Table 2.
Block coordinate decent for group sparse CCA.
| Input: iteration step j, uj, vj, ∥uj∥2 = 1, ∥vj∥2 = 1, λ1 , τ1. |
| Output: u j +1 |
| Solve uj using block coordinate decent until it convergence: |
| 1. For each group k = 0 to L |
| 2. Softk(Kv) = S((Kv)k, τ1), where S(·) is the soft-thresholding function. |
| 3. . |
| 4. Else |
| 5. . |
| 6. . |
| 7. End if |
| 8. End for |
| 9. . |
| 10. Repeat (1-9), until ∥uj+1 – uj∥2 ≤ ε, else uj = uj+1. |