probabilistic 

(and more well-known) interpretation of LDA.

In this work, we used LDA to factorize the 1175 × 18715 matrix P (see the previous 

“Clustering” section) into the product of two matrices W (1175 × K) by H (K × 18715), 

where K is the number of networks. The k-th row of the matrix H sums to one over all 

18715 vertices of the cerebral cortex. We can interpret the k-th row as the probability that 

the k-th functional connectivity network includes a particular surface vertex Pr(vertex | k-th 

network).

To compare the clustering and LDA results, we consider 7 and 17 networks in this paper. 

The LDA model is estimated with 100 random initializations. The estimate with the best 

likelihood bound is selected. The LDA code is publicly available1.

 Spatial Independent Component Analysis (Spatial ICA)

We applied spatial ICA (FSL melodic 3.10; Beckmann and Smith, 2004) to the surface 

projected fcMRI-preprocessed data. We estimated 20 ICA components because of 

precedence (e.g., Smith et al. 2009) and because “20” is close to the number of networks 

(“17”) we sought in the clustering and LDA models. We also experimented with 17 

independent components, as well as applying ICA directly to raw volumetric fMRI data 

before projecting the spatial components to the surface. The results were similar across these 

different experiments and so for conciseness, we will focus on the 20 ICA components 

estimated from surface-projected fcMRI-preprocessed data.

 Matching Networks between Datasets and Methods

Since the ordering of the networks (or components) estimated using different methods and 

datasets is arbitrary, we used the Hungarian matching algorithm (Kuhn 1955) to find the 

correspondences between networks estimated with different methods and datasets. 

Essentially, the networks were relabeled so as to maximize the spatial agreement between 

corresponding networks.

In particular, HCP clustering estimates were reordered to match the GSP clustering 

estimates by maximizing the number of vertices belonging to corresponding networks across 

the datasets. Similarly, the HCP LDA estimates were reordered to match the GSP LDA 

estimates by maximizing the correlation between Pr(vertex | network) of corresponding 

networks across datasets2.

To match clustering estimates with LDA estimates, we thresholded the LDA estimates to 

obtain winner-takes-all parcellations. The clustering estimates were then reordered to match 

the winner-takes-all LDA estimates by maximizing the number of vertices belonging to 

corresponding (winner-takes-all) networks across methods.

1http://www.cs.princeton.edu/~blei/lda-c/
2Using a different measure (e.g., KL-divergence) achieves the same results.
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Finally, we found 17 of the 20 ICA components that best correspond to the 17 LDA 

estimates by maximizing the correlation between Pr(vertex | LDA network) and the un-

thresholded, un-normalised Z-score ICA maps of corresponding networks across methods.

 Visualization

Clustering, LDA and ICA estimates were transformed from FreeSurfer surface space (Dale 

et al. 1999; Fischl et al. 1999a; 1999b) to the PALS-B12 surface space for visualization 

using Caret (Van Essen, 2005). Network colors match Yeo et al. (2011). Lines representing 

clustering boundaries were smoothed to remove high spatial frequency jaggedness resulting 

from mapping the data to PALS space.

 Comparison of Network Estimates in GSP and HCP Datasets

The 7-network clustering and LDA analyses of the GSP and HCP datasets are shown in 

Figure 1. Since each LDA network comprises a probability distribution over vertices 

Pr(vertex | network), we can visualize each distribution as a map over the cortex. Because 

LDA is a Bayesian model, there is no obvious threshold for displaying the probability maps. 

Given that there are 18715 vertices and the probability distribution sums to one over all the 

vertices, any probability larger than 1/18715 is above expectation. Here, we chose a 

relatively stringent threshold of 1e-4 (roughly two times 1/18715). The LDA estimates in 

Figure 1 were overlaid on the boundaries of the respective 7-network clustering estimates in 

the GSP and HCP datasets. The boundaries allowed the comparison between the clustering 

and LDA estimates.

The 17-network clustering and LDA analyses of the GSP and HCP datasets are shown in 

Figures 3 and 4. Because of the small number of subjects in the HCP dataset, we will focus 

our interpretation on the similarities between the HCP and GSP estimates.

Supplemental Figures 1 and 2 juxtapose 7 of the 17 corresponding LDA networks and ICA 

components in the GSP and HCP datasets respectively. To foreshadow the results, ICA and 

LDA provide very similar network estimates, except for negative spatial weights in the ICA 

estimates. Both ICA and LDA decompose a signal into a linear combination of component 

signals (Lee and Seung, 1999). For LDA, only additive combinations are allowed. This is in 

contrast with ICA, which may allow component signals to cancel each other out via 

subtractions (Lee and Seung, 1999). Therefore, the non-negativity constraints in LDA are 

compatible with the intuitive notions of combining parts to form a whole (Lee and Seung, 

1999). It may be the case that the negative spatial weights in ICA are functionally 

meaningful, but assessment is difficult since ground-truth network estimates are not 

available. Consequently, we chose to focus on the LDA results3.

 Robustness to Number of Networks

As discussed in our previous paper (Yeo et al. 2011), the focus on 7-network and 17-network 

solutions should not be taken to imply that meaningful properties are absent in alternative 

3We note that this negative spatial weight issue is different from the anti-correlations issue discussed in the functional connectivity 
literature (Fox et al. 2009; Murphy et al. 2009).
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parcellation schemes. By focusing on both a relatively coarse solution (7 networks) and a 

fine-resolution solution (17 networks), we hoped to capture broad aspects of the solution 

space that were consistent within these relative extremes. However, we observed stable 

results for other network parcellations as well (e.g. 10 &12 networks, see Figure 6 of Yeo et 

al. 2011). To ensure our present results are robust to the choice of 7 and 17 networks, we 

estimated 4, 6, 8, 10, 12, 16, 18 and 30 networks by applying clustering and LDA to the GSP 

dataset (Supplemental Figure 3).

 Quantifying Overlap Between Networks

To assess the overlap between networks, we computed Pr(network | vertex) for each vertex 

by applying Bayes’ rule to Pr(vertex | network) and assuming each network is equally likely, 

i.e., Pr(network) = 1/K. Since Pr(network | vertex) sums to 1 over the estimated K networks, 

any probability larger than 1/K is above expectation. For each vertex, we consider the 

number of networks with Pr(network | vertex) above 1/K as a rough measure of the number 

of networks the vertex is participating in. Figure 2A shows the map of the number of 

networks each vertex participates in. For this analysis we focus on the most stable solution – 

7-network LDA results for the GSP dataset.

To quantify the distribution of multiple-network participation across the cerebral cortex, we 

computed the fraction of vertices participating in more than one LDA network for each 

network of the 7-network clustering estimates (Figure 2B). Vertices within 10mm of 

clustering boundaries were excluded from this analysis because they might reflect 

uncertainties in the network estimates. We also computed the fraction of vertices 

participating in more than one LDA network for each winner-takes-all LDA network 

(Supplemental Figure 4). Vertices within 10mm of the winner-takes-all LDA boundaries 

were excluded from this analysis.

To ensure the above analysis was robust to the choice of threshold for Pr(network | vertex), 

we repeated the analysis using a more liberal threshold of 0.75/K and a more conservative 

threshold of 1.25/K (Supplemental Figure 5). We also repeated the analysis with 6-network 

and 8-network LDA estimates to ensure our results were robust to the choice of number of 

networks (Supplemental Figure 6).

As the results will show, the default and dorsal attention networks have the greatest 

proportion of regions participating in multiple networks. Therefore, we identified brain 

regions that (1) were at least 10mm away from both 7-network clustering and winner-takes-

all LDA boundaries, (2) participated in multiple networks from the 7-network estimate and 

either (3a) participated in multiple networks (from the 17-network LDA estimate) that 

overlapped significantly with the default network or (3b) participated in multiple networks 

(from the 17-network LDA estimate) that overlapped significantly with the dorsal attention 

network. We explored the participation of these regions in multiple networks from the 17-

network LDA estimates (Figures 3 and 4).

 LDA Estimates in Individual Subjects

To ensure the network organization we discovered was not an artifact of intersubject 

averaging, we applied the 7-network LDA model to individual sessions of each HCP subject. 

Yeo et al. Page 8

Neuroimage. Author manuscript; available in PMC 2015 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This also allowed us to evaluate the test-retest reliability of the LDA estimates. The LDA 

estimates of both sessions of subjects with the best (Figure 5) and median (Figure 6) test-

retest reliability are juxtaposed.

 Global Signal Regression

The regression of global signal during fcMRI preprocessing can introduce negative 

correlations between brain regions (Fox et al. 2009; Murphy et al. 2009). To ensure the 

network organization we discovered was robust to variations in fcMRI preprocessing, we 

randomly selected a subset of 100 subjects from the GSP dataset and processed them 

without global signal regression. We referred to this data as the non-GSR dataset. We then 

estimated 7 and 17 networks from this non-GSR dataset using both von Mises-Fisher 

clustering and LDA (Supplemental Figure 7).

 Degenerate High-Likelihood Clustering and LDA Estimates

While we have focused on network estimates with the highest likelihood, there might be 

degenerate or alternate network estimates with high likelihood values that are topologically 

distinct from the best estimates (Good et al., 2010). Given that these degenerate estimates 

have likelihood values close to the best estimate, slight variations of the original models 

might result in these alternate network estimates becoming the best solutions. Consequently, 

we employed two different approaches to explore whether the network organization of the 

degenerate solutions agrees with that of the best estimate (c.f. Rubinov and Sporns, 2011).

First, we assessed whether degenerate estimates exhibited parallel large-scale networks in 

association cortex by exploring the solution space of the von Mises-Fisher mixture model 

obtained from 1000 different random initializations. We computed the overlap agreement 

between each of the 1000 estimates and the best estimate in the GSP dataset (Figure 7A). In 

addition, we computed an “exhaustive” set of 7-network clustering estimates that are 

representative of the 1000 random initializations (Figure 7B). We determined this 

“exhaustive” set as follows. We first initialized the “exhaustive” set to consist only of the 

best clustering estimate (i.e., estimate with the highest likelihood). We then iterated the 

following procedure until convergence. At each iteration, among all clustering estimates 

with less than 80% overlap with the current “exhaustive” set of clustering estimates, we 

added the clustering estimate with the highest likelihood to the “exhaustive” set. The 

procedure therefore allowed us to select a subset of clustering solutions that were the most 

different from each other and spanned the solution space of the mixture model. The 80% 

overlap threshold was chosen because we found (empirically) that estimates with more than 

80% overlap were extremely similar (visually).

Second, to assess whether degenerate estimates exhibited the property that many association 

regions participated in multiple networks, we computed the number of networks each vertex 

participates in, averaged across the 100 random initializations of the 7-network and 17-

network LDA (Figure 8).
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 Results

 Clustering Estimates of GSP and HCP datasets

The 7-network clustering estimates of the GSP and HCP datasets were similar (top row of 

Figure 1), with 78% of vertices identically labeled within the entire cerebral cortex. Five of 

the networks were highly similar across the two datasets, with overlaps between the 

somatomotor (blue) and visual (purple) networks at more than 90%. Notable differences 

included portions of the default (red) network in the GSP dataset classified as part of the 

limbic (cream) network in the HCP dataset. This may relate to differences in signal-to-noise 

around regions of high susceptibility (which severely influences estimates of the limbic 

network). The overlap of the 17-network clustering estimates (not shown) between the GSP 

and HCP datasets was 69%.

 LDA Estimates of GSP and HCP datasets

The 7-network LDA estimates of the GSP and HCP datasets were similar (rows 2-8 of 

Figure 1). The mean of the Pearson correlations of the seven pairs of LDA network estimates 

was 0.93. The worst pair of networks was correlated at 0.91. The mean pairwise correlation 

of the 17-network LDA estimates was 0.82. Details of several example networks are 

discussed below.

 ICA Estimates of GSP and HCP datasets

The LDA and ICA estimates were similar in the GSP (Supplemental Figure 1) and HCP 

(Supplemental Figure 2) datasets. The means of the Pearson correlations between 17 

corresponding pairs of networks were 0.72 in the GSP dataset and 0.62 in the HCP dataset. 

Given the similarities between ICA and LDA (except for the negative spatial weights in the 

ICA estimates), we will focus on the LDA estimates.

 Broad Properties of Clustering and LDA Estimates of Cortical Organization are Similar

A critical question is the degree to which the winner-takes-all and LDA approaches converge 

on the same basic network organization. The agreement between the 7-network clustering 

and LDA estimates can be visually appreciated by looking at the correspondences between 

the LDA estimates and clustering boundaries (rows 2-8 in Figure 1).

The overlap between the 7-network clustering estimates and the winner-takes-all LDA 

estimates in the GSP dataset was 82%, while the overlap in the HCP dataset was 88%. The 

overlap between the 17-network clustering estimates and the winner-takes-all LDA estimates 

in the GSP dataset was 70%, while the overlap in the HCP dataset was 63%.

 Robustness to Number of Networks

The focus on 7- and 17-network estimates should not be taken to imply that meaningful 

properties are absent in alternative parcellation schemes. We found similar agreement 

between the clustering and LDA estimates for 4, 6, 8, 10, 12, 16, 18 and 30 networks in the 

GSP dataset; the overlap agreement between the clustering estimates and the winner-takes-

all LDA estimates were 98%, 71%, 85%, 77%, 84%, 74%, 64% and 55% respectively. 

Supplemental Figure 3 shows the clustering estimates for the different number of networks.
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The qualitative visualization and quantitative estimates suggest that the broad topographic 

organization of cortical networks (Yeo et al. 2011) is not an artifact of the requirement that 

each cortical region must belong to a single network. Nonetheless, differences do emerge 

from the two approaches, and these are the topic of the remaining results.

 Association Cortex Shows More Pervasive Network Participation Than Visual and 
Somatomotor Cortices

As a first step in visualizing properties of cortical organization revealed by LDA, we plotted 

the number of networks each cortical region participates in for the 7-network LDA estimates 

in the GSP dataset (Figure 2A). This number was obtained by counting for each vertex the 

number of networks whose Pr(network | vertex) exceeded 1/7. What is immediately apparent 

is that many cortical association regions participate in at least two functional connectivity 

networks.

To quantify the distribution of multiple-network participation across the cerebral cortex, the 

fraction of vertices participating in multiple LDA networks for each network of the 7-

network clustering estimates is shown in Figure 2B. Vertices within 10mm of clustering 

boundaries were excluded because they might reflect uncertainties in the network 

estimations. The dotted line indicates that 44% of the vertices (at least 10mm away from 

clustering boundaries) participate in multiple networks.

Many cortical association regions participated in at least two functional connectivity 

networks (Figure 2B). This was in contrast with large portions of early sensory and late 

motor cortices that participated in a single network. In particular, the dorsal attention 

network, the ventral attention network, the frontoparietal control network and the default 

network had above average numbers of cortical vertices participating in multiple networks. 

In contrast, the visual network, the somatomotor network and the limbic network had below 

average number of cortical vertices participating in multiple networks.

We obtained consistent results when we computed the fraction of vertices participating in 

multiple LDA networks for each winner-takes-all LDA network (Supplemental Figure 4) or 

when we repeated the analyses with different thresholds (Supplemental Figure 5) or different 

number of networks (Supplemental Figure 6).

Across analyses (Figure 2B and Supplemental Figures 4 to 6), the default and dorsal 

attention networks had the largest proportions of brain vertices participating in multiple 

networks. To explore this phenomenon further, we identified brain regions in the left 

hemisphere that (1) were at least 10mm away from both clustering and winner-takes-all 

LDA boundaries, (2) participated in multiple networks from the 7-network estimate and (3) 

participated in multiple networks (from the 17-network LDA estimate) that overlapped 

significantly with the default network (from the 7-network estimate). Four regions were 

identified (black asterisks in Figure 2A): precuneus (PCUN), lateral temporal cortex (LTC), 

posterior parietal cortex (PPC) and medial prefrontal cortex (MPFC). Their MNI coordinates 

are reported in Table 1. It is worth pointing out that the PCUN region was surrounded by a 

band of regions participating in only one network, suggesting that its participation in 

multiple networks was not due to spatial blurring across network boundaries.
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We also selected brain regions in the left hemisphere that (1) were at least 10mm away from 

both clustering and winner-takes-all LDA boundaries, (2) participated in multiple networks 

from the 7-network estimate and (3) participated in multiple networks (from the 17-network 

LDA estimate) that overlapped significantly with the dorsal attention network (from the 7-

network estimate). Two regions were identified (green asterisks in Figure 2A) and they are 

putative homologues of macaque areas LIP (lateral intraparietal) and FEF (frontal eye fields) 

based on a meta-analysis of fMRI literature (Yeo et al., 2011). Coordinates of these two 

regions are reported in Table 1.

We now explore the participation of the default regions in multiple paralimbic networks and 

the dorsal attention regions in multiple hierarchically organized networks in the 17-network 

LDA estimates.

 Overlapping Components of Multiple Paralimbic Networks

The 17-network clustering estimates in the GSP and HCP datasets are juxtaposed in Figure 

3A. Figure 3B shows four paralimbic networks from the 17-network LDA estimates. The 

networks overlapped significantly with brain regions typically associated with the default 

network. The asterisks (Figure 3B) correspond to the default regions defined in Table 1. An 

asterisk is colored black if Pr(vertex | network) > 1e-4 at that brain location. Therefore both 

the PCUN and PPC regions preferentially participated in paralimbic networks 1, 2 and 4; the 

MPFC region preferentially participated in paralimbic networks 1, 3 and 4; the LTC region 

preferentially participated in all four paralimbic networks.

 FEF and LIP are Involved in Multiple Hierarchically Organized Networks

The 17-network clustering estimates in the GSP and HCP datasets are juxtaposed in Figure 

4A. Figure 4B shows four networks from the 17-network LDA estimates that overlap 

significantly with brain regions typically associated with the dorsal attention network. These 

networks are likely the homologue of the well-studied hierarchical visuomotor pathway in 

macaques (Maunsell and Van Essen, 1983). The asterisks (Figure 4B) correspond to the 

dorsal attention regions defined in Table 1. An asterisk is colored black if Pr(vertex | 

network) > 1e-4. Therefore the LIP-homologue region preferentially participated in all four 

networks, while the putative FEF region preferentially participated in networks 2, 3 and 4. 

The visual hierarchy from early visual cortex to superior parietal cortex and frontal eye 

fields was noted in Yeo et al. (2011) via a series of seed-based functional connectivity 

analyses. As this example illustrates, LDA detected overlap among functional networks 

comprising early retinotopic visual areas and other components of this sensory-motor 

processing stream that were lost when making a winner-take-all assumption.

 Cortical Network Structure can be Detected in Individual Subjects

Many research goals require analysis of imaging data at the individual subject level. The 

HCP dataset provides high quality datasets that are obtained twice in participants over 

separate days. To ensure the network organization we discovered was not an artifact of 

averaging across subjects, we analyzed these data to determine whether LDA networks 

could be detected within individual subjects and whether they would show reliability.
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Pairwise correlation of the 7-network LDA estimates between the two sessions of each 

subject was 0.60 on average. The best subject had a mean pairwise correlation of 0.75. The 

median subject had a mean pairwise correlation of 0.61. Nine of the twelve subjects had 

average correlations of at least 0.56, suggesting moderate reliability.

The 7-network LDA estimates of the best and median subjects are shown in Figures 5 and 6. 

The estimated networks were well replicated across the two sessions even for the median 

subject. This is consistent with previous assessments of test-retest reliability of resting-state 

networks (Shehzad et al., 2009; Zuo et al., 2010).

In both subjects (Figures 6 and 7), the visual (row 1), somatomotor (row 2) and paralimbic 

(rows 6 and 7) networks were well replicated. However, the dorsal attention (green), ventral 

attention (violet) and frontoparietal control (orange) networks tended to inter-mix across 

sessions (rows 3 to 5 of Figures 5 and 6). This is not surprising given that the regions from 

these networks are correlated (Fox et al. 2006; Yeo et al. 2011). For example, dorsal 

attention regions are known to correlate with ventral attention regions (Fox et al. 2006; Yeo 

et al. 2011).

 Choice of Thresholding LDA Estimates

We should emphasize that the choice of thresholding the LDA networks at 1e-4 was not 

critical for our analyses. While thresholding Pr(vertex | network) networks was necessary to 

visualize the results, statistics of agreement among different data-driven approaches and 

datasets (Figure 1, Supplemental Figures 1 and 2) were computed independent of the 

threshold. Similarly, statistics for test-retest reliability (Figures 5 and 6) were computed 

independent of the threshold. Finally, given the relatively stringent threshold of 1e-4 (almost 

twice the minimal threshold of 1/18715), using a lower threshold would simply confirm our 

broad point that different cortical regions identified in Table 1 were involved in multiple 

subnetworks (Figures 3 and 4).

 Cortical Network Structure is Invariant to Global Signal Regression

To ensure the network organization we discovered was not an artifact of global signal 

regression (GSR) during fcMRI preprocessing, we estimated 7 and 17 networks in the non-

GSR dataset consisting of 100 GSP subjects processed without global signal regression. The 

7-network and 17-network clustering estimates from the non-GSR dataset are shown in 

Supplemental Figure 7. We found excellent agreement between the network estimates from 

the non-GSR and full GSP datasets. In particular, the overlap of the 7-network clustering 

estimates was 95%, while the overlap of the 17-network clustering estimates was 91% 

across the two datasets. The mean pairwise correlation of the 7-network LDA estimates was 

0.99, while the mean pairwise correlation of the 17-network LDA estimates was 0.85 across 

the two datasets.

 Cortical Network Structure is Replicated in Degenerate Network Estimates

Finally, we assessed whether degenerate network estimates reaffirmed the network 

organization we discovered. Figure 7A plots the overlap between the best 7-network 

clustering estimate and estimates derived from the 1000 random initializations using the 
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GSP dataset. The clustering estimates were ordered from the highest likelihood (best 

estimate) to the smallest likelihood. Out of 1000 random initializations, 415 resulted in 

solutions with overlap of over 90% with the best solution, suggesting the best estimate 

corresponds to a robust local optimum.

Figure 7B shows the “exhaustive” set of 7-network clustering estimates. The eight clustering 

estimates were selected to be different from each other and spanned the solution space of the 

mixture model. Even though the seven “degenerate” clustering estimates do not have the 

highest likelihoods, they still explained interesting variance in the data. For example, three 

degenerate solutions fractionate the somatomotor cortex into dorsal-ventral portions, just 

like in the best 17-network estimate (Figure 3A).

Importantly, while the details of the clustering estimates varied, the broad property that early 

sensory and late motor cortices appeared to participate in preferentially local networks was 

also found across all degenerate solutions. Furthermore, (1) each association network 

spanned multiple lobes and (2) the components of multiple networks were spatially adjacent. 

Therefore, the broad property that the human association cortex consisted of multiple, 

parallel networks was found across all degenerate solutions.

Similarly, we found that across 100 random initializations of the 7-network and 17-network 

LDA (Figure 8), many association regions appeared to participate in multiple networks, 

while large portions of early sensory and late motor cortices participated in single networks.

 Discussion

Complex behaviors are subserved by distributed networks of specialized brain areas (Posner 

et al., 1988; Distler et al., 1993; Mesulam 1998; Shadlen and Newsome, 2001). In this work, 

we show that the human association cortex consists of multiple, interdigitated distributed 

networks in contrast to early sensory and late motor cortices participating in preferentially 

local networks (Figure 1). Many association regions appear to participate in multiple 

networks, while large portions of early sensory and late motor cortices participate in single 

networks (Figure 2; Supplemental Figure 4). We demonstrate examples of overlapping 

paralimbic networks (Figure 3) and overlapping hierarchically organized networks (Figure 

4). This architecture was detected and replicated in individual subjects (Figures 5 and 6). 

Additional control analyses confirmed similar network organization regardless of global 

signal regression (Supplemental Figure 7) and across degenerate network estimates (Figures 

7 and 8). The overlaps among networks may provide clues to the network interactions that 

support human cognition.

 Association Cortex Comprises Interdigitated, Segregated Large-Scale Circuits

Our findings suggest that the early sensory and late motor cortices participate in 

preferentially local networks (Figure 1; also see Sepulcre et al. 2010). In contrast, the 

association cortex comprises interdigitated, partially overlapping large-scale circuits 

(Figures 1 and 2; Supplemental Figures 1 and 2). The key features of this organization are 

that (1) each association network consists of strongly coupled brain regions spanning frontal, 
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parietal, temporal, and cingulate cortices, and (2) the components of multiple networks exist 

adjacent to each other and are partially overlapping.

This organization is replicable across datasets (GSP and HCP) and techniques (clustering, 

LDA and ICA; Figure 1 and Supplemental Figures 1 and 2). Although details may differ, we 

can replicate this general organization across different number of estimated networks 

(Supplemental Figure 3), with and without global signal regression (Supplemental Figure 7) 

and across degenerate network estimates (Figure 7). Finally, the organization can be detected 

in individual subjects and replicated across sessions in the HCP dataset (Figures 5 and 6), 

indicating that this parallel architecture is not an artifact of group averaging.

Given the convergence in cortical network organization across datasets and methods, it is 

surprising that this parallel organization has not been emphasized in previous ICA analyses. 

We suspect the main reason is that the winner-takes-all approach allows us to juxtapose the 

spatial organization of different networks in one single map (top row of Figure 1), as 

opposed to more sophisticated approaches allowing for multiple memberships (bottom rows 

of Figure 1). The parallel architecture is easily appreciated in the top row of Figure 1, but is 

less clear in the bottom rows, even though the estimated networks are extremely similar 

(88% overlap in the HCP dataset). Furthermore, most previous analyses (e.g., Beckmann et 

al., 2005; Damoiseaux et al., 2006; De Luca et al., 2006; Smith et al., 2009) visualized the 

estimated networks (components) using brain slices, making it difficult to appreciate 

complex topographic relationships.

 Estimates of Segregation and Overlap of Functional Connectivity Networks

In general, network overlaps occur throughout association cortex (Figure 2a). These overlaps 

do not exclusively co-localize with the presence of a border (Figure 2b; Table 1; 

Supplemental Figure 4). We exclude these boundary regions in our analyses (Figure 2b; 

Table 1; Supplemental Figure 4) because they may reflect uncertainties in the network 

estimations (c.f. Power et al., 2013). The default and dorsal attention networks have the 

largest proportions of brain vertices participating in multiple networks (Figure 2b; 

Supplemental Figure 4). These results can be replicated with different number of networks 

(Supplemental Figure 5), different thresholds (Supplemental Figure 6) and across degenerate 

network estimates (Figure 8).

We will focus on the dorsal attention and default networks in the following sections. 

However, we should emphasize that regions in other association networks also participate in 

multiple networks. Our emphasis on the default and dorsal attention networks may simply be 

due to their large sizes and our exclusion of regions close to network boundaries. This 

necessarily precludes investigation of the smaller regions of any network, though examples 

of regions possessing multiple network membership can be found in all networks at the 

resolution examined.

For example, there are regions in the posterior cingulate sulcus portion of the ventral 

attention network (area 5Ci; Scheperjans et al. 2008a, 2008b) at least 10mm away from any 

network boundaries, which also participate in the dorsal attention network (rows 4 and 5 of 

Figure 1). This is consistent with the correlations (Fox et al., 2006; Yeo et al., 2011) and 
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close functional relationships (Corbetta and Shulman, 2002; Corbetta et al., 2008) between 

the two networks. Corbetta et al. (2008), as part of a review, noted that a region of right 

prefrontal cortex overlapped the dorsal and ventral attention systems, providing a candidate 

region for allowing interactions between the otherwise distinct systems (also see Asplund et 

al., 2010). The present results suggest the cingulate is also a potential point of interaction 

with the caveat that, for all such observations, it is difficult to know whether there is true 

spatial convergence or distinct modules are present below our level of resolution. With this 

caveat in mind, we now focus our attention on two examples of overlapping networks.

 Overlapping parallel paralimbic networks—Numerous lines of evidence from both 

human imaging and non-human primate anatomical tract tracing suggest the existence of a 

network of brain regions, known as the default network, involved in internal mentation (for 

reviews, see Buckner et al., 2008; Binder et al., 2009). These regions include the medial 

temporal lobe, posterior medial cortex (precuneus and posterior cingulate cortex), medial 

prefrontal cortex, inferior parietal cortex and lateral temporal cortex.

Recent evidence (Laird et al., 2009; Andrews-Hanna et al, 2010; Leech et al., 2011; Yeo et 

al., 2011) suggests functional heterogeneity within the default network. In particular, 

Andrews-Hanna et al. (2010) suggested that the posterior cingulate cortex (PCC) and the 

(anterior) medial prefrontal cortex (MPFC) form the core of two overlapping default sub-

networks. Our current analysis extends Andrews-Hanna's results, suggesting that the 

precuneus (PCUN), medial prefrontal cortex (MPFC), lateral temporal cortex (LTC) and 

posterior parietal cortex (PPC) participate in multiple paralimbic networks that overlap 

traditional default network regions (Figure 3). In particular, our analysis highlights the LTC, 

which appears to participate in all four paralimbic networks.

Previous results have suggested functional heterogeneity within the posterior medial cortex 

(Laird et al., 2009; Margulies et al., 2009; Leech et al., 2011; Fornito et al., 2012). Our 

results also suggest the presence of such heterogeneity. For example, the PCC appears to 

preferentially participate in paralimbic networks 1 and 4 (Figure 3), while PCUN (asterisk in 

Figure 3) preferentially participates in paralimbic networks 1, 2 and 4.

While we have focused on its involvement in paralimbic networks (Figure 3), the PCUN 

region may also participate in a network that prominently includes the specific rostral 

regions of prefrontal cortex (row 5 in Supplemental Figures 1 and 2), although the 

involvement is clearer in the LDA estimates than in the ICA estimates. Since the rostral 

prefrontal cortex is implicated in tasks requiring complex rule application (e.g., Badre and 

D'Esposito, 2007), this network might be involved in higher-order cognitive control. This 

may be consistent with heterogeneity of the precuneus previously reported, such as 

“Cognitive/Associative Central Precuneus” in Marguiles et al. (2009) and “Frontoparietal 

Network” in Fornito et al. (2012).

 Overlapping hierarchical networks in a canonical sensory-motor pathway—
While the early sensory and late motor cortices mostly participate in single networks (Figure 

2b; Supplemental Figure 4), there are exceptions. For example, overlaps between the sensory 

and motor networks with the dorsal attention network in association cortex (Figure 4) may 
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be expected from the non-human primate connectivity anatomical studies (Felleman and Van 

Essen, 1991) and may be involved in the hierarchical flow of information among sensory 

and motor areas.

The canonical sensory-motor pathway, including retinotopic visual cortex, the MT+ 

complex, parietal area LIP and the FEF, has been well characterized in the monkey 

(Maunsell and Van Essen, 1983; Andersen et al. 1990; Colby and Goldberg 1999; Shadlen 

and Newsome 2001; Gold and Shadlen 2007). The idea is that visual information propagates 

from early visual areas to MT+, which constrains decision processes arising from 

interactions with LIP and FEF in the upper stages of the hierarchy. The anatomical 

connectivity among the areas within this pathway has been extensively explored in 

nonhuman primates (Maunsell and Van Essen 1983; Felleman and Van Essen, 1991). In the 

human literature, this pathway has been studied both in relation to spatially directed 

movements and also in relation to spatial attention, with components of the pathway 

sometimes referred to as the dorsal attention network (Corbetta and Shulman, 2002).

This visual hierarchy was tested in Yeo et al. (2011) via a series of seed-based functional 

connectivity (also see Sepulcre et al., 2012b). The seed-based analysis was necessary 

because the winner-takes-all approach does not capture information about interactions 

among regions that fall in separate networks (Yeo et al., 2011). In contrast, the LDA estimate 

of cortical networks detects overlap among functional networks comprising early retinotopic 

visual areas and other components of this sensory-motor processing stream that were not 

previously appreciated (Figure 4).

In particular, the estimated human LIP homologue is involved in all four networks in Figure 

4, including a network comprising mostly regions in the occipital lobe (network 1), a 

network comprising mostly regions in occipital and parietal lobes (network 2), a network 

comprising mostly regions in parietal and frontal lobes (network 3) and a higher association 

network spanning parietal, temporal and frontal lobes (network 4). Therefore networks 2 and 

3 may serve as a bridge between early visual cortex (network 1) and higher association 

cortex (network 4). The FEF region is preferentially involved in the association networks 

(Networks 2-4), but less so in the early visual network (network 1), consistent with the fact 

that FEF occupies a higher position than LIP in the sensory-motor hierarchy (Maunsell and 

Van Essen 1983; Felleman and Van Essen, 1991).

 Parallel Architecture, Network Interactions and Human Behavior

The neurophysiological literature has long recognized the importance of network 

interactions to cognition (e.g., Buzsáki and Draguhn, 2004; Fries 2005; Akam and Kullman, 

2010; Buschman et al., 2012). In recent years there has been increasing interest to use 

human brain imaging to study how functionally distinct networks interact to support 

complex behaviors (Spreng et al., 2010; Bassett et al., 2011; de Pasquale et al, 2012; Fornito 

et al., 2012; Spreng et al., 2013).

Our current work suggests that a particularly robust form of interaction might take place in 

association cortex (Figures 2, 3 and 4; Supplemental Figure 9). This is consistent with 

anatomical evidence that heteromodal association regions serve as critical gateways for 

Yeo et al. Page 17

Neuroimage. Author manuscript; available in PMC 2015 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



information processing (Pandya and Kuypers, 1969; Jones and Powell, 1970; Goldman-

Rakic 1988; Mesulam 1998). While we have emphasized long-distance interactions by 

focusing on overlapping regions at some distance from network boundaries (Figures 2b, 3 

and 4), the interdigitated topography of networks in association cortex suggests a stereotypic 

spatial architecture, through which network components can locally interact with adjacent 

components of other functionally distinct networks (also see Power et al., 2013). In other 

words, local interactions among networks may occur within recurrent spatial patterns or 

motifs (Sporns and Kotter, 2004; Bullmore and Sporns, 2009; Rubinov and Sporns, 2010; 

Power et al., 2011). The expectation is that these local and distant interactions among 

functionally distinct networks facilitate emergent complex behaviors.

This network organization can be detected and replicated in individual subjects, although the 

details might vary across sessions and across subjects, especially in the association cortex 

(Figures 5 and 6). This variability in network organization may underlie individual 

differences in behavior or even variability in behavior within a subject. This would be 

consistent with recent results showing that intersubject variability in functional connectivity 

is the highest in the association cortex, with regions predicting individual differences in 

cognitive domains predominantly located in regions of high connectivity variability (Mueller 

et al., 2013).

The distributed association networks converge on cortical regions that are late to develop 

(Hill et al., 2010) and are expanded in the human brain relative to the macaque brain (Van 

Essen and Dierker, 2007). Therefore, these distributed association networks have likely been 

under strong selective pressure to expand in recent hominin evolution. Consequently, even 

though this parallel architecture may also exist in monkeys (Goldman-Rakic 1988), the 

details of the interdigitation and overlaps (Figures 1, 3 and 4) may differ from monkeys and 

contribute to human cognition (see Buckner and Krienen, in press for discussion).

 Limitations and Future Work

Tract tracing and physiological studies in monkeys and cats suggest that the cerebral cortex 

forms spatially organized circuits that include prominent connections with subcortical 

structures (for review, see Haber 2003; Jones 2007; Strick et al., 2009). In the present work 

we limit our analysis to the cerebral cortex, and therefore do not consider interactions 

between the cerebral cortex and subcortical structures. This limitation is partly 

methodological. Subcortical structures have significantly lower signal-to-noise ratio than the 

cerebral cortex and so are typically analyzed separately in functional connectivity studies 

(Di Martino et al. 2008; Zhang et al. 2008; Krienen and Buckner, 2009; Buckner et al., 

2011; Choi et al., 2012; Dobromyslin et al., 2012; but see Habas et al., 2009; O'Reilly et al., 

2010). Our (unpublished) observations suggest that including subcortical structures with 

cortical analyses would probably not alter the estimated cortical networks, even though 

subcortical results might be suboptimal. Consequently, we focus on the cerebral cortex in 

this paper. We are currently exploring techniques that can more effectively jointly analyze 

cortical and subcortical structures.

In addition, this work focuses on the spatial relationships among resting-state functional 

connectivity networks. The parallel architecture and overlaps in hierarchical and paralimbic 
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networks suggest stereotypic spatial motifs in network interactions. However, our 

(essentially) correlational analyses will miss vital details of the dynamics of network 

interactions (Chang et al., 2010; de Pasquale et al, 2012; Smith et al., 2012; Hutchison et al., 

2013; Allen et al., In Press). Our resting-state analyses will also miss changes in network 

interactions as a result of task performance (Bassett et al., 2006; Spreng et al., 2010; Bassett 

et al., 2011; Fornito et al., 2012). These potential issues are outside the scope of this paper 

and will be addressed in future work.

The network organization we found is robust across datasets (GSP and HCP), preprocessing 

(with and without global signal regression), number of networks, degenerate/alternate 

network estimates and techniques (clustering, LDA and ICA). Although details vary, 

corroboration across the different analyses increases our confidence that the general 

organization of cortical networks is intrinsic to the data. However, we caution that the 

agreement among different techniques (clustering, LDA and ICA) may simply result from 

underlying assumptions common across the techniques. For example, while there are 

similarities between gradient-based (Cohen et al., 2008) and clustering/modularity-based 

parcellations (Power et al., 2011; Yeo et al., 2011), the boundaries in certain brain regions 

(e.g., visual cortex) can be qualitatively different (Wig et al., in press; Buckner and Yeo, 

under revision). While we suspect the general network organization we discovered would 

generalize to gradient-based parcellation, we leave this replication (or refutation) to future 

work.

 Conclusions

The human association cortex consists of multiple, interdigitated large-scale networks that, 

while partially overlapping, possess predominantly parallel organization. This architecture 

can be detected and replicated in individual subjects. Many, but not all, association regions 

appear to participate in multiple networks, including those that lie some distance from 

estimates of network boundaries. The present work suggests that it is possible to consider 

both the divergent and convergent nature of connectivity in the human cerebral cortex using 

functional connectivity MRI. Our results suggest that segregation and interdigitation of 

networks in association cortex may be a true feature of cortical organization and not an 

artifact of the methods used to estimate their topography.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We estimated overlapping cortical networks from resting fMRI data 

(N=1012).

• Many association regions involved in multiple interdigitated, segregated 

networks.

• Many sensory-motor regions involved in single, preferentially local, 

networks.

• Architecture converges across two datasets and three methods.

• Results replicable across sessions of individual Human Connectome Project 

subjects.
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Figure 1. 
Large-scale network organization is reliable across datasets (GSP and HCP) and across 

methods (clustering and LDA). Top row shows the 7-network clustering estimates of the 

GSP and HCP datasets in the left hemisphere. Overlap (fraction of vertices with same 

network labels) between GSP and HCP estimates was 78% across the entire cerebral cortex. 

Five (purple, blue, green, violet and orange) of the seven networks were virtually identical. 

Bottom rows show the 7-network LDA estimates of the GSP and HCP datasets overlaid on 

blue boundaries corresponding to the clustering estimates of respective datasets. All seven 
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LDA networks were highly similar across the two group datasets. The mean of the Pearson 

correlation coefficients of the seven pairs of LDA network estimates was 0.93. The colored 

squares (center column) indicate correspondences between the LDA and clustering 

estimates. For example, the LDA estimate in the second row correspond to the purple visual 

cluster. The percent overlap between the clustering and winner-takes-all LDA estimates in 

the GSP dataset was 82%, while the overlap in the HCP dataset was 88%.
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Figure 2. 
Regions of association cortex often participate in multiple cortical networks. Early sensory 

and late motor cortices are involved in fewer networks than many association regions. (A) 

The colors represent the number of LDA networks each cortical region participates in for the 

7-network LDA estimate in the GSP dataset. The number was computed by counting for 

each vertex the number of networks whose Pr(network | vertex) exceeds 1/7. Boundaries 

correspond to 7-network clustering solution in GSP dataset. The black asterisks correspond 

to default network regions that (1) were at least 10mm from both the clustering and winner-
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takes-all LDA boundaries and (2) participated in multiple networks. The blue asterisks 

correspond to dorsal attention regions that (1) were at least 10mm from both the clustering 

and winner-takes-all LDA boundaries and (2) participated in multiple networks. Table 1 

reports the MNI coordinates of the six regions. (B) Fraction of vertices within the 7-network 

clustering estimates participating in multiple networks. Only vertices at least 10mm away 

from the clustering boundaries are considered. The dotted line indicates that 44% of the 

vertices (at least 10mm away from clustering boundaries) participated in multiple networks. 

Visual: Visual network; SomMot: somatomotor network; DorsAttn: dorsal attention 

network; VentAttn: ventral attention network; Control: frontoparietal control network; 

Default: default network; Limbic: limbic network.
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Figure 3. 
The precuneus (PCUN), lateral temporal cortex (LTC), posterior parietal cortex (PPC) and 

medial prefrontal cortex (MPFC) participate in multiple subnetworks. (A) 17-network 

clustering estimates of the GSP and HCP datasets. Only left hemisphere estimates are 

shown. The percent overlap between the clustering estimates in the two datasets was 69%. 

(B) Four of the 17-network LDA estimates overlapping traditional default network regions 

are shown. The LDA networks in the 1st, 2nd and 4th panels overlap with the yellow, red 

and dark-blue networks in (A) respectively. Panel 3 shows the LDA network that overlaps 

with the gold and cream networks in (A). The asterisks correspond to the default regions 

(PCUN, LTC, PPC and MPFC) defined in Table 1. An asterisk is colored black if Pr(vertex | 

network) > 1e-4 at that brain location.
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Figure 4. 
The lateral intraparietal area (LIP) and frontal eye fields (FEF) participate in multiple 

subnetworks. (A) 17-network clustering estimates of the GSP and HCP datasets. Only left 

hemisphere estimates are shown. (B) Four of the 17-network LDA estimates overlapping 

traditional dorsal attention regions are shown. Panel 1 shows the LDA network that overlaps 

with the red and purple networks in (A). The LDA networks in the 2nd, 3rd and 4th panels 

overlap with the light-green, dark-green and orange networks in (A) respectively. The 

asterisks correspond to LIP and FEF defined in Table 1. An asterisk is colored black if 

Pr(vertex | network) > 1e-4 at that brain location. .
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Figure 5. 
Cortical networks are reliable within individual subjects. LDA of the HCP subject with the 

best test-retest reliability estimates is displayed. Top row corresponds to the 7-network 

clustering estimate of the entire HCP dataset. Bottom rows show the 7-network LDA 

estimates of the subject in two different sessions overlaid on the boundaries of the 7-network 

clustering estimate. The mean of the Pearson correlation coefficients of the seven pairs of 

network estimates was 0.75. The dotted lines indicate correspondences between the LDA 

networks across the two sessions. By visual inspection, the third and fourth networks in 
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session 1 were merged in session 2, while the fifth network in session 1 was split into two in 

session 2.
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Figure 6. 
Similar to Figure 6, LDA estimates of the HCP subject with the median test-retest reliability 

is displayed. Format is identical to Figure 6. The mean of the Pearson correlation 

coefficients of the seven pairs of network estimates was 0.61. The dotted lines indicate 

correspondences between the LDA networks across the two sessions. By visual inspection, 

the third, fourth and fifth networks in sessions 1 and 2 were inter-mixed across the sessions.
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Figure 7. 
Parallel network structure replicated across degenerate clustering estimates. (A) Overlap 

between the best 7-network clustering estimate and estimates derived from the 1000 random 

initializations using the GSP dataset. The clustering estimates were ordered from the highest 

likelihood (best estimate) to the smallest likelihood. Out of 1000 random initializations, 415 

resulted in solutions with at least 90% overlap with the best solution, suggesting the best 

estimate corresponds to a robust local optimum. (B) “Exhaustive” set of 7-network 

clustering estimates. The eight clustering estimates were selected to be different from each 

other and spanned the solution space of the mixture model. Similar to the best estimate, the 
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early sensory and late motor cortices participated in preferentially local networks in all 7 

degenerate solutions. Similarly, each association network spanned multiple lobes and the 

components of multiple networks were spatially adjacent.
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Figure 8. 
Pattern of network segregation and overlap replicated across degenerate LDA estimates. The 

plots show the number of LDA networks each cortical region participates in for the 7-

network and 17-network LDA estimates in the GSP dataset, averaged across 100 random 

initializations. Many association regions participated in multiple networks, while large 

portions of early sensory and late motor cortices participated in single networks.
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Table 1

Locations of Default and Dorsal Attention Network Regions That Participate in Multiple Networks

Brain Region MNI Coordinates Network Distance to clustering 
boundaries

Distance to winner-takes-all 
LDA boundaries

Precuneus (PCUN) −8, −57, 36 default 16mm 19mm

Lateral Temporal Cortex (LTC) −58, −11, −15 default 27mm 29mm

Posterior Parietal Cortex (PPC) −43, −67, 39 default 16mm 15mm

Medial Prefrontal Cortex (MPFC) −11, 46, −3 default 17mm 10mm

Lateral Intraparietal (LIP) area −28, −61, 60 dorsal attention 18mm 14mm

Frontal Eye Fields (FEF) −26, −6, 48 dorsal attention 14mm 11mm

Neuroimage. Author manuscript; available in PMC 2015 May 01.


	Abstract
	Introduction
	Materials and Methods
	Overview
	Datasets
	GSP MRI Data Acquisition and Preprocessing
	HCP MRI Data Acquisition and Preprocessing
	Clustering
	Latent Dirichlet Allocation (LDA)
	Spatial Independent Component Analysis (Spatial ICA)
	Matching Networks between Datasets and Methods
	Visualization
	Comparison of Network Estimates in GSP and HCP Datasets
	Robustness to Number of Networks
	Quantifying Overlap Between Networks
	LDA Estimates in Individual Subjects
	Global Signal Regression
	Degenerate High-Likelihood Clustering and LDA Estimates

	Results
	Clustering Estimates of GSP and HCP datasets
	LDA Estimates of GSP and HCP datasets
	ICA Estimates of GSP and HCP datasets
	Broad Properties of Clustering and LDA Estimates of Cortical Organization are Similar
	Robustness to Number of Networks
	Association Cortex Shows More Pervasive Network Participation Than Visual and Somatomotor Cortices
	Overlapping Components of Multiple Paralimbic Networks
	FEF and LIP are Involved in Multiple Hierarchically Organized Networks
	Cortical Network Structure can be Detected in Individual Subjects
	Choice of Thresholding LDA Estimates
	Cortical Network Structure is Invariant to Global Signal Regression
	Cortical Network Structure is Replicated in Degenerate Network Estimates

	Discussion
	Association Cortex Comprises Interdigitated, Segregated Large-Scale Circuits
	Estimates of Segregation and Overlap of Functional Connectivity Networks
	Overlapping parallel paralimbic networks
	Overlapping hierarchical networks in a canonical sensory-motor pathway

	Parallel Architecture, Network Interactions and Human Behavior
	Limitations and Future Work
	Conclusions

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Table 1

