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Abstract

In recent years, Bayesian learning models have been applied to an increasing variety of domains.

While such models have been criticized on theoretical grounds, the underlying assumptions and

predictions are rarely made concrete and tested experimentally. Here, I use Frank and

Tenenbaum's (2011) Bayesian model of rule-learning as a case study to spell out the underlying

assumptions, and to confront them with the empirical results Frank and Tenenbaum (2011)

propose to simulate, as well as with novel experiments. While rule-learning is arguably well suited

to rational Bayesian approaches, I show that their models are neither psychologically plausible nor

ideal observer models. Further, I show that their central assumption is unfounded: humans do not

always preferentially learn more specific rules, but, at least in some situations, those rules that

happen to be more salient. Even when granting the unsupported assumptions, I show that all of the

experiments modeled by Frank and Tenenbaum (2011) either contradict their models, or have a

large number of more plausible interpretations. I provide an alternative account of the

experimental data based on simple psychological mechanisms, and show that this account both

describes the data better, and is easier to falsify. I conclude that, despite the recent surge in

Bayesian models of cognitive phenomena, psychological phenomena are best understood by

developing and testing psychological theories rather than models that can be fit to virtually any

data.

To recognize the taste of an apple, do we automatically think about the tastes of oranges as

well as all other foods before we can know that we are eating an apple? According to a

growing literature of Bayesian models, we make inferences (e.g., the kind of food we are

tasting) by considering all possible situations (e.g., tasting apples, oranges etc.) in addition

to the situation we actually face, and then decide which of these situations is the most likely

one. Bayesian inference models have been claimed to account for an impressive variety of

cognitive phenomena, including visual grouping (Orbán, Fiser, Aslin, & Lengyel, 2008),

action understanding (Baker, Saxe, & Tenenbaum, 2009), concept learning and

categorization (Anderson, 1991; Goodman, Tenenbaum, Feldman, & Griffiths, 2008),

(inductive) reasoning (Goodman, Ullman, & Tenenbaum, 2011; Griffiths & Tenenbaum,

2009; Kemp, Perfors, & Tenenbaum, 2007; Kemp & Tenenbaum, 2009; Kemp, Tenenbaum,
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Niyogi, & Griffiths, 2010; Lu, Yuille, Liljeholm, Cheng, & Holyoak, 2008; Oaksford &

Chater, 1994; Téglás et al., 2011), judgment about real-world quantities (Griffiths &

Tenenbaum, 2006), word learning (Frank, Goodman, & Tenenbaum, 2009; Xu &

Tenenbaum, 2007), word segmentation (Frank, Goldwater, Griffiths, & Tenenbaum, 2010),

and grammar acquisition (Perfors, Tenenbaum, & Wonnacott, 2010; Perfors, Tenenbaum, &

Regier, 2011).

Despite this growing literature, various authors have criticized Bayesian approaches on

theoretical grounds (Altmann, 2010; Bowers & Davis, 2012; Fitelson, 1999; Jones & Love,

2011; Marcus, 2010; Sakamoto, Jones, & Love, 2008), and where Bayesian approaches have

been explicitly compared to psychological models (e.g., in the case of causal inference), the

non-Bayesian approaches typically explained the data better (e.g., Bes, Sloman, Lucas, &

Raufaste, 2012; Fernbach & Sloman, 2009). Here, I add to this literature by taking a model

in a domain that appears particularly suitable for Bayesian learning — rule induction, spell

out its underlying assumptions as well as their predictions, and confront them with empirical

data. Specifically, Frank and Tenenbaum (2011) recently proposed that infants acquire rules

in Bayesian, optimal ways. I will compare this approach with an account of rule-learning

based on simple, psychologically grounded mechanisms, and show that the latter approach

provides a principled explanation for the data.

Bayesian approaches to cognition: what is optimal?

On a conceptual level, Bayesian inference is straightforward. For example, if we encounter

an individual with a Red Sox cap, we conclude that she is more likely to come from Boston

than from, say, New York. However, to draw this conclusion, we use our knowledge that the

likelihood of somebody wearing a Red Sox cap is higher in Boston than in New York.

Bayesian calculations allow us to turn the likelihood that somebody who is in Boston wears

a Red Sox cap into the likelihood that somebody who wears a Red Sox cap is from Boston.

Moreover, such calculations make “optimal” use of the available information.

Despite its conceptual simplicity, Bayesian inference is tremendously useful in domains

from statistics (e.g., Gill, 2008; O'Hagan, 1994) to evolutionary biology (e.g., Huelsenbeck,

Ronquist, Nielsen, & Bollback, 2001; Pagel, 1994). Further, natural selection can be

formulated as a Bayesian optimization problem; as a result, Bayesian inference has given us

important insights into the evolution of our mental abilities. For example, some researchers

have shown that perceptual and cognitive mechanisms might be well adapted to the statistics

of our natural environment (e.g., Brunswik & Kamiya, 1953; Elder & Goldberg, 2002;

Geisler & Diehl, 2002, 2003; Sigman, Cecchi, Gilbert, & Magnasco, 2001; Weiss,

Simoncelli, & Adelson, 2002).

However, when it comes to Bayesian models of learning and cognition, environmental

statistics are generally lacking, forcing such models to be much more speculative and hard to

verify. This problem follows directly from Bayesian claims to make “optimal” use of

information in the environment, and our lack of understanding of what has been optimized

over the course and under the constraints of evolution. In fact, not all behavioral traits are

optimal, but some might simply be accidents of how a species has evolved. For example, in
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some monogamous animals such as Zebra finches, females seek extrapair copulations

although this behavior is maladaptive for females. However, extrapair mating behavior

might be selected for in females because it might be affected by an allele that is shared with

males, for whom siring extrapair offspring is adaptive (Forstmeier, Martin, Bolund,

Schielzeth, & Kempenaers, 2011). Hence, the seemingly maladaptive behavior might be due

to the accidents of how this trait is encoded genetically, suggesting that it is extremely

difficult to assess whether our cognitive mechanisms are optimal and, if so, what they have

been optimized for.

An overview over Frank and Tenenbaum's (2011) models

Frank and Tenenbaum's (2011) model is representative of a large number of similar models,

and is applied to a domain that is arguably well-suited to Bayesian approaches. (Frank and

Tenenbaum (2011) present in fact three different models, but I will present the differences

between these models as they become relevant for the current purposes.) They raise the

question of how young infants learn rule-like patterns based on repetitions. For example,

syllable triplets like ba-li-li follow an ABB pattern, where the last syllable is repeated;

syllable triplets like ba-ba-li follow an AAB pattern, where the first syllable is repeated.

Following Marcus, Vijayan, Rao, and Vishton's (1999) seminal demonstration that young

infants can learn such patterns, repetition-patterns have become an important testing ground

for rule-learning, both in humans (e.g., Dawson & Gerken, 2009; Endress, Dehaene-

Lambertz, & Mehler, 2007; Endress, Scholl, & Mehler, 2005; Frank, Slemmer, Marcus, &

Johnson, 2009; Gerken, 2010; Gómez & Gerken, 1999; Kovács & Mehler, 2008, 2009a;

Marcus, Fernandes, & Johnson, 2007; Saffran, Pollak, Seibel, & Shkolnik, 2007) and in

nonhuman animals (e.g., Giurfa, Zhang, Jenett, Menzel, & Srinivasan, 2001; Hauser &

Glynn, 2009; Murphy, Mondragon, & Murphy, 2008).

According to Frank and Tenenbaum's (2011) model, infants try to figure out the “best” rule

describing the stimuli they perceive. To do so, they come equipped with an innate inventory

of elementary rules, and check whether what they hear (or see) is compatible with all of the

rules in their inventory. For example, if they hear AAB triplets, they would not only think

about AAB patterns, but also about ABB patterns and all other patterns Frank and

Tenenbaum (2011) incorporated into their model, even if they never hear any of these

alternative patterns. To choose a rule, Frank and Tenenbaum (2011) propose that infants

assume that the probability that a stimulus has been generated by a rule is inversely

proportional to the total number of stimuli that can be generated by the rule (equations 2 and

3 in their first model; the other models make similar assumptions); this strategy has been

called the size principle by Tenenbaum and Griffiths (2001).

Concretely, infants might encounter the triplets pu-li-li and ba-pu-pu, both following an

ABB pattern. Hence, they encounter a total vocabulary of three syllables (i.e., pu, li and ba).

According to Frank and Tenenbaum (2011), infants know (i) that the three syllables allow

for a total of 3 × 3 × 3 = 27 triplets; (ii) that 6 of these triplets follow an ABB pattern; and

(iii) that 3 of these triplets follow an AAA pattern (where all three syllables are identical),

even though infants have never heard any AAA triplets; infants know the number of triplets

that are compatible with any other conceivable rule.
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As a result, irrespective of any Bayesian computations, infants know that AAA patterns are a

priori more unlikely than ABB patterns, because there are fewer potential AAA triplets than

ABB triplets. According to Frank and Tenenbaum (2011), infants use this knowledge to infer

patterns. That is, if they hear stimuli that are equally consistent with multiple patterns, they

opt for the pattern that is a priori more unlikely, and harder to conform to. Below, I will refer

to patterns that are harder to conform to as the more “specific” patterns.

An alternative view: rule-learning based on perceptual or memory

primitives

Before reviewing Frank and Tenenbaum's (2011) models in detail, I will briefly outline an

alternative approach to rule-learning, based on perceptual or memory primitives (e.g.,

Endress et al., 2005, 2007; Endress, Nespor, & Mehler, 2009; see also Marcus, 2008, for a

similar approach). Specifically, previous empirical work suggests that humans (and other

animals) are equipped with a “repetition-detector” that is sensitive to repeated elements in

asequence. For example, in a sequence such as “pulili,” this detector would note the

repetition of the syllable “li”. Presumably, this detector works best when the repeated

elements are adjacent (as in ABB patterns), is still operative with one intervening item

between the repeated items (as in ABA patterns, even though such patterns are harder to

learn than ABB patterns; Gervain, Macagno, Cogoi, Peña, & Mehler, 2008; Kovács &

Mehler, 2009b), and might fail to detect the repeated items when the intervening items are

too numerous (e.g., in ABCDEFGHIJ…A patterns). However, it is still unknown how

repetition-detection depends on the number of intervening items or the intervening time

between two repeated items.

Further, humans are equipped with a second mechanism that allows them to learn the

sequence elements that occur in the edges of sequences; for example, it is easy to note that

“pulidi” and “ranodi” both end with “di.” Of course, humans are endowed with many other

mechanisms, but these two mechanisms suffice to explain most of the data below.

In addition to these mechanisms, I make the following assumptions. First, when learning

occurs over time, learning performance will generally be better with more exposure or more

opportunities to learn than with less exposure or fewer opportunities to learn (e.g.,

Ebbinghaus, 1885/1913). Second, when participants are more interested in stimuli, and

attend more to them, they might learn better. One way to make stimuli more interesting

might be to use species-specific vocalizations, i.e., speech.

Third, when a stimulus is compatible with multiple rules that each can be learned in

isolation, participants will learn all of them, and expect items to conform to them. However,

some rules will be more salient and easier to learn than others; as a result, violations of these

rules might be more salient than violations of less salient rules. However, which rules are

salient and easy to learn is an empirical question (an assumption that is shared with some

Bayesian models; see e.g., Frank & Goodman, 2012), and provides important constraints on

our rule-learning abilities as well as on the underlying mechanisms.
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Fourth, to explain Kovács and Mehler's (2009a) data, I simply refer to Kovács and Mehler's

(2009a) own interpretation that bilinguals have enhanced executive function compared to

monolinguals (e.g., Bialystok, 1999; Bialystok & Martin, 2004; Bialystok, Craik, Klein, &

Viswanathan, 2004; Bialystok, Craik, & Luk, 2008; Bialystok & Craik, 2010; Costa,

Hernández, & Sebastián-Gallés, 2008; Kovács & Mehler, 2009b; Kovács, 2009). While this

issue is most likely orthogonal to rule-learning per se, I will discuss it below because Frank

and Tenenbaum (2011) claimed that their rule-learning models provided an alternative

interpretation to Kovács and Mehler's (2009a) data as well as for performance differences

between monolinguals and bilinguals in the Stroop task.

Fifth, there are developmental differences on which this account (and, for that matter, Frank

and Tenenbaum's (2011) account) is completely silent. For example, young infants can

detect repetition-patterns in musical stimuli (Dawson & Gerken, 2009), lose this ability a

few months later (Dawson & Gerken, 2009; Marcus et al., 2007), and detect such patterns

again in adulthood (Endress et al., 2007). However, the experiential or maturational

processes responsible for this pattern of results are unclear, and might be related to the

development of language, music cognition or other cognitive faculties (see Dawson &

Gerken, 2009, for discussion).

Some general problems of Frank and Tenenbaum's (2011) model

Before reassessing whether Frank and Tenenbaum's (2011) models account for the data they

proposed to simulate, I will provide some general criticisms of their models that are shared

by many other Bayesian models of cognition. First, as acknowledged by Frank and

Tenenbaum (2011), their models are not psychological plausible. Second, in contrast to their

claims, they cannot be considered ideal-observer models either. Rather, these models are

implementations of specific hypotheses about specific mechanisms of the mind; these

mechanisms, however, are largely speculative. Third, while Frank and Tenenbaum's (2011)

models are based on the assumption that human learners generally choose more specific

patterns over less specific ones, I show empirically that this hypothesis is not generally true.

Frank and Tenenbaum's (2011) assumption, is, therefore, unfounded. After these points, I

will turn to the specific experiments simulated by Frank and Tenenbaum (2011), and assess

whether their models provide an adequate account for the data.

Are Frank and Tenenbaum's (2011) models psychologically plausible?

Taking Frank and Tenenbaum's (2011) model at face value, they claim that, once infants

enter an experimental room, they keep track of all syllables they have heard in the

experiment, and while comfortably seated on their parent's lap, contemplate all possible

sequences that can be formed with these syllables, as well as all possible rules with which

each of these hypothetical sequences might or might not be consistent. As I will estimate

below, Frank and Tenenbaum's (2011) model thus assumes that infants can process up to

900 hypothetical and counterfactual triplets per second. Such an account of rule-learning

appears implausible, and, to my knowledge, is not supported by empirical evidence.
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Are Frank and Tenenbaum's (2011) models ideal observer models?

Frank and Tenenbaum (2011) offer a defense against the psychological implausibility of

their models that is often used by Bayesian modelers, and claim in Footnote 1 that “this

approach to modeling learning is also sometimes referred to as a ‘computational level’

analysis, after Marr (1982), because it describes the computational structure of the task

rather than the algorithms or mechanisms necessary to perform it. Models at the

computational level […] compute normative statistical inferences.” Frank and Tenenbaum

(2011) further argue that the “models are ideal observer models: they provide a description

of the learning problem and show what the correct inference would be, under a given set of

assumptions. […] On this approach, the ideal observer becomes a baseline from which

predictions about human performance can be made. When performance deviates from this

baseline, researchers can make inferences about how the assumptions of the model differ

from those made by human learners.”

After having reviewed their models, I will discuss whether Frank and Tenenbaum (2011)

adhered to these goals. Specifically, I will ask (i) whether their models were used to make

predictions as opposed to fitting them to existing data, and (ii) whether the models were

used to detect non-normative behavior. Further, I will provide several general reasons for

which Frank and Tenenbaum's (2011) models cannot be considered computational-level

models, but rather make crucial implementational assumptions.

More specific rule are not learned more easily

As mentioned above, the critical assumption of Frank and Tenenbaum (2011) model is that

humans choose some rules over others because some rules are a priori more specific and

harder to conform to. As I will show below, this assumption underlies all of the models'

alleged successes. Hence, I will start by evaluating it empirically.1

One prediction of this account is tested in the experiments presented in Appendix A.

Specifically, human adults were familiarized with ABB triplets carried by speech syllables.

Hence, they could discover two rules. The more “specific” rule stated that triplets followed

an ABB pattern; the less specific rule stated that triplets were carried by human speech

syllables. The rule that all triplets follow an ABB is more specific than the rule that triplets

are carried by syllables, because the latter rule is true of all possible triplets, while the

former rule is true only of a subset of the triplets

Following this familiarization, participants had to choose between AAB triplets carried by

other speech syllables, and ABB items carried by rhesus monkey vocalizations. Hence, they

had to choose between a triplet conforming to the more specific rule (i.e., the repetition-

pattern) and violating the less specific rule (i.e., being carried by speech syllables), and one

triplet conforming to the less specific rule and violating the more specific rule.2 (I performed

an analogous experiment where participants were familiarized with AAB triplets.)

1In natural language acquisition, an acquisition strategy assuming that infants learn the most restrictive grammar consistent with what
they hear (or with what they see in the case of sign languages) is known as the subset principle (Hyams, 1986; Manzini & Wexler,
1987). However, in contrast to Frank and Tenenbaum (2011), these authors did not make unsupported assumptions about our rule-
learning abilities, but rather proposed that humans evolved to acquire language following a sequence of acquisition steps that is
consistent with the subset principle, using specific “triggers” to move from a more restrictive grammar to a more permissive one.
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As shown in Appendix A, most participants found that the triplets carried by speech

syllables were more like the familiarization items compared to the triplets carried by rhesus

vocalizations, even though the former violated the repetition-pattern. A control experiment

showed that participants readily detected repetition-patterns in rhesus vocalizations. This

contradicts Frank and Tenenbaum's (2011) account, because, as mentioned above, a rule of

the form “all items are syllables” will inevitable receive lower probability scores than the

ABB pattern, and, as discussed below, a rule of this kind is a critical component of Frank and

Tenenbaums (2011) model. Hence, the specificity of a rule does not predict how easily it is

learned.

Of course, one can argue that the contrast between speech syllables and rhesus vocalizations

is much more salient than the contrast between the repetition-patterns, and that the

experiments reported in Appendix A are, therefore, an unfair test of Frank and Tenenbaum's

(2011) model. While the contrast between speech syllables and rhesus vocalizations is likely

much more salient, this is exactly the point: some rules are much more salient than others,

and this constrains how humans (and other animals) learn rules. However, the relative

salience of the rules is by no means predicted by the learning situation, nor by Frank and

Tenenbaum's (2011) models.

Another potential criticism of these experiments is that they do not rule out a role of

specificity in rule-learning, but rather show that other factors might be more important.

However, it is impossible to provide evidence for the absence of a role of specificity, and it

is possible that learners might, in some situations, prefer more specific patterns (or, for that

matter, patterns that happen to be more specific even if learners do not consider specificity

at all). At minimum, however, these results fail to support the predictions of Frank and

Tenenbaum's (2011) model and demonstrate that a preference for more specific patterns

cannot be taken for granted. After all, given that all of Frank and Tenenbaum's (2011)

alleged modeling successes critically depend on the models' ability to choose more specific

rules, one would expect actual humans to show at least some sensitivity to this principle.

Hence, it seems plausible to conclude that there is no evidence from rule-learning studies for

a role of specificity in rule-learning, and the experiments in Appendix A suggest that, if such

a role exists, it is not strong enough to drive rule-learning in general.

Put differently, while a bias to choose more specific rules has sound computational

justifications (e.g., Hyams, 1986; Manzini & Wexler, 1987; Tenenbaum & Griffiths, 2001),

there is no evidence at all that learners follow this bias in artificial language learning studies.

In fact, one could offer the “explanation” of the rule learning results below that infants try to

make the experimenters happy; after all, published studies are generally consistent with the

experimenters' hypotheses, and humans have a tendency to be helpful (e.g., Warneken &

Tomasello, 2006). However, just as this “explanation” fails to provide an account of how

infants might possibly know what would make the experimenters happy, and does not assess

whether infants actually consider experimenter happiness at all, Frank and Tenenbaum

2The repetition-patterns remain more specific even if participants anticipate that they will hear rhesus vocalizations, and base their
specificity computations on a corpus of all items occurring during familiarization and test. If so, there are 8 familiarization syllables, 2
test syllables, as well as 2 rhesus vocalizations, leading to a total of 123 = 1728 possible triplets, of which 103 = 1000 contain only
syllables, and of which 12 × (12 − 1) = 132 conform to the repetition-pattern.
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(2011) do not explain how infants can possibly know which patterns are more specific if

they encounter the patterns exclusively in laboratory studies, and do not assess whether

infants actually consider rule specificity at all. Below, I will, therefore, assume that the role

of psychological theories is not psychologically agnostic data-fitting. Hence, even when

Frank and Tenenbaum's (2011) models fit the data, I will conclude that they fail to provide

an adequate account if the fit is exclusively due to unsupported assumptions wired into the

models.

A re-examination of the studies modeled by Frank and Tenenbaum (2011)

In this section, I will consider the experiments Frank and Tenenbaum (2011) simulated, and

ask whether they provide an adequate account of these experiments.

Marcus et al. (1999)

Marcus et al. (1999) showed that seven-month old infants can learn repetition-patterns such

as AAB and ABB. Given that Frank and Tenenbaum's (2011) models have innate repetition-

detectors, it is perhaps unsurprising that they can learn repetition-patterns.

However, a more detailed look at Frank and Tenenbaum's (2011) results raises the question

of whether their model really learned the repetition-patterns. In fact, the model learned two

rules. The repetition-patterns, and a rule to which all triplets conform automatically (dubbed

“(.,.,.)” by Frank & Tenenbaum, 2011). In the context of most of the experiments considered

by Frank and Tenenbaum (2011), the rule “all items are made of syllables” would be true of

all triplets.

As acknowledged by Frank and Tenenbaum (2011), the repetition-pattern is preferred

exclusively due to the assumption that learners prefer more specific rules that are “harder” to

conform to; without this assumption, the model could not choose between the repetition-

pattern, and the rule to which all triplets conform automatically. However, as mentioned

above, this assumption is not supported by the data from Appendix A.

Of course, the model preferred ABB to AAB triplets when familiarized with ABB triplets, but

this result is unsurprising given that a repetition-detector, a sensitivity to positions in

sequences and the possibility to combine repetitions and positions, and, therefore, the very

possibility of discriminating between AAB and ABB has been explicitly wired into the

model. Crucially, however, the assumption that allowed the model to reject inappropriate

grammars is not supported by human behavior. As a result, the model fails to account for

Marcus et al.'s (1999) data.

Endress et al. (2007)

Endress et al. (2007) attempted to provide evidence that repetitions are particularly salient

patterns, and that their saliency does not result from any obvious formal or statistical factors.

In their experiments, they used piano tones to contrast two kinds of patterns. Some

participants had to learn the repetition-based patterns ABB and ABA. Others learned what

Endress et al. (2007) called two “ordinal” patterns. The tones in these triplets were ordered

either as “lowest-highest-middle” (LHM), or as “middle-highest-lowest” (MHL; see Figure

Endress Page 8

Cognition. Author manuscript; available in PMC 2014 May 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



1). Results showed that participants readily learned the repetition-patterns; in contrast, they

were much worse on the ordinal pattern, and remained close to chance performance even

after hundreds of trials with feedback.

Frank and Tenenbaum (2011) propose an alternative account of these findings. Regarding

the learning of repetition-patterns, Frank and Tenenbaum's (2011) model preferentially

learns the repetition-patterns over the rule that is true of all items due to the assumption that

learners prefer more specific patterns to less specific ones. As discussed above, this

assumption is not supported by the experiments presented in Appendix A.

Regarding the participants' difficulty with ordinal patterns, the model had problems learning

the ordinal rules because multiple rules conformed to the triplets. For example, LHM triplets

conform to many different rules, including: (i) the first tone is lower than the third one, (ii)

the first tone is lower than the second one, (iii) the second tone is higher than the third one,

(iv) the first tone is lower than the second one and the third one, and so on. The model thus

has to “choose” the most relevant of these patterns. According to Frank and Tenenbaum

(2011), participants have difficulties learning ordinal patterns because the model cannot

decide between the multiple rules that are consistent with the triplets.

This account makes a prediction that is highly implausible: people should be unable to

discriminate patterns consisting of rising vs. falling melodies. Specifically, as shown in

Figure 1, rearranging the tones in LHM and MHL patterns leads to LMH and HML patterns,

that is, simply to rising and falling contours. Frank and Tenenbaum (2011) predict that

people should have problems learning rising and falling contours, because these melodies

are consistent with the same number of spurious rules as those melodies used by Endress et

al. (2007). Hence, the model would fail to learn rising vs. falling contours any better than

Endress et al.'s (2007) patterns.

Unsurprisingly, the experiment shown in Appendix B demonstrates that people readily

discriminate rising from falling contours: after a familiarization with falling triplets or rising

triplets, most participants are at ceiling discriminating rising from falling triplets, using the

same tones as Endress et al. (2007). In contrast to Frank and Tenenbaum's (2011) claims, the

number of spurious rules compatible with melodic patterns is, therefore, irrelevant to the

success of actual humans in learning such patterns. As a result, Frank and Tenenbaum

(2011) fail to provide an account of Endress et al.'s (2007) data.

Frank, Slemmer, et al. (2009)

Frank, Slemmer, et al. (2009) proposed that 5-months-old infants are better at learning

repetition-patterns when these patterns are presented in two modalities simultaneously (i.e.,

looming shapes accompanied by syllables) compared to unimodal conditions where triplets

were composed of either shapes or syllables.

Frank and Tenenbaum (2011) provide two explanations, both of which are problematic. The

first explanation relies on their assumption that learners prefer more specific, harder-to-

conform-to rules. That is, infants might generate all 262,144 multimodal triplets, and find

that the triplets conforming to the repetition-patterns are 64 times less numerous than the
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triplets that conform to the rule that is automatically true of every triplet. In the unimodal

condition, in contrast, the ratio between these triplet types is only 8 rather than 64. Hence,

the specificity advantage is more pronounced in the multimodal condition than in the

unimodal condition; according to Frank and Tenenbaum (2011), this explains why infants

are better at learning multimodal rules.

While the experiments in Appendix A show that actual learners do not necessarily prefer

more specific, harder-to-conform-to rules, it is instructive to take Frank and Tenenbaum's

(2011) explanation at face value. If infants access all 262,144 triplets, and verify all possible

rules in a 5-min experiment, they have to check about 900 triplets per second. It seems

reasonable to conclude that such a model requires further empirical backing. Of course,

Frank and Tenenbaum (2011) claim that their model is an ideal observer model (but see

below), but even in this case, one might ask how the infant mind might know that multi-

modal rules are more specific than uni-modal rules, and, if infants have innate knowledge of

the relative specificity of rules, why they might have such knowledge in the first place.

Frank and Tenenbaum's (2011) second explanation of Frank, Slemmer, et al.'s (2009) data is

based on the assumption that infants might continuously consider the possibility that they

might have misperceived or misremembered a triplet or whatever they happen to perceive.

Frank and Tenenbaum (2011) assume that infants have a certain probability of

misremembering or misperceiving triplets, and that they can adjust the probabilities of the

different patterns accordingly. According to Frank and Tenenbaum (2011), infants believe

that they are more likely to misremember or misperceive unimodal stimuli compared to

multimodal stimuli. When infants misperceive or misremember items, they randomly pick a

rule for these items. At first sight, frank and Tenenbaum's (2011) second account just seems

to be a description of the experiments rather an explanation: by changing the parameter

controlling what the model considers its misperception/misremembering probability, it

becomes easier to learn multimodal patterns compared to unimodal patterns.

However, this account raises an important problem. If infants keep track of what they might

(mis-) remember, then they are batch learners, and learn patterns by faithfully remembering

all of the triplets and then evaluating them. However, there is no evidence that infants

remember any of the triplets they have heard. Moreover, there is no need to remember any

triplets either: to learn the patterns, infants just need to remember the patterns of the triplets,

but not the triplets themselves. In the complete absence of evidence for a batch learning

model, it appears psychologically implausible, and requires empirical evidence.

While Frank and Tenenbaum's (2011) models can be easily transformed into an online

learner, their account would raise the question of whether infants track misperceptions at all,

and mentally replace them with a randomly picked rule. In fact, the most natural assumption

seems to be that infants simply ignore the subset of the stimuli they do not remember. As a

result, they would perceive them less often if they are presented multiple times. However,

such a noise parameter would have only a limited effect on learning performance in Frank

and Tenenbaum's (2011) models. Hence, to fit their model to the data, Frank and

Tenenbaum (2011) posit that “misremembered/misperceived” items are associated with a

randomly picked rule. Unfortunately, Frank and Tenenbaum (2011) do not provide any
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evidence in favor of this account. In any case, the model fails to account for the learning of

repetition-patterns in the first place, because humans might not prefer more specific rules of

less specific ones.

Gerken (2006)

Gerken (2006) investigated the generality of the rules that infants can learn. In one

condition, infants were familiarized with AAB or ABA triplets, roughly as in Marcus et al.'s

(1999) experiments. In the other condition, infants were again familiarized with AAB or ABA

triplets. Crucially, however, the B syllable was always /di/, yielding patterns of the form

AAdi and AdiA. In both conditions, infants were then tested on triplets that did not contain

the syllable /di/.

When familiarized with AAB or ABB triplets, infants discriminated consistent from

inconsistent items; in contrast, when familiarized with AAdi or AdiA items, infants failed to

discriminate between these items, although the conditions did not differ significantly.

However, when tested on novel AAdi or AdiA items, infants discriminated inconsistent items

from consistent ones.

In the two conditions where infants succeeded, Frank and Tenenbaum's (2011) model

succeeds as well because the “winning” rule is more specific and harder-to-conform-to than

alternative rules (e.g., the rule that is automatically true of all triplets). However, as

mentioned above, Frank and Tenenbaum's (2011) hypothesis that more specific rules are

learned preferentially is not supported by the data presented in Appendix A.

While Frank and Tenenbaum's (2011) model fails to explain why repetition-rules can be

learned in the first instance, it also fails to explain why infants fail when familiarized with

AAdi or AdiA items and tested on items that do not contain /di/. Specifically, Frank and

Tenenbaum (2011) assume that infants familiarized with AAdi triplets maintain three distinct

rules: (i) triplets start with a repetition; (ii) triplets end with /di/; (iii) triplets start with a

repetition and end with /di/. That is, while the third rule is the conjunction of the first two,

infants are claimed to maintain it separately. Given that the last rule is the most specific one

and the hardest to conform to, the model prefers it.3 However, as mentioned above, the

assumption that more specific rules are generalized preferentially is not supported by the

experiments presented in Appendix A.

In fact, Frank and Tenenbaum's (2011) explanation of Gerken's (2006) data does not only

rely on the unsupported assumption that more specific rules are learned preferentially, but

also on further assumptions for which there is no evidence. Specifically, Frank and

Tenenbaum (2011) assume that infants link rule (i) and rule (ii), and combine them into a

conjunction rule. However, there is no evidence that infants actually link the two rules. If

they maintain both rules independently, neither rule should be more specific. As a result, the

3If there are N syllables used to construct the triplets, the first rule generates N2 triplets: the first two syllables are a repetition of any
of the N syllables, while the last syllable can again be any of the N syllables. The second rule yields N2 triplets for similar reasons.
The third rule, in contrast, yields only N triplets, and is, therefore, more specific than the other two.
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model should not prefer either rule, suggesting again that the models fail to provide an

account of Gerken's (2006) data.

Gerken (2010)

Gerken (2010) asked whether very limited experience would allow infants to show evidence

of learning of the repetition-patterns when familiarized with AAdi or AdiA triplets. As in

Gerken's (2006) experiments, infants were familiarized with AAdi or AdiA triplets, and then

tested on AAB or ABA triplets that did not contain /di/. Crucially, however, she added five

additional familiarization triplets, three of which conformed to the same repetition-pattern as

the other familiarization triplets, but did not contain /di/. Strikingly, this minimal change

allowed infants to discriminate the two repetition-patterns even if the test items did not

contain /di/. In a crucial control condition, Gerken (2006) showed that replacing the AAdi or

AdiA triplets with music (and keeping the last 5 familiarization triplets) did not allow infants

to discriminate the repetition-patterns, suggesting that infants did not just use the last five

trials to learn the repetition-pattern.

As in the simulations reviewed so far, Frank and Tenenbaum's (2011) model explains the

learning success by the model's preference for more specific rules, which is not supported by

the data presented in Appendix A.

Further, Frank and Tenenbaum's (2011) model makes a prediction that has not been tested

but that appears highly implausible. Specifically, Frank and Tenenbaum's (2011) equations

(1) and (2) show that the model predicts that, no matter for how long infants are familiarized

with AAdi or AdiA items, a single item not containing /di/ leads to the rejection of all /di/

rules.4 For example, if human adults are familiarized with 10,000 AAdi triplets, and then

shown a single AAB triplet not containing /di/, they should forget the AAdi pattern, even if

9,999 out of 10,000 triplets were consistent with it. This prediction appears implausible.

Importantly, this is not an unfair test of Frank and Tenenbaum's (2011) model. Given that

Frank and Tenenbaum (2011) consider a virtue of the model that it can learn “with only a

small amount of evidence” (p. 366), it seems reasonable to conclude that the flipside of this

ability, namely to unlearn “with only a small amount of evidence,” is an equally crucial and

central feature of the model. Hence, the feature of Frank and Tenenbaum's (2011) model that

allows them to fit Gerken's (2010) data makes incorrect predictions, suggesting that it fails

to provide an account of the data.

Marcus et al. (2007)

Marcus et al. (2007) asked whether infants preferentially learn repetition-patterns in some

stimulus modalities than others. In a nutshell, they showed that infants readily learn

repetition-patterns when these are implemented with speech syllables; however, they show

no significant learning when the triplets are implemented using pure tones, timbres, or

animal sounds during both familiarization and test.

4The probability that a non-/di/ triplet has been generated by a rule involving /di/ is zero; as this probability appears in the product
used to calculate the probability of the /di/ rules, the posterior probability of all /di/ rules is necessarily zero as well.
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In a marked contrast, when infants are familiarized with speech triplets conforming to a

repetition-pattern, they successfully discriminate the pattern they have heard from unfamiliar

patterns — even when tested on tones, timbres or animal sounds. Marcus et al. (2007)

concluded that “infants may analyze speech more deeply than other signals because it is

highly familiar or highly salient, because it is produced by humans, because it is inherently

capable of bearing meaning, or because it bears some not-yet-identified acoustic property

that draws the attention of the rule-induction system” (p. 390).

Although this conclusion is plausible enough to be taken as an accurate description of

Marcus et al.'s (2007) results, Frank and Tenenbaum (2011) took issue with it, but failed to

provide an adequate alternative account. First, as in all other experiments reviewed so far,

their model fails to provide an account of why infants can learn repetition-patterns in the

first place, because the model's success relies on the assumption that infants prefer the most

specific, hardest-to-conform-to rule; as mentioned above, this assumption is not supported

by the results reported in Appendix A.

Second, Frank and Tenenbaum (2011) explain Marcus et al.'s (2007) data by speculating

that infants misperceive or misremember more non-speech items than speech items, and that

they randomly pick a rule for the misperceived or misremembered items. Importantly,

however, Frank and Tenenbaum (2011) assume that these perceptual problems are specific

to the familiarization phase, while infants have perfect perception in the test phase

irrespective of the type of stimuli they are exposed to.5 With this assumption, it is

unsurprising that patterns implemented in speech are learned better than patterns

implemented with non-speech items; after all, infants are hypothesized to misremember or

misperceive them.

However, there is no reason to assume that infants perceive or remember the very same

stimulus differently depending on whether it appears in a familiarization or a test phase. If

one assumes that infants have the same perceptual or memory difficulties during test as

during familiarization, they will perform much worse when tested on non-speech material,

even after a familiarization with speech items.

Frank and Tenenbaum (2011) acknowledge this problem, and mention in Footnote 9 that, if

the same memory or perception problems are assumed during familiarization and during

test, they find “an appreciable gap in performance between speech and [non-speech]”.

However, this prediction is refuted by Marcus et al.'s (2007) data: in their experiments, the

discrimination between consistent and inconsistent items yielded an effect size of .886 in the

speech condition, and of .745 in the condition where infants were familiarized with speech

items and tested on tones. Using a unit-normal approximation to the effect sizes, the two

effect sizes are well within a 12% confidence interval of each other, and, therefore, do not

differ significantly. This, however, contradicts Frank and Tenenbaum's (2011) model.

5From the middle part of their Figure 2, it is apparent that Frank and Tenenbaum (2011) believe that it is reasonable to assume that
80% of the non-speech items (and 10% of the speech items) are misremembered or misperceived (but only during familiarization, with
perfect memory and perception during test); the left part of their Figure 2 reveals that, for the model to exhibit an advantage for speech
items, one needs to assume that infants misperceive at least 50 or 60% of the non-speech items.
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In sum, Frank and Tenenbaum (2011) do not provide an adequate account for Marcus et al.'s

(2007) data, both because their model cannot account for the learning of repetition-patterns

in the first place, and because their account of the differences between the speech and non-

speech conditions makes predictions that are inconsistent Marcus et al.'s (2007) data.

Saffran et al. (2007)

Saffran et al. (2007) showed that infants can learn repetition-patterns of simultaneously

presented dogs. As with the other experiments reviewed so far, Frank and Tenenbaum's

(2011) model fails to account for this finding, because the assumption that learners prefer

the most specific rule is not supported by the data presented in Appendix A.

Saffran et al. (2007) also showed that infants who were (according to parental report) “very

interested” in dogs performed better than infants who were only “interested.” Frank and

Tenenbaum (2011) explain this result by claiming that infants who are only “interested” in

dogs are more likely to misperceive or misremember them; then, they randomly pick a rule

for misremembered or misperceived items, instead of simply ignoring them. This leads to a

negative correlation between the probability that the model misremembered or misperceived

items and its rule-learning performance.

However, there are two reasons that make Frank and Tenenbaum's (2011) interpretation of

the effects of interest in dogs implausible. First, the left part of their Figure 2 shows that the

biggest differences in rule-learning performance arise when unreasonably large probabilities

of misremembering or misperceiving items are assumed. (This can be seen by holding the

value on the x-axis constant, and varying what Frank and Tenenbaum (2011) call the αns

parameter.) For example, performance is essentially unchanged if the misremembering/

misperceiving probability is 0, 10, 20 or 30%, respectively; in contrast there are large

performance differences when large misremembering/misperceiving probabilities of more

than 40% are assumed. As a comparison, Frank and Tenenbaum (2011) assumed in the

context of Marcus et al.'s (2007) experiments that a misremembering/misperception

probability of 10% would be reasonable. This is especially troublesome if Frank and

Tenenbaum's (2011) model is located at the computational level; after all, there is no

difference in the “computational structure” of Marcus et al.'s (2007) and Saffran et al.'s

(2007) experiments that justifies a fourfold increase in the misremembering probability,

suggesting again that Frank and Tenenbaum (2011) do not provide computational-level,

ideal-observer models but rather make detailed implementational assumptions.

Hence, Frank and Tenenbaum (2011) fail to provide and adequate model of Saffran et al.'s

(2007) data, both because their model fails to learn repetition-patterns in the first place, and

because their explanation of the effects of infants' interest in dogs relies on changing an ad-

hoc parameter that they know a priori to correlate with rule-learning performance.

Gómez (2002)

Gómez (2002) investigated the role of variability for learning dependencies between non-

adjacent items, both in adults and in infants. In the experiments with adults (those modeled

by Frank & Tenenbaum, 2011), participants listened to triplets of the form aXd, bXe and cXf.
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a, b, c, d, e and f were specific non-words; X came from classes with 2, 6, 12 or 24 members.

The size of the classes was varied across participants. Importantly, Gómez (2002) equated

the number of occurrences of the a … f words in the different class-size conditions. That is,

each triplet was presented 72, 24, 12 and 6 times for the class-sizes 2, 6, 12 and 24,

respectively. Following this familiarization, participants were presented with test items, and

had to choose whether they had heard them. These items were either items they had actually

heard, or foils where the regularity between the first and the last word in a triplet was broken

(i.e., foils had the form aXe, bXf or cXd). When the X words came from classes of 2, 6, or 12

elements, participants discriminated correct triplets from foils only at low, marginally

significant levels of performance. In contrast, when X was taken from a set of 24 elements,

performance was excellent.

To account for these data, Frank and Tenenbaum (2011) first modified their model to enable

it to learn multiple rules simultaneously; that is, they modified it so that it could learn all

three dependencies between initial and final words. Second, they postulated that participants

misremember or misperceive exactly 60% of the triplets they heard. (As shown in their

Figure 3, if the model misremembers or misperceives fewer triplets, the performance of

smaller set sizes becomes too high; and when it misremembers or misperceives more

triplets, the overall performance becomes too low.)

This account is problematic for three important reasons. First, as in all other simulations

reviewed so far, the model selects the appropriate rules by choosing the most specific ones

compatible with the input; Appendix A shows that this assumptions is unsupported. Second,

to fit the model to the data, Frank and Tenenbaum (2011) have to set a parameter to a

specific value although it is unclear why, according to Frank and Tenenbaum (2011), “the

computational structure” of the problem dictates a forgetting rate of exactly 60%.

Third, and crucially, granting that Frank and Tenenbaum's (2011) misremembering

parameter has psychological meaning, their assumption that it is constant for the different

class-size conditions is most likely incorrect. As mentioned above, Gómez (2002) kept the

number of tokens in each class-size condition constant; for example, each triplet was played

72 times when X items were taken from a set of two words, and 6 times X items were taken

from a set of 24 words. Hence, one would expect the misremembering likelihood to be

higher when X items are taken from a set of 24 words than when they are taken from a set of

two words.

In Figure 2, I replotted the results from Frank and Tenenbaum's (2011) Figure 3, but taking

into account that triplets are repeated more often in the low variability condition than in the

high variability conditions. Specifically, I assumed that the misremembering probability is

lowest in the low variability condition, and that it decreases proportionally to the logarithm

of the number of repetitions of each triplet. As shown in Figure 1, the results directly

contradict Gómez's (2002) data: while participants performed best for the high variability

condition, the model performed best for the low variability condition.

There is also a second way of using the misremembering/misperception parameter in the

context Gómez's (2002) data. After all, she asked how likely participants were to endorse
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items they had heard, and items they had not heard and violated the non-adjacent r

dependency. Hence, Gómez's (2002) experiments might be seen, at least in principle, as

testing the memory of the items participants had heard, even though it is clear that

participants' performance was not driven by memory for complete triplets. (After all, their

performance was worse for triplets they had heard 72 times than for triplets they had heard 6

times.) For the sake of completeness, I plotted in Figure 2 the model predictions assuming

that participants' actual performance was reflected in the misremembering/misperception

parameter; that is, for each set size, I used the misremembering/misperception probability

that was closest to the participants' probability of incorrect responses.

It should be noted that using the misremembering/misperception parameter in this way is

circular; given that Frank and Tenenbaum (2011) report in the context of Saffran et al.

(2007) data that the misremembering/misperception probability is negatively correlated with

performance, one would expect this to be case here as well. Hence, the model should

perform better for larger class-sizes for this reason alone. Importantly, however, the model's

results did not fit those of Gómez's (2002) participants, as it performed at ceiling for all

class-sizes from 12 onwards.

In sum, Frank and Tenenbaum's (2011) model fails to account for Gómez's (2002) data, both

because it makes assumptions unsupported by the results reported in Appendix A, and

because the model's results clash with those of actual participants.

Kovács and Mehler (2009a)

Kovácsand Mehler (2009a) investigated how easy it is for infants to learn two patterns

simultaneously. In their experiments, two patterns (e.g., AAB and ABA) predicted visual

rewards on two different locations on a screen; they measured whether, upon hearing a

pattern, infants would show anticipatory looks to the location where the reward would

appear. They showed that infants from bilingual households learned both rules, but

monolinguals learned only one. Kovács and Mehler (2009a) proposed that the bilingual

advantage was due to bilinguals' well known advantage in executive function (e.g.,

Bialystok & Craik, 2010), which they had shown to be present already in infancy (Kovács &

Mehler, 2009b).

Frank and Tenenbaum's (2011) explanation of Kovács and Mehler's (2009a) results is to

introduce an additional parameter controlling how likely the model is to postulate multiple

rules, and to show that the model is more likely to posit multiple rules when the parameter is

set to allow for multiple rules. They conclude that bilingual infants have “a more permissive

prior on the number of regularities infants assume to be present in a particular stimulus. In

practice this may be manifest via better executive control, as hypothesized by Kovács &

Mehler.” In other words, Frank and Tenenbaum (2011) found that a model that is designed

to be more likely to admit more than one regularity is indeed more likely to learn more than

one regularity, and conclude that bilinguals are somehow designed to be more likely to

admit more than one regularity as well.

However, Frank and Tenenbaum's (2011) simulations fail to provide an account of Kovács

and Mehler's (2009a) data. First, as in all other simulations reviewed so far, the model fails
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to provide an account of the learning of repetition-patterns because the underlying

assumption is not supported by the data reported in Appendix A: human learners do not

necessarily prefer more specific, harder-to-conform-to rules.

Second, even though Frank and Tenenbaum's (2011) extra-parameter allowed them to fit

their model to the data, their conclusion completely ignores the substantial literature on the

effects of bilingualism on executive function. It is well established that bilingual adults and

children have better executive function in a variety of tasks that are entirely unrelated to

learning multiple regularities. These tasks include dimensional card sorting tasks (e.g.,

Bialystok, 1999; Bialystok & Martin, 2004), the Simon task (e.g., Bialystok et al., 2004), the

Stroop task (e.g., Bialystok et al., 2008), and the Flanker task (Costa et al., 2008). In the case

of reversal learning, the executive advantage can be observed even in early infancy (Kovács

& Mehler, 2009b). Further, the effects of the bilingual advantage are seen in domains such

as Theory of Mind (Kovács, 2009) that have no obvious relation to regularity learning

either.

It thus seems reasonable to conclude that Frank and Tenenbaum's (2011) additional

parameter has no relation at all to the data presented by Kovács and Mehler (2009a), on top

of the fact that their model does not account for the learning of repetition-patterns in the first

instance.

Did Frank and Tenenbaum (2011) use their models as ideal observer

models after all?

As discussed in the introduction, the goal of Frank and Tenenbaum's (2011) “ideal observer”

models, as well as of many other Bayesian models of cognition, is (i) to make predictions,

and to (ii) detect non-normative behavior. Both would be important contributions to our

knowledge. As a result, it is crucial to assess to what extent their models achieved these

goals.

Regarding the first goal, the review of Frank and Tenenbaum's (2011) models suggests that

they fitted their models to existing data, but did not make any novel predictions. Even in

cases where their models make novel predictions, Frank and Tenenbaum (2011) do not r

discuss them. For example, they do not discuss why their model predicts that humans should

be unable to discriminate rising from falling melodies; nor do they discuss why their account

of Gerken's (2010) data predicts that learning should suffer catastrophically from a single

counter-example, irrespective of how much exposure is given. They do not evaluate the

models' predictions for Gómez's (2002) data either.

Regarding the second goal, Frank and Tenenbaum (2011) did not appear to attempt to detect

non-normative behavior, but simply made additional assumptions to fit their models to the

data. For example, they note that their first model cannot account for the learning

differences as a function of the infants' interest in the stimuli (Saffran et al., 2007), and add

additional assumptions to the model as a result. A natural assumption would be that infants

are simply more likely to ignore the stimuli they are not interested in, leading infants to

perceive each training item less often. However, such an assumption would not allow Frank
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and Tenenbaum's (2011) model to fit the learning differences. As a result, they opt for a

different assumption that does allow them to fit the data, namely that infants attribute a

randomly chosen pattern to some randomly chosen familiarization items that they do not

even remember. (Similar accounts are offered for Frank, Slemmer, et al.'s (2009) and

Marcus et al.'s (2007) data.) Despite its prima facie implausibility, no further predictions of

this account are offered.

Frank and Tenenbaum's (2011) focus on data fitting rather than on detecting non-normative

behavior is also evident in their account of Marcus et al.'s (2007) experiments. To fit their

models to the data, they assume that infant perception has markedly different properties

depending on whether infants hear familiarization items or test items, even if nothing

distinguishes the two types of items. It is hard to see how such an account would follow

from the computational structure of the learning problem, or how it could be justified

otherwise.

Likewise, to account for the ability of bilingual but not monolingual infants to learn several

rules simultaneously, Frank and Tenenbaum (2011) postulate that bilinguals are more likely

to posit multiple rules in general, completely ignoring Kovács and Mehler's (2009a) natural

explanation based on the well-established executive function advantage in bilinguals.

Rather, Frank and Tenenbaum (2011) opinionate that the bilinguals' increased propensity to

postulate multiple rules “may be manifest via better executive control [in practice].”

However, they fail to provide an account why the propensity to learn multiple rules might be

important for, say, the Stroop task, nor do they make any predictions from this account. It

seems plausible to conclude that a model that wires in the data it attempts to reproduce is not

well suited for detecting non-normative behavior.

That being said, Frank and Tenenbaum (2011) did modify their model in response to data

that the simpler versions of the model could not fit; however, according to Frank and

Tenenbaum (2011), all versions of their model count as ideal-observer models, raising the

question of what, if any, data would constitute evidence against the ideal observer view of

rule-learning, or whether a model with an arbitrary number of assumptions is still “a useful

baseline for future work on rule learning.”

In addition to not using their models to make predictions or to detect non-normative

behavior, Frank and Tenenbaum's (2011) highly detailed implementational assumptions

suggest that their models cannot be considered ideal observer models. For example, they

assume that learners come innately equipped with a repetition-detector, a detector for rising

tone intervals, one for falling tone intervals, a mechanism that can link specific syllables to

positions in triplets, and a mechanism that can combine all of these rules into one.

These implementational assumptions have a profound impact on the model predictions. For

example, without a repetition-detector, the models could not learn the repetition-patterns.

However, while Frank and Tenenbaum (2011) claim that their model describes the

“computational structure” of the learning problem, the computational structure does not

imply that the ability to notice repeated items is implemented using a dedicated repetition-

detector. In fact, it is possible to know that the sequence “pupu” contains two identical
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syllables by noticing that the number of syllable tokens does not match the number of

syllable types. Likewise, to know that two tones are identical, we can notice that the first

tone is neither higher nor lower than the second one. Importantly, these are not just ad-hoc

arguments against Frank and Tenenbaum's (2011) model, but, on both computational and

psychological grounds, there is no a priori reason to take a repetition-detector for granted.6

Hence, the “computational structure” of rule-learning implies by no means the existence of a

repetition-pattern. But without this assumption, Frank and Tenenbaum's (2011) results

would be profoundly changed.7 (While both the account sketched below and Frank and

Tenenbaum's (2011) models share the assumption of a repetition-detector, Frank and

Tenenbaum (2011) reject the evidence for such a mechanism (see the review of their

simulations of Endress et al.'s (2007) data above). Hence, by Frank and Tenenbaum's (2011)

own conclusions, the assumption that humans are endowed with a repetition-detector would

be entirely unsubstantiated.)

Frank and Tenenbaum (2011) do not only make strong implementational assumptions about

the available psychological mechanisms, but even about their detailed inner workings. For

example, to fit their models to the various experiments, Frank and Tenenbaum (2011)

sometimes assume that the forgetting rate is 10%, for other experiments 40%, and for still

other experiments 80% — even though the computational problem is exactly the same. It is

hard to see how such assumptions can be justified by the computational structure of the

learning problem.8

It thus appears that, rather than making predictions or attempting to detect non-normative

behaviors, Frank and Tenenbaum (2011) just attempted to fit their models to available data,

using additional assumptions with no clear justification or further predictions. Hence, it

seems plausible to conclude that Frank and Tenenbaum's (2011) models do not address any

of the goals they attribute to ideal observer models.

Put differently, one might ask what the role of the Bayesian computations are for the models'

successes. In fact, what Frank and Tenenbaum (2011) propose is a model positing that,

among other things, (i) more specific rules are learned more readily; (ii) infants know,

presumably innately, which patterns are more specific, even if they encounter the patterns

exclusively during experiments; (iii) the same items are perceived/remembered differently

6From a computational point of view, there are computer architectures without equality operators but only “greater than” and “smaller
than” operators. (On such architectures, an instruction to check the equality of two numbers is internally translated to checking that
one number is neither greater nor smaller than the other.) Such architectures would not have a repetition-detector. From a
psychological perspective, domains without repetition-detectors are well documented as well. For example, it is much easier to notice
that two lines of contour are symmetrical than that they are repeated (i.e., that the two lines are translations of one another; Baylis &
Driver, 1994, 1995, 2001); it is much harder or even impossible to process repetitions on consonants than on vowels (Pons & Toro,
2010; Toro, Bonatti, Nespor, & Mehler, 2008; Toro, Shukla, Nespor, & Endress, 2008); and human adults are unable to learn
repetition-patterns over syntactic categories (Endress & Hauser, 2009).
7If repetitions are detected as a combination of two rules, for example as the negated conjunction of two “difference detectors,” they
necessarily become less accessible, because the probabilities of the two component rules must be multiplied at some point, resulting in
a lower overall probability. Of course, it is possible to “patch” such a model, but this would be just another implementational
assumption that is wired into the model.
8It might be argued that there is a long-standing distinction between the assumptions of a model and its free parameters in machine
learning, and that reliance of Frank and Tenenbaum's (2011) model on specific parameter values should not be considered an
assumption. However, the goals of machine learning and cognitive science are rather different. In fact, from a cognitive point of view,
the purpose of a modeling enterprise is not merely to obtain model fits that are agnostic about psychological considerations; rather,
parameters such as memory retention rates have specific psychological meaning, and should be treated as such. Moreover, and as
mentioned above, it is unclear whether a model that relies on specific parameter values should be considered an ideal observer model.
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depending on whether they appear during familiarization or during test; (iv) forgetting rates

can be arbitrarily set, sometimes to 10%, sometimes to 60%, and sometimes to 80%; (v)

there is catastrophic forgetting due to single counter-examples. Had these assumptions not

been swept under the Bayesian carpet, it is hard to see how they could follow from the

computational structure of the learning problem.

An account based on common-sense psychology

While Frank and Tenenbaum's (2011) models do not appear to provide an adequate account

of any of the experiments reviewed above, a model based on perceptual or memory

primitives might fare much better. I will now discuss these basic psychological explanations

of each of the experiments reviewed above.

Marcus et al. (1999), Endress et al. (2007)

The view that humans are equipped with a repetition-detector that makes repetitions

relatively salient patterns provides a straightforward interpretation of Marcus et al.'s (1999)

and Endress et al.'s (2007) data, because these experiments show that humans can learn

repetition-patterns, and that such patterns are learned better than arbitrary patterns for which

no such detector exists.

Frank, Slemmer, et al. (2009)

As before, the ability to learn repetition-patterns can be explained by the existence of a

repetition-detector. Likewise, there are numerous straightforward explanations of Frank,

Slemmer, et al.'s (2009) finding that multi-modal rules are learned better than uni-modal

rules. One possible interpretation is that infants received more instances of the repetition-

pattern. That is, in the multimodal condition, infants were presented with visual and auditory

triplets simultaneously and, therefore, with twice as many triplets as in either unimodal

conditions. A second possible interpretation relates to variability of the stimuli. In the

multimodal condition, triplets were more variable, as infants perceived both visual and

auditory triplets; if variability helps learning (Gómez, 2002), infants might learn better in the

multimodal condition as well. A third possible interpretation is provided by the fact that

infants have more opportunities to attend to the stimuli in the multimodal condition; for

example, if they are distracted by a sound, they might still attend to the visual stimuli, and if

they are distracted by other visual objects, they might still attend to the sounds. A fourth

account relies on the fact that infants have more opportunities to recognize the familiar

pattern during test: if they do not attend to the sound of a test item, they might still attend to

its visual component, and vice versa. It is easy to come up with further explanations of

Frank, Slemmer, et al.'s (2009) data relying on basic psychological considerations.

Gerken (2006), Gerken (2010)

Gerken's (2006) and Gerken's (2010) experiments can be explained if, in addition to being

sensitive to repetitions, humans (and other animals) track items in the edges of sequences

(e.g., Endress & Mehler, 2009; Endress, Carden, Versace, & Hauser, 2010; Seidl & Johnson,

2006), and if they expect test items to conform to all regularities they have heard. That is,

infants might consider triplets as a violation if any of the rules is violated. For example,
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when familiarized with AAB triplets (where the last syllable is not systematically /di/),

infants should be sensitive to violations of the repetition-pattern, because this is the only

regularity present in the data. In contrast, when familiarized with AAdi triplets, both AAB

and ABB triplets are violations, since they do not conform to the /di/ regularity. Hence,

infants might “expect” triplets to be consistent with all of the patterns they have picked up.

If so, the role of the five additional familiarization triplets in Gerken's (2010) studies might

be to familiarize infants with items not containing /di/, which, in turn, would allow them to

reveal their learning of the repetition-pattern in the subsequent test phase, without being

“surprised” to hear triplets not containing /di/.

Alternatively, items in edge positions might be more salient than repetitions (Gervain &

Endress, in preparation), and, therefore, more likely to drive behavior compared to

repetition-patterns. Note that rule saliency is not a placeholder to make the perceptual or

memory primitives view consistent with the data. Rather, the more salient rule is empirically

defined as the rule which participants choose when both rules are pitted against each other.

(Such an empirically defined concept of saliency is well accepted among Bayesian modelers

as well; see e.g. Frank & Goodman, 2012). If so, the role of the five additional

familiarization triplets in Gerken's (2010) experiments would be to familiarize infants with

violations of the more salient pattern, allowing them to reveal their sensitivity to the less

salient one.

Marcus et al. (2007), Saffran et al. (2007)

Marcus et al.'s (2007) experiments can be explained with Marcus et al.'s (2007) account:

humans preferentially attend to speech as opposed to non-speech items (e.g., Peña et al.,

2003; Vouloumanos & Werker, 2004); as speech items are also sounds, the learning of

repetition-patterns over speech-items might spill over to allow the recognition of repetition-

patterns in other sounds. Likewise, Saffran et al.'s (2007) results follow from the truism that

infants attend more to what they are interested in.

Gómez (2002), Kovács and Mehler (2009a), Dawson and Gerken (2009)

Like Frank and Tenenbaum's (2011) models, the perceptual or memory primitives account

does not provide a good explanation of Gómez's (2002) data; nor does it provide any insight

into why infants' ability to process repetition-patterns over musical stimuli changes over

development (Dawson & Gerken, 2009). Likewise, I simply refer to Kovács and Mehler's

(2009b) suggestion that bilingual infants might learn multiple rules due to their enhanced

executive function.

In sum, it seems that most of the data simulated by Frank and Tenenbaum (2011) can be

explained based on simple psychological mechanisms. However, like Frank and

Tenenbaum's (2011) models, this account fails to provide an explanation of Gómez's (2002)

and Kovács and Mehler's (2009b) data; unlike Frank and Tenenbaum's (2011) models,

however, it is much harder to “patch” this account with further assumptions to fit it to the

data, making it more verifiable and, therefore, more useful for discovering the nature of

human rule-extracting capacities.
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Conclusions

In 2002, Daniel Kahneman was awarded the Nobel Memorial Prize in Economic Sciences

for showing that human behavior is not rational as assumed in most models of economic

choice. Kahneman's work triggered the creation of behavioral economics, studying how

actual humans make choices. Frank and Tenenbaum's (2011) paper is an example of a

growing trend moving into the opposite direction, and arguing that humans are rational

learners after all, making “optimal,” Bayesian, decisions.

While several authors have criticized such models on theoretical grounds (Altmann, 2010;

Bowers & Davis, 2012; Fitelson, 1999; Jones & Love, 2011; Marcus, 2008, 2010; Sakamoto

et al., 2008), the assumptions of these models are rarely spelled out in plain English, which

makes it hard to evaluate and test their psychological predictions. Here, I present a case

study of a model in a domain that is arguably well-suited to Bayesian approaches, spell out

its assumptions and predictions, and confront them with empirical data.

Frank and Tenenbaum (2011) attempt to account for various experimental results in the

domain of rule-learning. According to Frank and Tenenbaum (2011), their models are

psychologically implausible, but constitute computational-level, ideal-observer models of

such results. However, while the analyses of the models confirmed that the underlying

assumptions are psychologically implausible indeed, closer examination of the models

revealed several reasons for which the models are difficult to accept as ideal-observer

models. First, Frank and Tenenbaum (2011) fall short of their own modeling goals; neither

do they make novel predictions nor do they detect any non-normative behavior. Second,

there is no more support for the assumption underlying Frank and Tenenbaum's (2011)

models — that humans learn the most specific, hardest-to-conform-to rule — than for an

arbitrary “theory”, such as that infants try to make experimenters happy. Third, Frank and

Tenenbaum (2011) make a large number of crucial implementational assumptions that

sometimes go as far as claiming that the infant perceptual system has different properties for

the same stimuli, depending on whether they are presented during a familiarization or a test

phase.

Accordingly, Frank and Tenenbaum's (2011) models do not provide an account of any of the

results they attempted to model, unless the goal of psychological theory is to obtain

psychology-agnostic data fits. The problematic model predictions are summarized in Table

1. The models' ability to learn any rule at all relies on the empirically unsupported

assumption that humans preferentially learn the most specific, hardest-to-conform-to rules.

Leaving aside this problem, their explanation of Endress et al.'s (2007) experiments predicts

that humans cannot discriminate rising from falling contours (see Appendix B); their

account of Marcus et al.'s (2007) data predicts that the infant perceptual system has different

properties for the same stimuli, depending on whether they are presented during a

familiarization or a test phase; and, when Frank and Tenenbaum's (2011) model parameters

are taken seriously, their simulation results do not even reproduce the basic pattern of

Gómez's (2002) results. Of course, it is possible to “patch” Frank and Tenenbaum's (2011)

models to account for each of the experiments reviewed above. However, a model where the
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underlying representational assumptions need to be changed for every data point fails to

generate scientific insight.

It should be noted that these problems are not specific to Frank and Tenenbaum's (2011)

models. In fact, there are very few models that adhere to the modeling goals stated by Frank

and Tenenbaum (2011). For example, Bayesian models of cognitive phenomena are usually

not constructed to make predictions, but rather to fit existing data, giving modelers the

opportunity to adapt their models to the experiments they attempt to fit (but see e.g. Orbán et

al., 2008 for an exception). Moreover, these models typically have straightforward

alternative explanations in terms of basic psychological mechanisms.

Further, Bayesian models of cognition are generally not used to detect non-normative

behavior; in fact, except in the decision making literature and, in some cases, in the

reasoning literature (e.g., Bes et al., 2012; Fernbach & Sloman, 2009), it is extremely rare

that a Bayesian model of a cognitive phenomenon is published because the model does not

account for the phenomenon. Moreover, even if a Bayesian model did not account for a

cognitive phenomenon, it would be unclear whether this was due to unfounded assumptions

(e.g., that learners prefer the most specific rules), or rather to genuine suboptimality. It

would thus seem that Bayesian models of cognitive phenomena are rarely used as ideal

observer models, and often share implausible assumptions similar to Frank and Tenenbaum's

(2011)

In contrast, and as discussed above, there is a satisfactory alternative account of the

experiments based on simple psychological principles. This account is more piecemeal and

less systematic than Frank and Tenenbaum's (2011), but appears to explain the data. For

example, humans might learn some rules using a repetition-detector (Endress et al., 2007;

Gómez, Gerken, & Schvaneveldt, 2000; Tunney & Altmann, 2001) or by attending to

elements in sequence-edges (Endress & Mehler, 2009), and these mechanisms might

constrain each other (Endress et al., 2005) and be constrained by various other factors,

including phonological information (Pons & Toro, 2010; Toro, Bonatti, et al., 2008; Toro,

Shukla, et al., 2008), syntactic processes (Endress & Hauser, 2009), executive function

(Kovács & Mehler, 2009b), and probably many other aspects of our mental life. Such a

collection of processes might not be elegant, and elude understanding based on higher-order

principles. However, it might well reflect the true nature of our mental machinery. In fact,

various authors have characterized cognition as an agglomeration of heuristics (Gigerenzer,

Todd, 2008) or as using a collection of primitive operations (Endress et al., 2009), each of

which evolved to solve a particular problem in an organism's environment (Cheney &

Seyfarth, 2007; Gallistel, 1990, 2000; Hauser, 2000). Before attempting to construct

computational-level theories of cognitive operations, we thus first need to understand what

is computed, and how.
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Appendix A

Experiments 1 and 2: Do humans prefer the most specific rule compatible

with the input?

In Experiment 1, I ask whether actual human learners conform to the central assumption that

allows Frank and Tenenbaum's (2011) model to learn any rule at all, namely that learners

prefer more specific, harder-to-conform-to rules over less specific ones (see main text for

more details). To test this hypothesis, I familiarized human adults with either an AAB pattern

or an ABB pattern, both carried by speech syllables. Following this, participants who had

been familiarized with an AAB pattern had to choose between triplets of rhesus monkey

vocalizations following an AAB pattern, and triplets of new human syllables following an

ABB pattern; likewise, participants familiarized with an ABB pattern had to choose between

triplets of rhesus monkey vocalizations following an ABB pattern, and triplets of new human

syllables following an AAB pattern. In other words, participants had to choose between the

repetition-pattern they had been familiarized with, and the rule that all items are carried by

speech syllables.

The repetition-pattern is clearly more specific than the rule that all items are carried by

syllables; after all, the latter is true of all possible syllable triplets, while the former is true

only of a subset of them. The repetition-patterns remain more specific when considering the

vocabulary of all familiarization and test items. Specifically, there are 8 familiarization

syllables, 2 test syllables, as well as 2 rhesus vocalizations, leading to a total of 123 = 1728

possible triplets, of which 103 = 1000 contain only syllables, and of which 12 × (12 − 1) =

132 conform to the repetition-pattern.

Experiment 2 is a control experiment to Experiment 1, showing that, as in Marcus et al.'s

(2007) experiments, human learners can discriminate repetition-patterns when these are

carried by animal vocalizations.

Experiment 1: Do human adults prefer more specific rules?

Materials and method

Participants: Fourteen (9 females, mean age 25.4, range 19–34) native speakers of English

participated in Experiment 1. They were recruited from the MIT community and received

monetary payment in exchange for their participation. Half of the participants were assigned

to the AAB condition, and half to the ABB condition (see below).

Apparatus: Stimuli were presented over headphones using Psyscope X (http://

psy.ck.sissa.it). Participants were tested individually in a quiet room. Responses were

collected from pre-marked keys on the keyboard.

Stimuli: During familiarization, A syllables were ga, li, ni and ta; B syllables were gi, la, na,

ti. All syllables were pronounced by a male native speaker of American English. These

syllables had an average duration of 627 ms (range: 477 – 727 ms), and were combined into
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AAB or ABB triplets, depending on the condition. Syllables in triplets were separated by 200

ms silences. This yielded 16 familiarization triplets.

During test, A syllables were wo and du, while B syllables were ru and ko. All syllables

were pronounced by the same speaker as the familiarization syllables. These syllables had

an average duration of 616 ms (range: 496 – 750 ms). A vocalizations were an aggressive

call and a harmonic arch; B vocalizations were a scream and a coo call. These vocalizations

had an average duration of 617 ms (range: 485 – 942 ms). However, I used only the syllable

triplets wo-wo-ru, du-du-ko (AAB), wo-ru-ru, and du-ko-ko (ABB), as well as the rhesus

triplets aggressive-aggressive-scream, harmonic arch-harmonic arch-coo (AAB),

aggressive-scream-scream, and harmonic arch-coo-coo (ABB).

Procedure: Participants were informed that they would hear some sound sequences, and

were instructed to listen to them. Following this, they were presented with all 16

familiarization triplets played once in random order, with a silence of 1 s between triplets.

Half of the participants were familiarized with AAB triplets, and half with ABB triplets.

Following this familiarization, participants were informed that they would hear pairs of

sound sequences, and that they would have to decide which sequence in each pair was like

the sequences they had heard before. They were advised that there was no “trick” in the

experiment, and that they should just make their choices if they seemed obvious to them.

Following this, they were presented with pairs of triplets, and had to choose which one was

‘like’ the triplets they had heard.

Participants familiarized with AAB triplets had to choose between AAB triplets carried by

rhesus vocalizations, and ABB triplets carried by speech syllables. There were four test pairs

of triplets, presented twice in different item orders. For participants familiarized with ABB

triplets, the test items were constructed similarly.

Results and discussion: As shown in Figure A1, 10 our of 14 participants chose the syllable

triplets with the incorrect repetition-pattern, while four had the opposite preference. On

average, participants significantly preferred the triplets violating the repetition-pattern (i.e.,

they chose the syllable triplets, percentage of correct responses: M = 24.1%, SD = 34.5%),

t(13) = 2.81, p = 0.015, Cohen's d = 0.75, CI.95 = 56.0%, 95.8%. The results did not differ as

a function of the familiarization pattern (i.e., AAB or ABB), F(1,12) = 1.7, p = 0.221, η2 =

0.122. Hence, most actual human learners do not preferentially learn the most specific,

hardest-to-conform-to rule, but rather whatever happens to be most salient to them.

However, before accepting this conclusion, it is necessary to establish that participants can

detect repetition-patterns carried by rhesus vocalizations. This is tested in Experiment 2.

Experiment 2: Do human adults detect repetition-patterns in rhesus vocalizations?

Materials and method

Participants: Fourteen (7 females, mean age 25.6, range 19–34) native speakers of English

participated in Experiment 2. They were recruited from the MIT community and received
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monetary payment in exchange for their participation. Half of the participants were assigned

to the AAB condition, and half to the ABB condition.

Procedure: The familiarization was identical to that in Experiment 1. The test items were

triplets of rhesus vocalizations that either conformed to an AAB pattern or and ABB pattern.

Results and discussion: As shown in Figure A1, participants readily choose the vocalization

triplets with the correct repetition-pattern, (M = 75.0%, SD = 26.4%), t(13) = 3.54, p =

0.004, Cohen's d = 0.95, CI.95 = 59.8%, 90.2%. The results did not differ as a function of the

familiarization pattern (i.e., AAB or ABB), F(1,12) < .01, p > .999, . Hence, human

adults readily discriminate repetition-patterns when they are carried by rhesus monkey

vocalizations.

Figure A1.
Results of Experiments 1 and 2. Circles represent individual participants, the diamonds the sample averages, and the dotted line

the chance level of 50%. In Experiment 1, participants were familiarized with syllable triplets conforming to a repetition-pattern.

Then, they had to choose between triplets of rhesus vocalizations conforming to the same pattern and triplets of syllables

conforming to a different pattern. Most participants chose the syllable triplets even though they violated the repetition-pattern. In

Experiment 2, participants were familiarized with the same triplets as in Experiment 1. Following this, they had to choose
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between triplets of rhesus vocalization that either had the same pattern as the familiarization items or a different pattern. They

preferred the triplets with the familiar pattern.

Appendix B

Experiment 3: Can humans discriminate rising from falling contours

Participants

Fourteen (9 females, mean age 25.4, range 19–34) native speakers of English participated in

Experiment 3. They were recruited from the MIT community and received monetary

payment in exchange for their participation. Half of the participants were familiarized with

rising contours, and half with falling contours.

Apparatus

Stimuli were presented over headphones using Psyscope X (http://psy.ck.sissa.it).

Participants were tested individually in a quiet room. Responses were collected from pre-

marked keys on the keyboard.

Stimuli

The stimuli were the same piano tones as used in Endress et al.'s (2007) Experiment 2.

However, as shown in Figure 1, instead of being arranged into lowest-highest-middle and

middle-highest-lowest triplets, they were arranged into rising contours (i.e., lowest-middle-

highest) and falling contours (i.e., highest-middle-lowest).

There were 16 familiarization triplets and three test triplets for each pattern. The test triplets

we combined into 9 test pairs.

Procedure

The procedure and instructions were identical to Experiments 1 and 2. Participants were

familiarized with all 16 familiarization triplets played once in random order, with a silence

of 1 s between triplets. Half of the participants were familiarized with rising contours, and

half with falling contours. Following this, they were presented with pairs of triplets, and had

to choose which one was ‘like’ the triplets they had heard. In each trial, one triplet had a

rising contour, and one a falling contour. The 9 test pairs were presented twice with different

item orders. Test trials were presented in random order.

Results and discussion—As shown in Figure B1, most participants were at ceiling

discriminating ris from falling contours (percentage of correct M=88.9%, SD = 15.9%),

t(13) = 9.2, p < .0001, Cohen's d= 2.5, CI.95 = 79.7%, 98.1%. There was no difference

between the familiarization condition (rising vs. falling), F(1,12) = 0.5, p = 0.476, η2 =

0.043, ns. Hence, in line with much work in music perception, participants readily

discriminate rising from falling contours.
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Figure B1.
Results of Experiment 3. Circles represent individual participants, the diamond the sample average, and the dotted line the

chance level of 50%. In contrast to the predictions of Frank & Tenenbaum's (2011) model, participants readily discriminate

rising from falling contours.
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• Bayesian models are claimed to explain a growing range of cognitive

phenomena.

• I analyze the assumptions and predictions of a typical model of rule induction.

• The model is not plausible nor an ideal observer model and inconsistent with

empirical data.

• In contrast, simple psychological mechanisms explain rule induction results.
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Figure 1.
In Endress et al.'s (2007) experiments, participants had to learn the “ordinal” patterns low-high-middle and middle-high-low.

Rearranging the tones in the pattern yields the patterns low-middle-high (rising) and high-middle-low (falling). Frank &

Tenenbaum's (2011) model predicts that it should be equally difficult to learn ordinal patterns as to learn rising and falling

patterns. Experiment 3 (presented in Appendix B) demonstrates that this is not the case.
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Figure 2.
Results of Gómez's (2002) data (solid line with circles), and two predictions of Frank & Tenenbaum's (2011) model. (Dashed

line with triangles) In Gómez's (2002) experiments, triplets with 2, 6, 12 and 24 X items were repeated 72, 24, 12 and 6 times,

respectively. Assuming that the number of repetitions increases the memory strength of items (Ebbinghaus, 1885/1913), Frank

& Tenenbaum's (2011) misremembering parameter should decrease with the number of repetitions. Choosing the smallest

misremembering parameter in Frank & Tenenbaum's (2011) Figure 3 as the misremembering probability for 72 repetitions, and

then scaling the misremembering parameter proportionally to the logarithm of the number of repetitions yields misremembering

probabilities of 10, 30, 50 and 60% corresponding to 72, 24, 12 and 6 repetitions, respectively. Under these assumptions, Frank

& Tenenbaum's (2011) model predicts that participants should be best with two X items, while participants actually are best with

24 it X items. (Dotted line with crosses) A different way of interpreting Frank & Tenenbaum's (2011) misremembering

parameter is to consider Gómez's (2002) experiments as memory experiments (although they clearly are not), and to consider the

percentage of incorrect responses in each of the condition as Frank & Tenenbaum's (2011) misremembering parameter.

Choosing the misremembering probabilities in Frank & Tenenbaum's (2011) Figure 3 that are closest to the percentages of

incorrect responses in Gómez's (2002) experiment shows that the model predicts participants to be at ceiling from set-size 12

onwards. This result replicates that the misremembering parameter correlates with performance. Importantly, however, the

pattern of results does not fit the behavior of Gómez's (2002) participants.
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Table 1

Experiments Frank & Tenenbaum (2011) allegedly reproduced, reasons for the models' success, predictions

inconsistent with available data, as well as alternative explanations based on simple psychological principles.

Experiment Reason for modeling success Deviations from predictions Alternative interpretation

Marcus et al.
(1999)

Repetition-patterns are more specific
than control patterns.

Humans do not choose more specific
patterns; see Appendix A.

Humans are equipped with a
repetition detector that makes
repetitions salient.

Endress et al.
(2007)

• Repetition-patterns are
learned as in the Marcus et
al. (1999) case.

• Ordinal patterns are difficult
because they are consistent
with various rules.

• Humans do not choose more
specific patterns; see
Appendix A.

• Humans can discriminate
rising from falling melodies;
see Appendix B.

Humans are equipped with a
repetition detector that makes
repetitions salient.

Frank,
Slemmer, et al.
(2009)

• Repetition-patterns are
learned as in the Marcus et
al. (1999) case.

• Multi-modal rules are more
“specific.”

• Multi-modal rules are
perceived better.

Humans do not choose more specific
patterns; see Appendix A.

• Multi-modal stimuli
are more variable.

• Multi-modal stimuli
provide more
opportunities to learn.

• Multi-modal stimuli
provide more
opportunities for
success during test.

Gerken (2006)

• Repetition-patterns are
learned as in the Marcus et
al. (1999) case.

• Infants maintain a
conjunction rule of two rules.

• The “winning” conjunction
rule is more “specific.”

• If the unsupported
assumption that infants
maintain con junction rules
is not valid, no rule would be
more specific.

• Humans do not choose more
specific patterns; see
Appendix A.

• Some rules are easier
to learn than others.

• People expect items to
con form to all rules
that have been learned.

Gerken (2010)

• Repetition-patterns are
learned as in the Marcus et
al. (1999) case.

• Infants maintain a
conjunction rule of two rules.

• Humans do not choose more
specific patterns; see
Appendix A.

• Humans should unlearn rules
based on a single counter
example after thousands of
positive examples.

• Some rules are easier
to learn than others.

• People expect items to
con form to all rules
that have been learned.

Marcus et al.
(2007)

• Repetition-patterns are
learned as in the Marcus et
al. (1999) case.

• Non-speech items have a
misperception probability of
80% during familiarization,
and 0% during test.

• Humans do not choose more
specific patterns; see
Appendix A.

• Perception does not have
different properties for
familiarization items and test
items.

• There are other performance
differences that are not
observed empirically.

Humans preferentially process
speech; see Marcus et al. (2007).

Saffran et al.
(2007)

• Repetition-patterns are
learned as in the Marcus et
al. (1999) case.

• Infants are more than four
times more likely to
misremember/misperceive

• Humans do not choose more
specific patterns; see
Appendix A.

• See main text.

Infants who are more interested in
stimuli attend more to these
stimuli.

Cognition. Author manuscript; available in PMC 2014 May 02.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Endress Page 37

Experiment Reason for modeling success Deviations from predictions Alternative interpretation

items than in Marcus et al.'s
(2007) experiments.

Gómez (2002)

• The “winning” rule is more
“specific.”

• Participants misremember
exactly 60% of the items.

• Humans do not choose more
specific patterns.

• The predicted results deviate
qualitatively from the
empirical data.

?

Kovács &
Mehler (2009b)

• Repetition-patterns are
learned as in the Marcus et
al. (1999) case.

• Bilinguals are better at
learning two rules
simultaneously because they
are wired to learn multiple
rules simultaneously.

• Humans do not choose more
specific patterns.

• The model ignores work on
the executive function
advantage in bilinguals.

See Kovács & Mehler (2009b).
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