Table 1.
The iterative algorithm of group sparse CCA.
| 1. Initialize u0 and v0 by traditional CCA decomposition, ∥u0∥2 = 1, ∥v0∥2 = 1. |
| 2. Solve Uj, Vj using the following iterations until it convergence: |
| (a) |
| (b) |
| (c) dj ← tr (Kvj (uj)t) or tr (Kuj (vj)t) |
| 3. Update the remaining matrix K ← K – tr(Kvut)uvt; go to Step (1) to obtain the next pair of loading vectors (u, v). |