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Abstract

Family-based genetic association studies of related individuals provide opportunities to detect

genetic variants that complement studies of unrelated individuals. Most statistical methods for

family association studies for common variants are single-marker-based, which test one SNP a

time. In this paper, we consider testing the effect of a SNP set, e.g., SNPs in a gene, in family

studies, for both continuous and discrete traits. Specifically, we propose a Generalized Estimating

Equations (GEE)-based kernel association test, a variance component-based testing method, to test

for the association between a phenotype and multiple variants in a SNP set jointly using family

samples. The proposed approach allows for both continuous and discrete traits, where the

correlation among family members is taken into account through the use of an empirical

covariance estimator. We derive the theoretical distribution of the proposed statistic under the null

and develop analytical methods to calculate the p-values. We also propose an efficient resampling

method for correcting for small sample size bias in family studies. The proposed method allows

for easily incorporating covariates and SNP-SNP interactions. Simulation studies show that the

proposed method properly controls for type-I error rates under both random and ascertained

sampling schemes in family studies. We demonstrate through simulation studies that our approach

has superior performance for association mapping compared to the single marker based minimum

p-value GEE test for a SNP set effect over a range of scenarios. We illustrate the application of the

proposed method using data from the Cleveland Family GWAS Study.
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1. INTRODUCTION

Family-based design is commonly used in many genetic association studies. Current

statistical methods for family data have mainly focused on individual-marker or single-SNP

analysis [Chen and Yang 2010; Li, et al. 2011b; Namkung 2012]. These methods can be

grouped into two major categories referred to as conditional methods and unconditional

methods. The conditional family-based analysis is based on evaluating the association

between a phenotype and the transmission of marker alleles within family members, such as

the transmission disequilibrium test (TDT) method and its various extensions (QTDT,

FBAT)[Laird and Lange 2006; Ott, et al. 2011]. These test statistics model the offspring

genotypes conditional on parental genotypes (if informative) within each family/pedigree.

Although inherently robust to population stratification, they can be less powerful than

unconditional methods, which are adapted from population based analysis, where both

within- and between-family variations can be incorporated. These methods directly model

the associations between phenotypes and genotypes of all individuals. The correlation

among family members is often taken into account in mixed models by including a random

polygenic effect [Wang, et al. 2013] or in generalized estimating equations (GEE) [Chen and

Yang 2010]. The unconditional methods also have gained increasing popularity recently

because they are computationally efficient and easy to integrate data with both family and

unrelated individuals.

As an important alternative to individual-marker-based tests, SNP-set association tests are

believed to be advantageous in several ways. Examples of a SNP set include SNPs in a gene,

pathway, network, or any region in the genome, such as a haplotype block. By incorporating

linkage disequilibrium (LD) and haplotype information among the markers being tested,

joint analysis of multiple markers can be more powerful in detecting associated variants with

small effects, and offer the possibility of capturing underlying joint effects such as SNP-

SNP interactions. In addition, the results obtained from SNP-set tests at the gene level can

be more readily extended to and integrated with downstream functional and pathogenic

investigation because a gene is the basic functional unit of inheritance[Li, et al. 2011a].

Several multi-marker methods have been proposed based on dimension reduction

techniques, such as Fourier transformation [Wang and Elston 2007], principal component

analysis [Wang and Abbott 2008] and partial least-squares regression [Chun, et al. 2011;

Wang, et al. 2009]. Methods that are based on combining the p-values of single marker tests

have also been proposed in view of their convenience in implementation and downstream

analysis [Dudbridge and Koeleman 2003; Yu, et al. 2009; Zaykin, et al. 2002]. However,

permutation procedures are often required for calculating p-values of these multi-marker

tests, because one needs to consider correlations among individual-marker test p-values,

which can be computationally expensive for large data sets. These SNP-set based methods

are, however, limited to case-control samples. In addition, their extensions to incorporate

family data may not be feasible. For example, permutation tests will be difficult to

implement when there are different family sizes in family studies.

Recently, a new category of methods that are based on kernel machines regression has

gained increasing popularity, such as the kernel machine (KM) test [Wu, et al. 2010; Wu, et

al. 2011], pairwise similarity [Mukhopadhyay, et al. 2009; Tzeng, et al. 2011; Tzeng, et al.

Wang et al. Page 2

Genet Epidemiol. Author manuscript; available in PMC 2014 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



2009; Wessel and Schork 2006] and the SSU test [Han and Pan 2010]. They provide a

flexible and computationally efficient framework for testing the joint effect of SNPs in a

SNP set, and have been shown as an attractive alternative to the standard multivariate test

under a variety of settings. The KM test is a variance component score test that assumes a

common distribution of regression coefficients of multiple SNPs and account for LD among

SNPs, and can improve the power by borrowing information across multiple SNPs. The KM

test has recently been extended to test for the effect of a SNP set in family based association

studies using mixed models for continuous phenotypes [Chen, et al. 2012; Schifano, et al.

2012]. However these mixed model based methods are difficult to apply directly to discrete

traits, such as binary traits, as logistic mixed models are more challenging to fit and their

likelihood does not have a closed form. Furthermore, the mixed model based SNP set test

requires the familial correlation to be correctly specified, which is difficult to ensure in

practice due to the presence of unmeasured genetic or shared environmental factors.

To overcome these limitations, in this paper we propose to test for the effects of a SNP set in

family based association studies for both quantitative and discrete phenotypes using the

generalized estimation equation approach. Specifically, a KM-like estimating equation based

statistic is constructed to test for the association between a phenotype and a SNP set. We

assume that a continuous phenotype marginally follows a linear regression and a binary

phenotype marginally follows a logistic regression. An advantage of the GEE based SNP set

test is that it allows for the within-family correlation to be misspecified and uses the

empirical covariance estimator to correct for possible misspecification of the within-family

correlation.

We derive the asymptotic null distribution of the proposed test statistic and provide an

analytic scheme to calculate the p-value of the test statistic. In order to correct for small

sample sizes, an efficient re-sampling method is further proposed by matching the higher

moments of the statistic with a chi-square statistic. We show through extensive simulations

and analysis of actual data that the proposed methods control type I error rates well under

both random and ascertainment sampling schemes. We also show that the suggested

approach has higher power compared to the individual-marker based minimum p-value test

for family studies.

The remainder of the paper is organized as follows. In Section 2, we describe the proposed

model and the KM SNP set test in the GEE framework for family studies. In Section 3, we

present simulation settings and results to evaluate the finite sample performance of the

proposed method and compare the proposed approach to the single-SNP based minimum-p-

value analysis. In Section 4, we apply the proposed method to the data from the Cleveland

Family GWAS Study, followed by discussions.

2. METHODS

Assume there are n families, and family i has mi members (i=1,…,n). Suppose a SNP set,

e.g., a gene or a genomic region, contains p variants. Let yij denote a continuous or discrete

phenotype for the j th individual in the i th family; Xij = (1, xij1, xij2, …, xijq)T denote a (q +

1) × 1 vector of an intercept and covariates, such as sex, age and environmental factors; Zij
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= (zij1, zij2,…zijp)T denote a p × 1 genotype vector for the p SNPs or variants in the set,

coded 0,1,2, reflecting the number of copies of minor allele (additive coding).

We model the mean of the phenotype of the ij th individual μij = E(yij | Xij, Zij) using the

marginal generalized linear model

(1)

where α = [α0,α1,…,αq] is a q×1 vector of an intercept and regression coefficients for the

covariates Xij, β is a p×1 vector of regression coefficients for the genotypes Zij, g(.) is a link

function and g(μij) = μij for continuous phenotypes, and g(μij) = logit(μij) for dichotomous

phenotypes. The Generalized Estimating Equations for the parameters θ = (αT,βT)T can be

written as

where μi = (μi1,.., μimi)T, Di = ∂μi/∂θT, and  is a working covariance

matrix of yi, and Ai = diag{υ(μil),…,υ(μim)}, υ(μij) is a variance function, with υ(μij) = 1 for

normally distributed phenotypes and υ (μij) = μij(1 − μij) for binary phenotypes. Here Ri (δ)

is a working correlation matrix defined by a kinship matrix and a scale parameter δ, where

for all j ≠ k, the (j,k)th element of Ri (δ) is 2ϕijkδ with ϕijk as the kinship coefficient between

individuals j and k in ith family, e.g. 2ϕijk = 0.5 for sib–sib and parent–child pairs with ϕ and

δ satisfying{(ϕ,δ): 0 ≤ ϕ ≤ 0.5; −1 ≤ 2ϕδ ≤1}. Further, Δi = diag{μ̇i1,…, μ̇im}, where μ̇ is the

first derivative of g−1(.). We allow the working correlation matrix Ri(δ) to be misspecified.

Our primary interest is to test whether there is an overall genetic effect of a SNP set, i.e., the

null hypothesis H0: β = 0. If a SNP set contains SNPs in a gene, this tests for the overall

effects of the gene. Under H0 model (1) becomes . The estimator of α under H0

(denoted as α̃) is the solution to the GEE , which

can be computed by iterating between a Fisher scoring algorithm for α̃ and the method of

moments for estimating δ until convergence (Appendix).

To develop a GEE based score test for H0, we decompose the GEEs as ,

where Ux and Uz are of dimension p × 1 and q × 1, respectively and are the estimating

functions for α and β respectively. The standard estimating equation based score statistic for

testing H0: β = 0 is  where Ũz is the value of Uz(θ) evaluated at θ̃ = (α̃,0).

, where Ĩzz, Ĩzz, Ĩxx are the corresponding decomposed submatrices of Ĩ,

where Equation. The standard
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GEE score statistic T asymptotically follows a central chi-square distribution with p degrees

of freedom.

When p is large, this standard GEE score statistic has a large degree of freedom and loses

power. To improve the power of the score test when the number of SNPs (p) is large and

when some SNPs in a set are highly correlated, we assume the individual components of the

regression coefficients βj (j=1, …, p) follow an arbitrary distribution with mean 0 and

common variance τ. The null hypothesis H0: β = 0 is equivalent to testing H0:τ = 0. We

propose the following GEE-based KM test as

where , and . When yi is a scalar, i.e.,

for population studies, TS reduces to the KM statistic given in Wu, et al. [2010].

Using the results in the Appendix, it can be shown that

where  are independent  random variables, and (λ1,λ2,…,λp) are eigenvalues defined

in the Appendix estimated using the empirical covariance matrix.

Therefore, the asymptotic distribution of the score statistic TS under the null hypothesis is a

mixture of chi-square distributions, which can be approximated by a scaled chi-square

distribution through matching the first two moments using the Satterthwaite method

[Satterthwaite 1946], or matching the third moments [Liu, et al. 2007], or using the exact

methods such as the Davies method [Davies 1980; Duchesne and Lafaye De Micheaux

2010]. In our simulation studies below, we will use the Davies method to obtain the p-values

of TS. As sample sizes in real family based studies are often relatively small, i.e., the number

of families is often relatively small, e.g., in hundreds, the large sample based Davies method

for calculating the p-value might not perform well in small samples. This is because the

sample variance of TS can be considerably smaller than the asymptotic variance especially

for binary traits.

To correct for small sample bias, the variance of the GEE-based score statistic needs to be

adjusted using more accurate small sample variance calculations. Following Lee, et al

[2012a], the p-value adjusted for small samples can be calculated as

(2)
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where  is the distribution function of  and df = 12/γ̂ · μ̂T, ν̂
T and γ̂ are the

estimated small sample mean, variance and kurtosis of the statistic Ts under the null,

respectively. As shown by Lee et al. [2012b], it is much more convenient to calculate these

moments especially the kurtosis by re-sampling methods. When there are no covariates and

all families have the same pedigree structure, a simple permutation method can be used. For

more general settings in the presence of covariates and different pedigree structures among

different families, a perturbation process can be applied as described in the Appendix, in

which a realized statistic is calculated by , where Ũb is a perturbation of Ũz.

3. SIMULATION STUDIES

3.1 Simulation study using ASAH1 Gene

To evaluate the performance of the proposed method in terms of Type I error control and

statistical power, we carried out simulations studies in a range of settings. We first present

the simulation results based on ASAH1 gene, which is a region located on chromosome 8

with a length of around 28.6kb. Based on the LD structure of ASAH1, we generated

genotypes of 100,000 samples (200,000 haplotypes) based on HapMap CEU samples using

the software HAPGEN[Su, et al. 2011]. There are a total of 93 sites in the region, and 83

sites are left after removing non-variant sites. We selected 13 typed SNPs on Affy6 as the

genotyped SNPs that can be used in the analysis.

In the first simulation setting, we generated a dataset containing 1,000 and 2,000 sib-pairs

with random sampling, i.e., without ascertainment. The genotypes of each pedigree were

generated using an allele dropping algorithm [Thornton and McPeek 2010]: we first

simulated the genotype for each pedigree founder (parent) by randomly selecting two

haplotypes (sampled with replacement from the previously obtained haplotype pool); the

parental haplotypes are then transmitted to offspring with equal chance. The correlated

binary phenotype were simulated using the method described in Park, et al. [1996], where

the correlation between sibling outcomes was set at 2ϕijkδ = 2 × 0.25 × 0.6 = 0.3. The

phenotype mean for each individual was generated conditional on genotypes and two

continuous covariates under the logistic model: , where α=(α0,

0.01, 0.01)T and α0 was chosen to make the prevalence around 0.01. Xij includes two

continuous covariates generated from standard normal distributions. The effect size of a

causal SNP βcausal was set as 0 under the null model to study the type I error and 0.2 (a

genetic OR of 1.22) under an alternative model to study power assuming the type I error rate

is 0.05. Each of the 83 SNPs in the gene region was chosen in turn as the causal SNP.

In the second simulation setting, we used a rejection sampling to randomly ascertain n/2

(500 and 1000) affected sib-pairs (with at least one disease individual) and an equal number

of unaffected sib-pairs. The genotypes and phenotypes were generated using the same

procedure described above.

For type I error rate evaluation, we considered 1000 sib pairs and conducted simulations

under the null logistic model in which βcausal = 0. To investigate whether the proposed
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statistic can preserve type I error for extremely small genome-wide threshold, each

simulation was replicated 1,000,000 times.

Power evaluation was based on 400 replicates with sample sizes of 1000 and 2000 sib pairs,

respectively assuming the type I error rate is 0.05 and the regression coefficient of the causal

variant is 0.2. For a comparison purpose, each simulation replicate was also analyzed by the

single-SNP-based minimum p-value GEE test to test for the effect of a gene, where the

individual SNP p-value was calculated using the R package “gee” [Carey 2002] (a wrap-up

function is also available in R package “GWAF”) and the minimum p-value of individual

SNP p-values was calculated. We calculated the gene level p-value by correcting the

minimum p-value using the modified Bonferroni correction based on an estimated effective

number of independent tests [Gao, et al. 2010].

We repeated the simulation for smaller sample sizes (500 and 300 sib-pairs) under the

random sampling scheme for sib-pairs. We also conducted an additional simulation for data

with a larger family size (4 members per family).

3.2 Simulation Study Using Random Genes

We next evaluate the power of the proposed method under the third simulation setting by

generating SNP sets based on randomly sampled genes where the LD block structure varies

among different SNP sets. We generated 20,000 simulation scenarios based on 998 real

genes on chromosome 6. In each scenario, one gene was randomly chosen to generate

haplotype samples using HAPGEN and a HapMap SNP was chosen as the causal SNP. The

genotype and the phenotype were simulated using the same ascertainment scheme described

in the second simulation setting. We again selected the SNPs that are covered by Affy6 as

genotyped SNPs in each SNP set and used them for SNP set analysis.

3.3 Simulation Results

Figure 1 shows the quantile-quantile (Q-Q) plots of the observed p-values under the null to

evaluate the performance of the proposed GEE-KM SNP set test in terms of type I error

control (from the first two simulation settings). The Q-Q plot in Figure 1 plots the estimated

p-values against what would be expected under the null. It suggests that Type I error rate

remains well controlled for both random and ascertainment sampling schemes. When the

sample size is small, as shown in Fig S1, the Davies based method tends to produce

conservative results but works well with the proposed perturbation adjustment. Similar

results are obtained for a larger family size (Fig. S2).

The results of empirical power based on gene ASAH1 are presented in Figure 2. The plots

compare the powers of the GEE KM test and the minimum p-value method when each of the

83 sites was generated as the causal SNP. In the random sampling scheme (Fig 2A), both

approaches have good power when the causal SNP is in high or moderate LD with the typed

SNPs used in SNP set analysis, and have a power around the expected Type I error rate

(0.05) when the causal SNP is not in LD with any of the typed ones (from 5 to 17 and 75 to

83). Generally, the proposed GEE KM test provides better performance than the minimum

p-value approach. There is a significant increase in the detection power for both approaches
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when samples are ascertained (Fig 2B), but our approach remains superior compared to the

individual SNP based minimum p-value test. The advantage becomes clearer when we lower

the sample size (as indicated by the dashed lines in Fig 2B).

Figure 3 summarizes the results from the third simulation setting, i.e., the random gene

simulation. Similar to Wu et al. [2010], we divided the simulation scenarios into three

groups based on the number of typed SNPs within one gene. The empirical power was

computed by first binning the simulations on the basis of the median R2 between the causal

and the typed SNPs, where each group was evenly blocked into 50 subgroups. The power

was then calculated as the proportion of p values less than 0.05. The smoothed curves of the

power in Figure 3 show that, as expected, the power of the GEE KM test increases as the LD

between the causal and typed SNPs increases. In all simulation scenarios, the GEE KM

method tends to have higher power than the GEE individual-marker based minimum p-value

analysis. The results from this simulation setting suggest that the proposed approach is

robust in performance over a wide range of genes in real data.

4. Application to Cleveland Family Study

We applied the proposed methods to analyze the family samples collected in the Cleveland

Family GWAS Study (CFS), which consists of first and second-degree relatives and spouses

of a proband with either laboratory diagnosed obstructive sleep apnea or neighborhood

control of an affected proband [Palmer, et al. 2003]. Blood pressure and hypertension related

phenotypes were also collected. As part of the NHLBI’s Candidate-gene Association

REsource (CARe) Study, a total of 630 African-American individuals from 143 families

were genotyped on the Affymetrix 6.0 (Affy6.0) platform [Fox, et al. 2011; Zhu, et al.

2011]. Hypertension was analyzed as a binary trait which was defined as a systolic blood

pressure higher than 140 mm Hg or diastolic blood pressure was higher than 90 mm Hg, or

report of using antihypertensive medication. We performed a genome-wide association test

on 16,406 gene regions. Each association test was adjusted for age, age2, gender and body

mass index (BMI). We also adjusted for population stratification using principle component

estimates derived from unrelated individuals selected from each family and projected to the

rest of family members [Zhu, et al. 2008]. In addition to the proposed GEE KM approach,

we also analyzed each gene region using the GEE individual marker based minimum p-

value test by adjusting for multiple comparisons using the effective number of independent

tests.

Figure 4 shows the Q-Q plots of −log10(p-value) from the genome-wide screen on gene-

level analysis. The observed distribution of the score statistic shows no significant departure

from the null. As expected, the score test tends to be conservative if small sample size

adjustment is not applied. As the sample size is limited, none of the genes reached the

genome-wide significance. Several genes have small p-values. We summarize the top list of

genes that are associated with hypertension in Table 1. Interestingly, several genes among

the list have been shown to be associated with hypertension related traits in previous studies

with much larger sample sizes. For example, PLEKHG1 is the gene that has been identified

in Continental Origins and Genetic Epidemiology Network (COGENT) meta-analysis with

30,000 African Ancestral individuals (to be published). Another gene in our list, MARCH5,

Wang et al. Page 8

Genet Epidemiol. Author manuscript; available in PMC 2014 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



is near the gene PLCE1, which was identified by the International Consortium for Blood

Pressure (ICBP) which consists of ~200,000 European origin samples [Ehret, et al. 2011].

5. DISCUSSION

A family-based design has several advantages compared to a population based design of

unrelated subjects in genetic association studies. It offers better genotype quality control

(such as Mendelian error checking), a better control for population stratification, and allows

for a variety of genetic analyses to be performed, including the analysis of parent-of-origin

effects, de novo variants, and combined linkage and association mapping [Ott, et al. 2011].

Under certain designs, family based association studies can be more powerful than

population based studies using unrelated samples [Feng, et al. 2011; Laird and Lange 2006].

As an alternative to individual SNP analysis, we proposed the GEE-based KM test statistic

to test the joint effects of multiple variants in a set on a phenotype in a family based

association study. The correlations among family members are taken into account through

the use of generalized estimating equations. The proposed methods can be conveniently

applied to both continuous and binary traits while accounting for within-family correlation,

and are robust to misspecification of within-family correlation. Further, by specifying an

appropriate working correlation, the proposed method can be readily used to handle

clustered data in population based studies, such as the data clustered by geographic regions,

and longitudinal data with repeated measurements.

With the advent of next generation sequencing, it will be possible to extend the proposed

method to study rare variant effects in family sequencing association studies. Family data

can be more informative for identifying rare variants than unrelated samples because rare

variants segregate within families [Zhu, et al. 2010]. When a child inherits a rare variant,

he/she also inherits the haplotype segment surrounding the rare variant. Even when a region

has multiple rare variants in different families, the inheritance patterns obtained from rare

variants embedded in the same haplotype segments may still provide good information for

the region to be detected. It is easy to construct a new statistic for studying rare variant

effects using sequencing data by incorporating variants weight, i.e., , where

W = diag(w1,…, wp) are variant weights that are based on external functional information or

the minor allele frequency (MAF) of a variant. The null distribution of this new statistic can

also be easily derived by plugging in the corresponding weight matrix. It will also be of

interest in future studies to examine in detail the performance of the proposed method for

testing rare variant effects in sequencing based family studies, and to compare with two

recently developed kernel based methods that are based on conditional genotypes [Ionita-

Laza, et al. 2013] and traditional score statistics [Schaid, et al. 2013], respectively.

We have demonstrated through simulations that the proposed test controls Type I error very

well. Parallel to the findings in population based studies of unrelated samples, the proposed

GEE-KM method is more powerful than the single-marker based minimum p-value test

especially for testing a gene effect when SNPs are in moderate or high LDs. The proposed

method is developed unconditional on parental genotypes, which increases use of

information from all individuals. The unconditional method is not naturally robust to
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population structure, but population stratification can be easily adjusted in our model by

incorporating principle components of population variation as covariates [Zhu, et al. 2008].

As a score-type test, only the null model needs to be fit when calculating the GEE-KM test.

It is hence computationally efficient when scanning the genome especially for large sample

sizes as the null model is the same for testing for the effects of different genes. The proposed

method can be readily applied to data with different pedigree structures, while the current R

packages such as ‘gee’ and ‘geepack’ can only define a working correlation matrix when all

families have the same structure [Chen, et al. 2011].

We have also considered ascertained samples in the simulation study. The results show that

given the same sample size, power using ascertained samples is higher compared to the

random sampling scheme, while the type I error is well controlled. It suggests that our GEE-

based approach has better robustness to ascertainment compared to the mixed model based

ML and REML methods. Our approach provides a promising alternative to laborious

conditional likelihood adjustment methods using the retrospective model approach [Pfeiffer,

et al. 2008; Zheng, et al. 2010]. The robustness of our approach to ascertainment was also

supported by analysis of actual data from related individuals in the CFS in which the

genome wide Q-Q plot did not show any substantial departure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

The Fisher scoring algorithm and the method of moments for estimating α̃

and δ

At a given iteration, α̃ is updated iteratively by  with  and

 evaluated at the current parameter estimates. Define the Pearson

residual , where μ̂ij is the estimate of μij from the current fit of the null

model. The parameter δ at a given step is estimated by .

The asymptotic distribution of the score statistic TS

To derive the asymptotic distribution of the score statistic TS under the null hypothesis,

denote , where θ0 = (α0,0)′ is the true value of

θ.

Partition A as Axx, Axz, Azx, Azz according to the dimensions of α and β. From a Taylor

series expansion, we get , where α̃ is the MLE of α under the

null. A Taylor expansion of Uz (θ̃), where θ̃ = (α̃,0)′ about θ0 gives

 Let

, then Uz≈CU(θ0).

Denote . As n → ∞, we have

B−1/2U(θ0)→ N(0, I) in distribution. Hence,

where (λ1,λ2,…,λp) are the eigenvalues of B1/2CTCB1/2, and  are independent 

random variables. Cov(yi) in B is estimated by {yi − μi(θ0)i} {yi − μi(θ0)i}T.

A perturbation process for small sample size adjustment

Analogous to the Rademacher bootstrap [Davidson and Flachaire 2008], the perturbed score

Ũb equals to , where ri is a random variable generated from the

Rademacher distribution (a discrete distribution where a random variate has a half chance of

being either +1 or −1). Suppose a total of P samples of the perturbed score Tp are generated,
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the sample kurtosis γ̂ is calculated as , where  and

, and  is the GEE KM test statistic from a perturbation sample. The

perturbation p-value can then be calculated using equation (2).
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Fig. 1.
Quantile-quantile plot comparing empirical (−log10) p-values for testing the effects of a SNP set using the GEE KM test (based

on 1,000,000 simulations under the null model) against those expected under the null from the first two simulation settings: A)

randomly sampling scheme; B) ascertained sampling scheme. Each simulated data set has 1000 sibpairs. P-values were

calculated using the perturbation based method.
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Fig. 2.
Empirical power for testing a SNP set using the ASAH1 gene: A) randomly sampling scheme; B) ascertained sampling scheme.

Each of the 83 SNPs was generated as the causal variant in turn. The typed SNPs are denoted with a cross and are used in SNP

set analysis. The red and black lines indicate the power curves for the proposed GEE KM test and the individual marker based

minimum p-value method for testing the ASAH1 gene effects respectively when the sample size is n=2000. The gray line in Fig

2A indicates the power curves for the p degrees of freedom chi-square test (as implemented in the R package “geepack”) after

removing 3 high LD SNPs. The solid and dashed lines (in Fig 2B) are observed powers for simulations with a sample size

(number of sib pairs) of 2000 and 1000, respectively.
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Fig. 3.
Smoothed empirical power curve as a function of Median R2 between the causual SNP and the typed SNP for simulation

scenarios based on randomly selected genes. Here n indicates the number of families consisting of sib-pairs.
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Fig. 4.
Genome wide quantile-quantile plot comparing (−log10) p-values of 16,406 gene regions against those expected under the null

using the GEE KM method using the Cleveland Family Study data: A) without small sample size adjustment; B) perturbation-

based correction method.
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Table 1

Top genes identified using the data from the Cleveland Family Study using the proposed GEE-KM method

and the minimum p-value GEE method.

GENE Chr. No. GEE-SKAT MinP-GEE

1 AP4S1 14 0.000129 0.0112

2 TMEM98 17 0.000271 0.002938

3 RNF144A 2 0.000285 0.008314

4 IFITM3 11 0.000287 0.0009285

5 HNRNPA1L2 16 0.000378 0.004832

6 MARCH5 10 0.000382 0.003501

7 LAPTM5 1 0.000383 0.007125

8 ACAA2 18 0.000465 0.003828

9 CAPN10 2 0.000501 5.74E-06

10 AK5 1 0.000555 0.004784

11 C19orf45 19 0.000568 0.001163

12 C5orf45 5 0.000582 0.0003733

13 LOC338588 10 0.000685 0.01406

14 MED29 19 0.000776 7.94E-05

15 GORAB 1 0.000862 0.01256

16 B4GALT1 9 0.000884 0.0006125

17 ANGPT4 20 0.001075 0.001693

18 SLC37A4 11 0.001137 0.000565

19 TTC30A 2 0.001259 0.01363

20 FBLIM1 1 0.001315 0.001056

21 LY6K 8 0.00135 0.001523

22 MBOAT1 6 0.001407 0.01596

23 SOCS5 2 0.001411 0.01689

24 FAM129B 9 0.002028 0.01949

25 SLC35C2 20 0.002029 0.001766

26 ZNF479 7 0.002072 0.008996

27 LOC100128023 3 0.002103 0.05897

28 KLRC1 12 0.002125 0.01421

29 GNG8 19 0.002175 0.002144

30 DLL4 15 0.002208 0.01759

31 PLEKHG1 6 0.002319 0.1245

32 LOC349114 7 0.002377 0.006306

33 HIVEP3 1 0.002497 0.0005597

34 DSG2 18 0.002616 0.03342

35 ZZZ3 1 0.002619 9.72E-05

36 CD63 12 0.002669 0.001587

37 ZP1 11 0.00267 0.00567

38 MRI1 19 0.0028 0.0006096
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GENE Chr. No. GEE-SKAT MinP-GEE

39 LOC339788 2 0.002806 0.08376

40 PRB1 12 0.00281 0.002012
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