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Abstract

The binding of site-specific transcription factors to their genomic target sites is a key step in gene

regulation. While the genome is huge, transcription factors belong to the least abundant protein

classes in the cell. It is therefore fascinating how short the time frame is that they require to home

in on their target sites. The underlying search mechanism is called facilitated diffusion and

assumes a combination of three-dimensional diffusion in the space around the DNA combined

with one-dimensional random walk on it. In this review, we present the current understanding of

the facilitated diffusion mechanism and identify questions that lack a clear or detailed answer. One

way to investigate these questions is through stochastic simulation and, in this manuscript, we

support the idea that such simulations are able to address them. Finally, we review which

biological parameters need to be included in such computational models in order to obtain a

detailed representation of the actual process.

Introduction

Transcription factors (TFs) control gene activity in both prokaryotic and eukaryotic cells.

These DNA-binding proteins bind to specific target sites in the genome, where they can

either increase or reduce the rate at which genes are transcribed1. While in prokaryotic

organisms genes are often regulated by single TFs in the bacterial cytoplasm2, eukaryotic

transcription relies on combinations of different TFs that bind to nucleosome free regions of

the highly compacted chromatin in the nucleus. In both settings, the ability of these proteins

to locate their target sites becomes a critical aspect in the process of gene regulation.

A naive model of this search process may suggest that the TF molecules move by random

three-dimensional diffusion in the cytoplasm (or nucleoplasm, in the case of eukaryotic

cells; for reasons of simplicity, we will use cytoplasm throughout the text although the same

mechanisms likely apply for the nucleoplasm) and then bind only to the target sites on the

DNA. This model would further assume that there is no non-specific binding of the TF

molecules to the DNA. In reality, the target finding problem is much more complicated.
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More than 40 years ago, Riggs et al. 3 were the first to observe that the rate at which the lac

repressor (a bacterial TF) locates its target site is much faster than the rate predicted by pure

three-dimensional diffusion (using the Smoluchowski limit4) and hypothesised that a

different mechanism is involved in this process. While their original calculations3 were

found to contain errors5, their overall conclusion was correct and it is now well-established

that, at least in prokaryotic systems, TF molecules do not rely on three-dimensional

diffusion alone, but also bind non-specifically to the DNA, from where they perform an one-

dimensional random walk. This combination of three-dimensional diffusion in the cytoplasm

and one-dimensional random walks along the DNA is called facilitated diffusion. Berg et al.
6 were the first to formulate this model of facilitated diffusion and supported the idea that by

reducing the dimensionality of the search process from three to one dimensions speeds up

the search process significantly. In particular, Berg et al. 6 found that the association rate to

a specific site increases by increasing the non-specific absorption rate. Nevertheless, this

increase in association rate is limited by a maximum value above which increase in the non-

specific absorption rate does not increase the association rate to the specific site. This result

was proven theoretically and experimentally and seems to be correct, under the assumption

of linear DNA (no three-dimensional structure)6, when the DNA is assumed to be a random

globule7,8 and even in the case when the DNA is assumed to be a fractal globule9.

In the model of facilitated diffusion, the TF molecules are allowed to perform three types of

movements, namely: (i) sliding, (ii) hopping and (iii) jumping10; see Figure 1. Sliding and

hopping are both one-dimensional random walk mechanisms, but during sliding the TF

molecule is in constant contact with the DNA, while during hopping the TF molecule is

allowed to perform short dissociations from the DNA each followed by a correlated

rebinding to the DNA, i.e., the molecule will bind in close proximity (up to 100 base pairs)

from the site where it unbound from the DNA. Finally, jumping is a mechanism of three-

dimensional diffusion, which assumes that the TF molecule completely dissociates from the

DNA and releases into a cytoplasmic pool of TFs, from where it can rebind anywhere on the

DNA.

In this paper, we review the literature on the TF search process with results from both

experimental as well as theoretical studies. First, we present previous experimental and

analytical results of the facilitated diffusion mechanism and identify areas where theoretical

results do not agree with experimental measurements. Next, we propose stochastic

simulations as an alternative approach to address these discrepancies and we review

previous and current ways to computationally model the facilitated diffusion mechanism.

Finally, we draw the conclusions and identify possible questions related to the facilitated

diffusion mechanism where the stochastic simulations can provide answers. Note that this is

not an exhaustive review, but is aimed to support the idea that stochastic simulations have

the potential to answer several questions that are currently not amenable to experimental

studies.

The facilitated diffusion mechanism

While the model proposed by Berg et al. 6 was essentially correct, it took almost two

decades and several lines of investigation to provide experimental proof.
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One-dimensional random walk

The first experimental evidence for the one-dimensional random walk came from

Shimamoto and co-workers11,12, who observed a linear movement of fluorescent molecules

along the DNA in vitro. Technical limitations made it impossible to provide sufficient

resolution to differentiate between sliding and hopping as the underling mechanisms for the

one-dimensional random walk. This differentiation would require a temporal resolution of 1

ms and a spatial resolution of 1 nm, constraints that make further improvements currently

unfeasible13. Consequently, a significant amount of work was invested to infer the answer

from several experiments as we detail below.

Sliding—What is the nature of the sliding mechanism? Originally, the non-specific binding

of TFs to the DNA was modelled to be mainly electrostatic14,15. This hypothesis was

supported by the fact that the contacts between lac repressor and non-specific DNA are

totally electrostatic16. The sliding mechanism assumes that condensed monovalent salt

cations that reside on one side of the TF-DNA complex are displaced from the DNA and

they rebind fast to the DNA on the other side of the TF-DNA complex14,15. Due to the fact

that the dynamics of the ions are much faster that the movement of the TF on the DNA,

sliding represents a one-dimensional diffusion14,15.

Xie and co-workers support the idea that sliding is the most important one-dimensional

random walk mechanism. First, Blainey et al. 17 tried to exploit the fact that, by increasing

the salt concentration, the non-specific affinity is decreased and, conversely, hopping will be

faster. Their experiment showed little dependence between the one-dimensional random

walk and salt concentration, suggesting that sliding is the main one-dimensional random

walk mechanism. However, DeSantis et al. 18 showed through simulations that lowering the

non-specific affinity has limited effects on the hopping kinetics and, thus, one should not

rely on this strategy (to alter the salt concentration) to infer the hopping rate.

Secondly, Xie and co-workers investigated whether the one-dimensional random walk is

linear or helical, following the shape of the DNA19,20. Their experimental results could best

be fitted by a helical move of the protein, which indicates that the TF might follow the shape

of the DNA and, consequently, the protein might be in permanent contact with the double

helix. The fact that the experimental data was fitted best by a helical move does not mean

necessary that this mechanism is the correct one. Actually, Schonhoft and Stivers 21 showed

that a specific enzyme (hUNG) is able to slide both on double and single strand DNA,

although in the latter case the one-dimensional random walk is reduced. This means that

DNA binding proteins might not follow a helical movement on the DNA during their one-

dimensional random walk, but another type of movement might be involved.

Hopping—Halford and co-workers dedicated a series of articles on trying to investigate

whether hopping exists or the one-dimensional movement is purely due to sliding5,13,22,23.

In one experiment they observed that, by adding non-specific DNA, the rate at which EcoRV

enzyme cleaved the DNA at the recognition site was increased, but there was no difference

between adding the non-specific DNA co-linear to the restriction site (one ring of 3466 bp)

or by catenation (two interlinked rings of DNA one of 3120 bp with only non-specific DNA
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and one of 346 bp with the recognition site)22; see Figure 2(a). This suggested that three-

dimensional proximity (three-dimensional diffusion is the only way to reach the restriction

site from the non-specific DNA in the catenane) is as important as one-dimensional

proximity (one-dimensional random walk is one way to reach the restriction site from the

non-specific DNA in the plasmid), and this is true only if hopping is taken into account.

In another experiment, Gowers et al. 13 designed two DNA strands with two sites that are

cut by restriction enzymes. The first DNA strand contained two sites that had the same

orientation, while the second one contained two sites with different orientations; see Figure

2(b). In the absence of hopping, the cleavage of the first DNA strand should be higher than

that of the second one. However, their experiments showed similar cleavage rate for

distances between sites greater than 50 bp, which suggested that molecules slide and scan ≈
50 bp of DNA before performing a hop event.

Recently, Schonhoft and Stivers 21 performed an in vitro experiment where a specific

enzyme (hUNG) would excise a damaged uracil base; see Figure 2(c). Setting two uracil

sites at various distances and using trap molecules which would inactivate the enzyme only

during their three-dimensional excursions, they were able to quantify that the enzyme has an

average sliding length of 4 bp and at least one hopping occurs every 10 bp. This is a higher

rate than predicted by Gowers et al. 13 and could be explained by the fact that the two

experiments used different enzymes. Thus, these parameters could be highly specific to each

DNA binding protein and extra care should be taken before assuming their generality.

In vivo experimental evidence—All the experimental validation presented above were

performed on isolated DNA in reconstituted in vitro test systems, but there was no proof that

the facilitated diffusion mechanism actually exists in vivo. Elf et al. 24 were able to visualise

the movement of fluorescent lac repressor molecules in a live E.coli cell. In this study, they

used fluorescence correlation spectroscopy (FCS) to measure the pure three-dimensional

diffusion coefficient (lacI without DNA binding domain) and the apparent diffusion

coefficient (lacI with DNA binding domain). In addition, the one-dimensional diffusion

coefficient was determined from in vitro experiments. Using these measurements they

approximated that the molecules spend approximately 90% of the time performing one-

dimensional random walks on the DNA and the remaining time performing three-

dimensional diffusion in the cytoplasm. Finally, Elf et al. 24 were able to measure that the

molecules have a residence time of tR = 5 ms (the time a molecule spends on the DNA

before it unbinds by jumping) and using the in vitro diffusion coefficient they estimated that

the sliding length is  (the number of base pairs scanned before it unbinds by

jumping).

Recently, Hammar et al. 25 estimated that the in vivo sliding length of lac repressor is

. This study used a strategy similar to the one used in in vitro by Ruusala

and Crothers 26. The experimental setup considers that two target sites are added on the

DNA at various distances. If the distance between two target sites is smaller than the sliding

length, then the association rate of a protein to any target site reduces by up to a half of the

original value. This is caused by the fact that when the two target sites are far enough they
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appear as two target sites, while when they are close they behave as a single target (leading

to a reduction in the association rate). This measure of sliding length of lac repressor in vivo

is half of the value proposed in Elf et al. 24, but both studies estimate these parameters (these

values are not direct measures of the sliding length). This suggests, that there is an error in

measuring these parameters which is not generated by the differences in the systems, but

rather by the methods that are used to estimate the parameters. One solution to surpass these

errors is to provide a direct measure of these parameters, but this is not achievable with

current technologies.

Elf and co-workers24,25 provided conclusive evidence that the facilitated diffusion

mechanism exists in vivo in prokaryotic cells. Target site identification seems more

complicated when we consider eukaryotic cells. Here the DNA displays a higher level of

organisation than in prokaryotic cells and it is packed in chromatin, which will make large

regions of DNA inaccessible. For example, during early developmental stages of the

D.melanogaster, only 3.5% of the DNA is accessible27. Furthermore, this is not a static but

rather dynamic system, in which the accessible regions are in constant flow depending on

the biological context. Gehring and co-workers28,29 used FCS and found that the Drosophila

homeobox transcription factor Sex combs reduced (Scr) displays three different diffusion

constants in live salivary gland. They attributed these diffusion constants to three-

dimensional diffusion, non-specific one-dimensional random walk on the DNA and to TF

molecules tightly bound to specific sites. These results seem to suggest that the facilitated

diffusion mechanism might exist even in eukaryotic cells, but there is still no strong proof

that what Gehring and co-workers28,29 observed was actually facilitated diffusion, or only a

slower diffusion in a denser environment.

Interestingly, Gehring and co-workers28,29 estimated that the diffusion coefficient of Scr is

significantly higher compared to the one of the lac repressor24. This is surprising, as one

would expect slower movements in a eukaryotic cell, because of higher crowding on the

DNA and a denser environment. Nevertheless, it is still not clear whether these differences

are generated by the differences in the experimental methods, differences in the investigated

TFs, or differences in the search mechanism between prokaryotes and eukaryotes (such as

different proportion of time spent on the DNA, faster diffusion or higher crowding on the

DNA).

The main disadvantage of FCS is that the method cannot obtain long trajectories of

individual molecules. An alternative method was recently proposed by English et al. 30. This

method, which is called the stroboscopic tracking assay, has no limitation on in vivo copy

number and can capture long trajectories. Nevertheless, the details of applying this method

to the facilitated diffusion mechanism of TFs still needs to be investigated.

Open questions

It becomes evident from the presented work that our picture of facilitated diffusion is still

partial, and while the basic mechanism is commonly accepted, still many aspects lack a

detailed description.
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The rate of sliding compared to the rate of hopping—It is now accepted that both

sliding and hopping exist, but there is still no agreement on whether the molecules

predominantly slide or hop during the one-dimensional random walk. While the analytical

study of Coppey et al. 31 and the computational model of Wunderlich and Mirny 32

concluded that molecules perform up to 10 hops during each one-dimensional random walk,

the results of DeSantis et al. 18 indicate that this rate can be three orders of magnitude

higher. Both studies are theoretical and the field still awaits improved experimental

measurements of the phenomenon to propose a reliable value/interval for the degree of

hopping. Using the fact that the lac repressor seems to scan approximately 90 bp on each

random walk on the DNA24 and the fact that protein can change orientation on the DNA

only for distances of at least 30 bp seems to suggest that hopping exists but that the degree

of hopping is rather small, as suggested by Coppey et al. 31 and Wunderlich and Mirny 32.

Nevertheless, Bonnet et al. 33 observed experimentally a high rate of long hops on the DNA

(longer than 600 bp). Since it is expected that short hops are more frequent than long

ones18,32,34, it seems possible that proteins display a high rate of hopping. In addition,

Schonhoft and Stivers 21 estimated high hopping rates (at least one every 10 bp) for a

specific enzyme (hUNG).

Overall, it seems plausible that hopping rates can be high or low depending on the DNA

binding protein (its conformation and charge) and even the salt concentration in the cell35.

This means that instead of looking for a general value for the hopping rate, one should aim

to identify these parameters individually for each protein that is investigated.

Optimal partition of time—Previous theoretical work suggested that the optimal

configuration is the one in which a TF molecule would spend half of its time on the DNA

and the other half diffusing in the cytoplasm31,36, but experimental measurements found that

bacterial TFs spend 90% of the time bound to DNA. Mirny and co-workers36-38 proposed

that, while sliding, the protein can be in two modes, (i) a search mode or (ii) a recognition

mode, and that a TF swaps randomly between these states. This model could explain why

there is a difference between the optimal proportion of time spent performing one-

dimensional random walk or three-dimensional diffusion37. However, there is no strong

evidence that this is a general mechanism used by TFs and, although this model might be

true in the context of their research, it is unclear whether their experiments provide an

insight into the general mechanism.

Reingruber and Holcman 39 gave a different interpretation to the search/recognition

mechanism: They suggested that when the TF is in search mode it actually hops, while when

it is in recognition mode it slides. Consequently, during hopping a molecule will bind

weakly to the DNA through electrostatic interaction with the DNA backbone, while during

sliding the binding is stronger. This contradicts the model of sliding proposed by von Hippel

and co-workers14,15, where the sliding is mediated through weak electrostatic interactions.

Both models (Reingruber and Holcman 39 and von Hippel 15) seem biologically plausible

and there is no proof of the actual mechanism by which the TFs perform the one-

dimensional random walk.
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Recently, Benichou et al. 9 showed analytically that when the DNA is assumed to be a

fractal globule, the optimal partition of time assumes that the molecules spend more time

bound to the DNA (≈ 85%), which is in accordance with experimental measurements.

Nevertheless, Benichou et al. 9 used a mean-field approximation and it is not clear whether

these results are still valid assuming real affinity landscapes.

Crowding—Molecular crowding is an aspect which was disregarded in most of the above

mentioned studies, and which may have a significant effect on the search process. TF

molecules that perform facilitated diffusion to search for their target sites are not alone on

the DNA. For example, in the case of E.coli, depending on growth conditions, between 10%

and 50% of the genomic DNA is covered by other DNA-binding proteins40.

One effect of crowding on the DNA is that the target site can be totally or partially covered

by other molecules (called non-cognate species), which will make locating the target site

impossible40. Nevertheless, by adding non-cognate molecules and considering steric

hindrance (two molecules cannot occupy the same space), a large region of the DNA can be

masked by other molecules and, consequently, the amount of free DNA, where a TF

molecule needs to perform the search process, is smaller compared to naked DNA, leading

to faster location of the target site37.

Murugan 41 found that there is an amount of crowding that minimises the search time of one

TF molecule. Nevertheless, in deriving this result, Murugan 41 considered that the sliding

length was inversely proportional to the number of molecules bound to the DNA42, which is

true only if the sliding length is higher than the length of the DNA segment. In addition,

Murugan 41 did not consider the probability that the target site can be covered by the non-

cognate species or the effect the crowding has on reducing the association rate of the TF to

non-specific DNA (non-cognate molecules bound to the DNA reduce the association rate of

free cognate molecules by reducing the amount of available non-specific sites)40. Li et al. 43

took into account these aspects and showed analytically that by increasing the crowding on

the DNA, the search time actually increases.

One solution to avoid the slow down of the search process caused by crowding is to increase

the abundance of the TF of interest. Li et al. 43 found that by increasing the copy number of

the TF of interest, and the copy number of other DNA binding proteins in E.coli by the same

factor, leads to an increase in search speed when the total number of DNA binding proteins

is below 104 and a significant decrease in the search speed for more than 1.6 × 105

molecules. This result seems to indicate that the actual number of DNA binding molecules

in E.coli (≈ 3 × 104) lies within an optimal interval. However, in the works of Flyvbjerg et

al. 40 and Li et al. 43, crowding was assessed assuming “immobile obstacles”, which is a

crude approximation that can lead to biases in the results. It is reasonable to approximate

that the most DNA-binding proteins move on the DNA at similar speeds (with an average

diffusion constant). This new regime of “moving obstacles” on the DNA may influence the

results presented by Flyvbjerg et al. 40 and Li et al. 43, but further work is required to test

these new hypotheses.
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Crowding on the DNA does not only reduce the association rate of TFs to their target sites,

but it also increases the fluctuations in the occupancy of the target site44. On crowded DNA,

non-cognate TFs have a higher probability to bind ‘empty’ target sites. One solution to this

noise in gene activity is to have target sites that are occupied almost all the time and, thus,

the cognate TFs act like insulators. Sasson et al. 44 found that the variation in the lac

promoter activity decreases when the promoter has a higher cognate occupancy. One

question that still needs to be answered is how the parameters of the one dimensional

random walk of TFs on the DNA affect this behaviour?

In a crowded environment, hopping and jumping may play an even more important role, in

the sense that a TF molecule can overcome an obstacle by hopping over it41,45-47.

Kampmann 45 proposed that the obstacles are bypassed through a two-dimensional random

walk on the DNA, where proteins do not follow the major grove of the DNA, but perform a

random walk on the entire cylindrical surface of the DNA. However, Kampmann 45 could

not distinguish whether the obstacle bypass was performed by this two-dimensional random

walk or by hopping. The two-dimensional random walk does not assume that proteins bound

to the DNA can change their orientation and, consequently, enzymes could not cleave two

sites with inverted orientation as shown in Gowers et al. 13. Thus, it seems more plausible

that the obstacle bypass observed by Kampmann 45 is generated by hopping rather than a

two-dimensional random walk on the DNA. Similarly, Hedglin and O’Brien 47 found that

the addition of obstacles between two sites reduces the processivity of a specific enzyme

only by 50%. In a pure sliding scenario the processivity should have been completely

reduced and, thus, the authors of that study concluded that the enzyme has to hop to a certain

degree in order to reach the second site.

Li et al. 43 argued that the hopping mechanism would not lead to obstacle bypass because

the molecule would need to make an excursion of ≈ 14 nm and, at these distances, the

molecule has a low probability to rebind ‘correlated’ to the DNA, in the sense that the

rebinding will most likely occur far away from the unbinding position. However, Bonnet et

al. 33 observed in vitro that molecules bound to the DNA can perform a large number of

long hops or jumps on the DNA of lengths further than 30 nm (100 bp), which suggests that

hopping could, in principle, bypass obstacles on the DNA. In addition, Murugan 41 showed

theoretically that if TFs were not able to jump over obstacles on the DNA, then one should

observe anomalous diffusion (sub-diffusive behaviour of molecules that are trapped in

crowded regions of DNA). Experimental studies, such as the ones of Blainey et al. 17 and

Elf et al. 24, observed a normal diffusion of the TFs on the DNA, thus supporting the idea

that TFs should be able to bypass obstacles on the DNA by hopping.

Crowding on the DNA can also lead to a reduction in the number of jumps and an increase

in the number of hops34, which means that the protein spends more time performing the one-

dimensional random walk. Nevertheless, if obstacles occupy a large area of the DNA (think

clusters of binding sites in an eukaryotic enhancer), then the TF molecule can only diffuse in

the cytoplasm and attempt to rebind at a further distance, compared to where it was

originally residing.
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In addition, the obstacles that are generated by molecular crowding can lead to boundary

effects (the TF molecule cannot slide towards the direction of the cluster), in which case, the

analytical result seems to suggest that the optimal target finding strategy of being bound to

the DNA half of the time, is no longer valid48.

Finally, it has been shown both theoretically49 and computationally50,51 that cooperative

behaviour between TF molecules (direct TF-TF contact) leads to cluster formation and all-

or-none behaviour. Flyvbjerg et al. 40 showed that the formation of bigger clusters of non-

cognate TFs reduces the probability that non-cognate molecules will cover the target site of

interest. The addition of non-cognate TFs to a cooperative system can also reduce this

clustering effect of cognate TFs introduced by cooperativity, but this seems to work only in

the case of weak cooperativity51. Nevertheless, the theoretical studies mentioned above did

not consider moving TFs on the DNA (moving obstacles), while the computational ones did

not consider the entire DNA sequence, which can introduce biases when the parameters of

the smaller systems are not adjusted correctly from the parameters of the complete system

(representing the entire DNA and all the molecules in the cell) (unpublished data).

It would be interesting to investigate whether the results presented above hold when one

considers the entire DNA, all the molecules in a cell, and specific affinities between TFs and

DNA or whether other emergent properties are found.

Clustering of target sites—It was found that multiple target genes of a TF seem to

cluster together52, but there is no exact answer as to the benefits of this mechanism. One

explanation is that a single site does not have enough information to offer specificity (to be

distinguishable from other random sites in the genome) especially in large eukaryotic

genomes, while a cluster of sites (for the same TF or for different TFs) would have the

required information content to stand out from the genomic background53.

In eukaryotic systems, spurious sites can get covered by nucleosomes, while clusters of TFs

can compete with these nucleosomes and keep the region nucleosome free without the need

of chromatin modification. Mirny 54 computed analytically that clusters of 3–6 sites within

147 bp of DNA (the nucleosome DNA footprint) will ensure that the underlying DNA

region will be free of nucleosomes. This will transform the gene activation function from a

gradual response (a hyperbolic function) to a all-or-none one (a steep sigmoidal one).

However, this study did not consider the dynamics of this competition between TFs and

nucleosomes. In particular, it would be interesting to understand how the one-dimensional

random walk of TFs on the DNA (sliding and hopping) would change this result.

An alternative explanation for this site clustering is that the same TF molecules can regulate

a series of close genes by performing only one-dimensional random walks and not by taking

long excursions into the cytoplasm32. Slutsky et al. 55 proposed that, if the affinity landscape

contains energetic valleys where the target site resides, then TF molecules can be captured

and, consequently, the local concentration can be overall increased.

Above we assumed that the co-localization of target sites could lead to the target sites being

occupied by TFs for longer. Related to this property of the system, is the time required to
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form clusters of identical molecules (oligomers) on these target sites. Nicodemi and

Prisco 50 found that in the case of two attractors of DNA binding molecules, the three-

dimensional distance between the attractors affects the rate of formation of these clusters

over the attractors. Due to lower specificity of eukaryotic TFs compared to prokaryotic ones,

one way to control the activity of genes in eukaryotic cells assumes that the regulatory

modules consist of multiple identical binding sites for several TFs53. In this setting, co-

localization of clusters of functional sites can increase the speed at which clusters of TFs are

formed and, consequently, the gene regulation speed.

Overall, it is still not clearly understood how co-localization of clusters of target sites and

the size of the clusters influences the time to form clusters of TFs over the target sites and

the proportion of time these target sites are occupied, when real affinity landscapes are

included in the model.

Computational methods

Some of the theoretical studies mentioned above proposed analytical solutions of the

facilitated diffusion mechanism. While analytical solutions are preferred as they provide

consistent and reproducible results, they have certain limitations. First, analytical solutions

lack the capability to integrate real DNA sequences56, but rather have to rely on using

approximations, such as a non-uniform TF affinity landscape37. In particular, at least in

higher eukaryotic systems, there are many non-functional high affinity sites on the DNA,

where the TF molecules can be trapped57. This is a mechanism which probably evolved to

cope with high copy number of TFs in higher eukaryotic organisms57. Thus, spatial aspects

can lead to significant deviations from the mean field approximation58 and, consequently,

analytical solutions can mask information encoded in the DNA, see for example Weindl et

al. 59.

Secondly, analytical models cannot consider moving obstacles and volume exclusion

(mobile roadblocks)40,43. Computational models can overcome these shortcomings. In what

follows, we present a general strategy to model computationally how the search process of

TFs for their target sites takes place.

How to model the facilitated diffusion mechanism?

An ideal model would entail a complete representation of the cell, in which all relevant

molecules (such as DNA, all TFs, RNA polymerase and other DNA-binding proteins) are

explicitly included in the model. However, there are two issues with this ideal experiment.

Firstly, our current knowledge is incomplete and many crucial parameters unknown. We

lack precise knowledge of many details (such as abundances, preferred binding sites and

diffusion coefficients for TFs). Secondly, even if all data would be available, there is not

enough computational power to simulate such a large and detailed system in feasible time.

To address these two issues, computational models use two strategies: Approximation of

crucial parameters and reduction of the model to the most relevant components. Thus,

computational models of the facilitated diffusion mechanism must have a reduced level of

detail and often focus on a smaller subsystems, i.e. a stretch of DNA rather than the genome;

one TF rather than the entire repertoire; and a common affinity for all TFs rather than real
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properties. Hence, when working with such models it is then important to remember that the

quality of the results is a direct consequence of the simulation strategy. Here we present

aspects that need to be considered in models of facilitated diffusion in order to address the

questions that were asked in the previous section and how parameters can be approximated..

The two essential ingredients of the model are the DNA and the DNA-binding molecules in

the cell. There is usually comprehensive data for the DNA in many organisms and this data

can be classified from low-resolution to high-resolution depending on the level of detail.

First, at the lowest resolution we have the DNA sequence and, due to the advancements in

sequencing in the last decade, a significant number of organisms have now a reference DNA

sequence. At the next level, there is the three-dimensional structure of the DNA and

although the data at this level is sparse, there are some crystallographic structures of TF-

DNA complexes available, especially through Protein Data Bank (PDB)60. These two levels

of DNA information can be combined together in the computational model to determine the

affinity between the TF and the DNA (see below).

Finally, at the highest level of resolution, we have the global organisation of the DNA. This

is an area which has recently started to extend after a first map of the organisation of the

human DNA61. This data contains the probability that two DNA regions of at least 1 Mbp

are close to each other in the three-dimensional space. The main problems with this data are:

(i) the low resolution (to include this in a computational model we need shorter segments

that are at most equal to the DNA persistence length, which is approximately 150 bp7) and

(ii) the fact that there is no time evolution of this three-dimensional structure (we do not

know whether two DNA segments are always close to each other, or whether this is specific

to certain biological context).

While for many species the genome sequence and their repertoire of DNA-binding proteins

(both TFs and other) are known, data about the DNA-binding proteins abundance in the cell

or their binding specificity is extremely sparse. This shortcoming in the available data can be

surpassed by considering only those well-studied proteins that are of interest (called cognate

TFs) and for which there is enough data available. In addition, the model could also consider

a generic TF species called non-cognate TFs, for which one can use generic parameters with

respect to size, diffusion coefficients and DNA affinity51,62-65.

For example, for E.coli, one can consider a generic length of the DNA binding motif of 20

bp, which seems to fit in the range of many TFs in this organism66, the binding energy of 12

± 1 KBT 20,67 and use the other parameters (such as residence time tR = 5 ms24, proportion of

time bound to the DNA f = 0.924, observed sliding length 24 or 25 and

number of hops nhops = 632) from the measurements of lacI. This means that the actual

sliding length is ≈ 36 bp which is similar to the value previously proposed to minimize the

search time8, but also estimated for some DNA binding proteins13,23.

Here, we assumed average values for the unknown parameters, as this ensures that they are

at least within a biologically plausible range. These approximations are prone to introducing

biases in the results, but further investigations are required to determine the degree of

influence these average parameters will introduce.
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Most importantly, the abundance and the size of the non-cognate TFs can be usually

estimated and consequently the simulation should reasonably approximate the dynamical

crowding on the DNA. For example, in E.coli we know that between 10% and 50% of the

DNA is covered by proteins40, the number of DNA binding molecules in the cell43 is in the

range of ~ 10000 and each TF molecule will cover around 20 bp of DNA66. Using these

numbers, one can estimate that there are between 2 × 104 and 105 molecules each covering

≈ 20 bp on the DNA. A similar approximation was made by Flyvbjerg et al. 40, who

considered that there are between 105 and 2 × 105 molecules bound to the DNA each

covering 10 bp. Both of these approximations are just rough estimates of the DNA binding

proteins, which will not have only one size (10 bp or 20 bp), but rather a distribution of sizes

centred around one of these values. In the absence of a complete set of data (size of all DNA

binding proteins and their copy numbers), the only viable solution is to use one of these

approximations.

A comprehensive model of the facilitated diffusion mechanism will consider each TF

molecule as an object (agent), which can move through three-dimensional diffusion in the

cytoplasm, but which also can bind to the DNA and perform a one-dimensional random

walk. Nevertheless, simulating the three-dimensional diffusion and one-dimensional random

walk of each molecule in the in-silico cell is infeasible with respect to the simulation time.

Below, we review the details associated with this process and locate certain mechanisms that

can be approximated, in order to increase the simulation speed.

Three-dimensional diffusion

The three-dimensional diffusion of molecules in the cell can be resolved with algorithms

such as GFRD68, which is an event driven exact algorithm. However, three-dimensional

diffusion to the Smoluchowski limit is one of the most time expensive steps of spatial

simulations and other approximate algorithms, such as Smoldyn69, were developed. These

algorithms are time driven and their accuracy depends on the size of the time step. In fact, if

the discretisation of the algorithm is not done correctly, the results can be misleading70. In

this context, one might ask whether it is necessary to simulate this three-dimensional

diffusion explicitly at all. When the TF molecules are not bound to the DNA, they can move

freely in the cytoplasm or perform micro-dissociations from the DNA followed by fast re-

associations (hops). van Zon et al. 71 showed that the three-dimensional diffusion of

molecules from the cytoplasm to the DNA can be approximated by the Chemical Master

Equation (CME), when the model takes into account the fact that a molecule that unbinds

has a high probability to rebind in close proximity. This aspect is already incorporated when

modelling the hopping of TF molecules on the DNA and, consequently, a good solution

would be to consider molecules that flow freely in the cytoplasm as belonging to a reservoir

from where molecules can arrive at the DNA with certain arrival rates and where molecules

can go when they completely dissociate from the DNA51,65. This approach does not

consider crowding in the cytoplasm, which might introduce biases. However, this three-

dimensional crowding will only affect the distribution of the arrival times to the DNA and as

long as one has this distribution (which van Zon et al. 71 showed to be well represented by

the CME), the specific details of the three-dimensional diffusion in the cytoplasm will not

change the results significantly.
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The arrival rate at the DNA is computed from the three-dimensional diffusion coefficients.

Nevertheless, if the DNA is highly occupied, the rate at which a TF molecule locates a free

site is lower compared to the case when the DNA has a lower occupancy. This effect can be

incorporated in the arrival rate, by weighting the arrival rate by the proportion of free

DNA51,65. In particular, this rate of arrival does not need to be updated at every step in the

simulation, but only after a significant change in the DNA occupancy was achieved65.

The other component of the facilitated diffusion mechanism that assumes three-

dimensionality is hopping. During a hopping event the TF briefly unbinds from the DNA

and then it rebinds fast in close proximity. The question is now whether we need to

explicitly simulate the three-dimensional diffusion or just approximate this process by a

repositioning of the molecule at a close position on the DNA. Given the fact that three-

dimensional diffusion is much faster than the one-dimensional random walk24 and that hops

are short-lived6,37, then one can approximate the hops by a simple repositioning of the

molecule on the DNA32.

Morelli and ten Wolde 58 performed exact three-dimensional diffusion simulations of two

molecules and found that when a molecule B unbinds from a molecule A, molecule B

should not be repositioned in contact or close to molecule A, but should be moved far away

from molecule A. This means that during a dissociation event, the TF molecule can either be

repositioned on the DNA in close proximity or has to be repositioned in the TF reservoir.

In summary, it seems that the three-dimensional diffusion processes can be approximated by

single steps with certain probabilities associated to them, instead of explicitly simulating this

process. This approximation leads to significant speed up in the simulation and negligible

errors in the results.

Positioning of the TF molecules on the DNA

The next aspect one needs to consider in the model of facilitated diffusion is where to

position a molecule on the DNA once this molecule has arrived from the cytoplasm at the

DNA, or when it is hopping and shortly dissociated from the DNA.

Positioning during initial binding—The location where the TF molecule is first

positioned on the DNA can have significant effects on the search process32. In prokaryotic

cells, where translation is co-localized with transcription, Kolesov et al. 72 observed that a

significant number of lowly expressed genes that encode for TFs are in close proximity to

the target sites of the TFs, thus supporting the idea that the position where the TF starts the

one-dimensional random walk is essential for fast regulation. The reason behind this is that,

if the TF has high probability to encounter the target site during the first one-dimensional

random walk, then the regulation takes place faster32. Thus, it is essential that the model of

the facilitated diffusion mechanism in prokaryotic cells include an initial “drop interval” for

TFs.

Repositioning of a molecule after jumping—The standard approach assumes that

when a TF molecule arrives at the DNA from the cytoplasm it can rebind with equal

probability anywhere on the DNA6,23,31,36. These models seem to predict no acceleration of
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the search process resulting from the combination of one-dimensional random walk and

three dimensional diffusion, but rather the fact that facilitated diffusion leads to a slowing

down of the search process5,37,73.

Das and Kolomeisky 74 proposed that the one-dimensional random walk and the three-

dimensional diffusion are correlated, in the sense that the original position where the

molecule binds after a three-dimensional excursion, has a strong correlation to the previous

region of the DNA, where the molecule performed a one-dimensional random walk. This

mechanism seems to increase the search speed73 and is supported by the fact that molecules

seem able to move in dense chromatin regions where it is more likely to associate with a

three-dimensionally close DNA segment than to release into the cytoplasm and rebind

anywhere on the DNA with equal probability75,76. In addition, previous theoretical studies

showed that searching on a non-linear DNA can be faster than on a linear DNA, but there is

an optimal DNA density above which the search becomes inefficient76,77.

However, in order to test the validity of this assumption one needs a three-dimensional

structure of the DNA. As mentioned above, there is some advancement on determining these

three-dimensional61,78,79 structures of the genome for various species, but we still lack a

high-resolution three-dimensional map of any genome and information about the dynamics

of the DNA structure.

Repositioning of a molecule after hopping—We also need to consider where the

molecules are repositioned after a hopping event. Wunderlich and Mirny 32 performed

stochastic simulations and found that the molecules need to be repositioned at a random

position on the DNA, the location of which follows a Gaussian distribution around the

original position (before the molecule micro-dissociates) and with a standard deviation of 1

bp. DeSantis et al. 18 found a similar result when performing stochastic simulations of the

three-dimensional diffusion mechanism, but in their case the the standard deviation was

approximated to be around 0.007 bp. As long as the one-dimensional random walk also

consists of sliding, both of these values will lead to similar results (unpublished data) and,

thus, one can use both of these values without affecting the results. When the random walk

on the DNA is made mainly of hopping events, then a standard deviation of 0.007 bp leads

to extremely short sliding lengths (often just 1 bp) for a fixed number of one-dimensional

random walk events, while a standard deviation of 1 bp can lead to similar sliding lengths as

in the case of purely sliding events. Since there is no difference between the two approaches

except on a purely hopping scenario and there seems to be a consensus in the community

that sliding exists, one can use any of these values and this will not change the results

significantly.

This approximation of the relocation of a molecule after a hop event by a Gaussian

distribution around the unbinding position considers one-dimensional distances only. If we

consider the three-dimensional structure of the DNA, one-dimensional proximity will differ

from three-dimensional proximity, i.e., regions of DNA that are far away from each other

when we consider the DNA as a string can be close in the third dimension. This means that

during a hopping event, the repositioning should be Gaussian distributed, but the sites where

the molecule can rebind need to ordered according to their three-dimensional distance and
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not only according to one-dimensional distance. However, we lack this information and the

resolution currently provided by chromosome capture experiments61,78,79 is by no means

sufficient.

It seems that both the repositioning of a TF molecule after a jump or a hop can be influenced

by the structure of the DNA. We consider that, where this data is available, it should be

included in the model. Nevertheless, it seems that the three-dimensional structure of the

DNA influences only the positioning of the molecules on the DNA74. One way to include

this information in the model is to construct a square matrix where the relative distances

between DNA regions is specified and, when a molecule rebinds to the DNA, the new

position should take this matrix into account.

Finally, the model of the facilitated diffusion mechanism should implement steric hindrance

(or volume exclusion), in the sense that two molecules cannot overlap in space80, i.e., two

molecules cannot cover the same base pair at the same time. An aspect which is usually

neglected in this scenario is that the number of base pairs that are obstructed by a TF

molecule are not only the ones that are in direct contact with molecule, but it can also be the

case that a number of base pairs are obstructed downstream or upstream of the DNA binding

motif (e.g. as in65). This additional coverage of the DNA (downstream or upstream of the

DNA binding motif) can be determined by analysing the crystallographic structure of the

protein-DNA complex and, when this three-dimensional structure of the protein-DNA

complex is missing, the model should avoid approximations that can lead to biases in the

results.

One-dimensional random walk

Once the TF molecule is bound to the DNA, it starts to perform a one-dimensional random

walk, until it unbinds. During the one-dimensional random walk, the TF stays bound to a

position for a certain time, which depends on the binding energy (see below). After this time

interval the molecule can slide left or right, it can hop, or it can unbind from the DNA. The

probability to slide left or right depends on the type of random walk, in the sense that during

an unbiased random walk it is constant across the whole genome and equal in both

directions (e.g. as in62,65), while for a biased random walk this probability depends on the

affinities of the new positions36,81. The hypothesis that the random walk is biased stems

from the idea that valleys in the energetic landscape can hold molecules within a confined

region55. Weindl et al. 59 observed that the affinity landscape of RNA polymerase seems to

increase when moving towards the transcription start site (TSS) and consequently the

polymerase can be directed towards the TSS55,59.

Furthermore, Weindl et al. 81 claimed that the slow-down of a DNA-binding molecule near

the recognition site can be explained by this energetic trap. Near the TSS the affinity is

higher, which results in the molecule spending longer time intervals in that region and,

consequently, the molecule would display slower speeds. Thus, one cannot infer from

slower speeds that the random walk is directed, but just that the molecule has higher affinity

in the slower region.
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Finally, if the random walk would be biased, then it would display an sub-diffusive

behaviour on short time scales, in the sense that the TF would slow-down82. Nevertheless,

previous studies, such as the ones of Blainey et al. 17, Elf et al. 24 or Vukojevic et al. 28, did

not observe this anomalous behaviour when proteins performed the random walk on the

DNA and, thus, one can conclude that the random walk seems to be unbiased.

Methods to estimate the affinity between DNA and TF—There are various ways to

model the binding of TF molecules to the DNA. One of these models assumes that the TF

molecules have a constant affinity for the DNA (non-specific affinity), which is independent

of the bound DNA word, except for the target site, where the affinity is higher compared to

non-specific sites (e.g. as in Das and Kolomeisky 74 and Wunderlich and Mirny 32). In this

context, a non-specific site means every site except the specific one(s), including random

background DNA, weak and medium affinity sites. A more biologically realistic model

assumes that TFs have various affinities for sites on the DNA and the affinity between a TF

and the DNA is determined by the preferred DNA binding motif of the TF.

Several computational strategies were used to determine the affinity of a TF to DNA67,83,84,

but the most widely used one is the Position Weight Matrix (PWM)84. Despite the success

of PWMs in sequence bioinformatics, it seems that the method is prone to high error rates

and there are different views about the correct scoring of PWMs. Maerkl and Quake 85

considered the human transcription factor Max and compared the PWM score with actual

binding energies measured for single point mutations over a range of four base pairs. They

found that for more than 1 mutation, the PWM underestimates the binding energy, and this

means that PWMs cannot be reliably used to capture the entire binding energy landscape.

This underestimation in binding energy of the PWM is a consequence of the additivity rule,

where each nucleotide contributes independently and additively to the total binding

energy86,87.

One solution to address this problem is to change the affinity of specific sites and shift the

distribution of the binding energies, but this comes at the cost of knowing a priori which

target sites the TF has.

Another solution is the search-recognition model proposed by Slutsky and Mirny 36, which

assumes that the TF has two different average binding energy levels, depending on how the

TF is bound. This method does not require a priori knowledge of the target sites, but

assumes a model which might not be biologically realistic (i.e. there is no proof that TFs

display this allosteric behaviour with stochastic switching between states).

Similarly, Hammar et al. 25 proposed that the TF scans at high speeds the DNA independent

of the sequence. The TF has a certain probability (which seems to be low25) to ‘read’ the

affinity of the underlying DNA motif at certain positions and bind to it (recognition). In this

model, the probability to switch from the search to the recognition mode depends not only

on the TF, but also the underlying DNA. This complicates the picture even more, because

there seems to be no solution to measure these probabilities for lower affinity sites.
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In this context, it is worthwhile noting the study of Marcovitz and Levy 88, which performed

coarse-grained simulations of the protein-DNA interactions taking into account the structure

of the molecules. They observed that the time to switch between non-specific binding

(search mode) to specific binding (recognition mode) depends on the differences in the

conformation of the DNA-binding protein in the two cases. This means that if the

conformation to bind the DNA non-specifically is very different from the one to bind the

DNA specifically, then the protein has to pass over the target site multiple times before it

can bind there. Furthermore, they considered 125 DNA-binding proteins and found that the

majority have very different binding modes, which supports the idea of multiple contacts

between the protein and the target site before the specific binding takes place. However, this

is not the complete scenario and other features of the protein can change this switching rate

between the binding modes. For example, in the case of p53, the C-tail can bind to another

DNA segment and change the conformation of the protein or the orientation of the DNA

binding domain89. This means that one should not consider just the differences between

non-specific conformation of the protein and the specific one, but also additional features

(such as disordered regions, additional binding domains) and local configuration of the

DNA.

A more detailed model for the affinity will take into account the structure of the DNA in an

all-atom model. This second layer of information can significantly change the results90. To

include this into an improved facilitated diffusion model, one could perform energy

minimisation calculations as performed in Alibes et al. 91 to accurately predict the binding

energy between TFs and all sequence words. This approach is feasible for TFs with short

DNA binding motif, because the number of DNA words against which the TF is compared

is relatively small (e.g. for 8 base pairs there are 65536 possibilities). However, there are

still a significant number of TFs that have motifs longer than 20 base pairs (especially in

prokaryotes66) and, in that case, it is impractical to compare a TF with all the possible DNA

words.

Finally, if the TF molecules are not symmetric (if the TFs are not homo-dimers or higher-

order homo-oligomers such as p53 or lac repressor), then the affinity for the DNA will

depend on the orientation of the TF. In this scenario, hopping might play a significant role in

the diffusion process, due to the fact that without hopping, a molecule would not be able to

change orientation and, consequently, to have a different affinity for the same DNA region

or to be able to cleave the DNA13. For example, without hopping the TF will have to rely

only on jumping to ensure that the molecule is in the correct orientation at the target site,

which can significantly increase the variation in the search time. Nevertheless, Givaty and

Levy 35 found that only longer lived hops could lead to change of orientation of the protein

with respect to the DNA. This means that, when computing the probability of changing

orientation, one also has to take into account the duration of the hop.

Computational models for large-scale simulations of the facilitated diffusion mechanism

As mentioned above, there is a trade-off between the level of detail included in the model

and the speed at which the system can be simulated. The models that would include the

highest level of detail are models that represent the molecules at their atom level, their three-
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dimensional diffusion and their interactions91. This type of model can simulate systems of

only a few molecules at ns time scales, which makes them infeasible for simulations of

facilitated diffusion. In contrast, Levy and co-workers35,88,89,92-96 proposed a coarse-

grained model, where groups of atoms are replaced by beads and only electrostatic

interactions were considered between the DNA-binding proteins and the DNA. This type of

model allowed the simulation of the facilitated diffusion mechanism considering coarse-

grained models of the molecules structures, their diffusion and their interactions. However,

such a model can only consider a few molecules and simulate the system only on μs to ms

time scales. Cellular processes take place over minutes to hours, take place on a large

genome, and TFs are often represented by at least 104–105 molecules. It becomes clear that,

in order to simulate such a large system, further simplifications are required and one of the

most important ones is the exclusion of the explicit three-dimensional structure of the TFs.

Nevertheless, this does not mean that one should disregard the results of all-atom models or

meso-scale models, but rather to use results of those models and include them as parameters

into a large-scale model.

Furthermore, in order to perform large-scale simulations in feasible time, one has to make

another set of approximations and, depending on these approximations, there are two classes

of large-scale computational models of the facilitated diffusion mechanism, namely: (i)

those that focus on the three-dimensional aspects (such as the case of Das and

Kolomeisky 74 or Wunderlich and Mirny 32) and (ii) those that focus on the one-dimensional

random walk (such as the ones of Chu et al. 51 or Zabet and Adryan 65).

Previous work has demonstrated that the three-dimensional diffusion can be approximated

by simple one-step reactions with negligible errors (see above). However, to our knowledge,

there is no proof that approximations in the one-dimensional random walk do not lead to

significant deviations from the actual results. In particular, the DNA can consist of multiple

high affinity sites which are non-functional and act as traps for the TFs57. Thus, we argue

that more focus should be given to the second class of computational models (those that

represent the one-dimensional random walk with a high level of detail). This does not mean

that the computation models that focus on the three-dimensional diffusion should be

neglected, but rather their results should be incorporated in the second class of models.

In recent work, we presented a model of facilitated diffusion, which represents one-

dimensional random walk with high level of detail and uses all the aforementioned

features64,65. The model is similar to those of Chu and co-workers51,62,63, but also supports

additional features, such as TF orientation on the DNA and exclusion volumes greater than

the actual DNA-binding motif of the TF. In addition, the model presented in65 comes with

an implementation in Java 1.6 called GRiP64, which is able to simulate 1 s of an E.coli K-12

cell in between 1 and 4 hours on a standard desktop computer. In particular, we were able to

consider a complete system where we represented the DNA of E.coli K-12 (of 4.6 Mbp)97

and the ~ 104 non-cognate DNA binding proteins (agents)43. This indicates that, despite all

approximations introduced in the model (such as the approximation of three-dimensional

diffusion by the Chemical Master Equation), the simulation of entire cells is still

computationally expensive, even for a small organism such as E.coli.
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One solution to the computational speed issue, is to consider only a smaller part of the full

system. In a recent work, we found that, indeed, one can consider a smaller subsystem (such

as 100 Kbp), but only if the system parameters are adjusted accordingly (unpublished data).

Conclusions and outlook

In silico experiments have the advantage that once a simulation is set up and the parameters

are correctly estimated, one can reproducibly measure every aspect of the system. Especially

given the notoriously difficult and therefore noisy imaging experiments that are prevalent in

the facilitated diffusion field, this can be an advantage as these simulations can provide

insight without having any technical bias. This is what makes computational models and, in

particular stochastic simulations, such an attractive approach.

One question that can be addressed with these types of models is the target site finding

process. In particular, analytical solutions are difficult to apply and certain results can be

hindered due to mean-field approximation of the affinity landscape of the TF for the DNA.

Thus, recently, more efforts where invested in applying these types of approaches to the

facilitated diffusion mechanism51,62-65.

In this manuscript, we enumerated several questions regarding this process that are still

unanswered, such as: (i) the proportion of hopping and the proportion of sliding within the

one-dimensional random walk, (ii) the optimal fraction for the TF to spend time on the DNA

(during the one-dimensional random walk or during three-dimensional diffusion), (iii) the

effects of moving obstacles on the DNA (crowding generated by other TF molecules

performing facilitated diffusion) or (iv) the effects of target site clustering on the genome.

Computational models are one way to address these questions and, here, we reviewed

several strategies to computationally model this process.

How can simulations help to address these questions? For example, one can simulate a

system with different rates of hopping/sliding and identify which measurements are most

likely to display a high correlation with the hopping rate. Previously, it was suggested that

the only way to differentiate between hopping and sliding is to change the affinity of the TF

for the DNA (by changing the salt concentration in the cell6,17). However, the degree of

influence of salt on the search process is still under debate and, for example, DeSantis et al.
18 argues that salt displays only a limited effect on sliding. Thus, this question needs to be

addressed using a different strategy. One such approach consists of exploiting the effect of

crowding on the search time. The current hypothesis is that in a crowded environment, more

hopping might lead to lower search time due to the bypass of obstacles45,47. Thus, one could

compare the times the target sites are reached for two different sets of parameters, low and

high crowding on the DNA, and for several hopping rates. Next, the results of the

simulations can be compared with the results from two in vitro experiments: (i) a system

consisting of a restriction enzyme and DNA and (ii) a system consisting of a restriction

enzyme, DNA and a different DNA binding molecule. Comparing the cleavage rate of the

DNA in two setups with the ones predicted in the simulation can indicate for which relative

hopping rate the simulation results match best the computational ones and, thus, determine

the relative contribution of hopping to the one-dimensional random walk.
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Alternatively, one could investigate the behaviour of the system using different proportions

of time spend on the DNA and investigate if the value measured experimentally (of 90%

time spent on the DNA) optimises any of the search process properties (such as variation in

arrival times or proportion of time the site is occupied). For example, the analytical solution

for the optimal fraction of time (50% of the time spent on the DNA and 50% of the time

spent in the cytoplasm) might not be valid in the case of moving obstacles on the DNA and

under consideration of specific affinities between TFs and the DNA.

These computational models can also be used to understand the cooperative behavior

between TFs. Cooperativity is a common mechanism used by TFs to regulate gene

activity57,80 and can lead to an all-or-none response in gene expression. Despite this

common observation, there are various underlying mechanisms that can account for

cooperativity. For example, in the case of direct TF-TF cooperativity, the molecules can

only form a stable complex with the target site when the TF is in high abundance and can

form multimeric clusters on the DNA. In the case of DNA mediated cooperativity, high

abundance of a TF can be required to saturate other non-functional high affinity sites or to

bind to sites that increase the affinity for the target site (e.g. by making the target site

available). Finally, the nucleosome-mediated cooperativity assumes that TFs can occupy

nucleosome-rich areas only when they have a high abundance54. What are these scenarios

best suited for? How do the one-dimensional random walk parameters and crowding on the

DNA influence the behaviour of these three mechanisms of cooperativity? These are

questions that do not have a clear answer yet, and we believe this is where computational

models can provide some insight.

Finally, these type of computational models could be used to investigate the effects of target

site clustering on the genome52. In particular, one could test if this clustering of target sites

reduces the TF search process time for their target site by analysing the facilitated diffusion

mechanism in systems with multiple co-localized (clusters of) target sites and by including

in the model the real affinity landscapes of the TFs considered.

One shortcoming of the current approaches is the lack of three-dimensional structure of the

DNA on the nuclear scale in the model. As we mentioned above, currently available data has

low resolution and there is no information on the dynamics of this structure. The results

obtained when simulating the DNA as a string of letters, without the three-dimensional

shape, might hinder some aspects. For example, Klenin et al. 8 found that when assuming

the DNA to be a random globule, the optimal sliding length (and, thus, the time spent

performing the one-dimensional random walk) has a lower value than in the case of linear

DNA. Furthermore, Das and Kolomeisky 74 found that correlated rebinding to the DNA

(which is possible only if one considers the shape of the DNA) leads to an increase in the

search speed of TFs for the DNA. These are just two examples that underline the importance

of the DNA structure in the models of facilitated diffusion mechanism. Given the recent

advancements of these methods61,78,79, we expect that in the near future high-resolution

maps of genomes will become more widely available, and one could incorporate them into

the models of facilitated diffusion.
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It is not only the three-dimensional structure of the DNA that can influence the facilitated

diffusion mechanism, but also the conformation of the protein. For example, Levy and co-

workers92-96 observed that the presence of disordered tails or additional DNA-binding

domains could increase the rate at which a protein jumps from one DNA segment to a

nearby one (within 6–10 nm). More specifically, this increase in jump rate takes place for

long tails with high positive charge92,93 or additional weaker DNA-binding domains94,96.

DNA-binding proteins with disordered regions98 or additional binding domains2,94 are

common in eukaryotes, but less present in prokaryotes. One possible explanation for this

observation is that, in eukaryotes, the DNA has a higher degree of organization into

chromatin and the three-dimensional distances between DNA regions are better controlled,

while in prokaryotes this is not the case. Controlling that distance by chromatin

reorganisation could represent an additional method of fine-tuning facilitated diffusion, in

the sense that once a protein is captured on one segment, it will have a predefined

probability to also scan another DNA segment (depending on the distances between them)

and, thus, to achieve gene co-regulation.

Determining the occupancy-bias with computational models of the facilitated diffusion
mechanism

In addition to the theoretical questions about the TF search mechanism for their target sites,

the computational models described above could be used, in principle, to answer more

quantitative questions regarding gene regulation. One such question is the amount of time

the target site is occupied by a TF, which determines the rate at which genes are transcribed.

Determining the occupancy-bias landscape in order to compute the percentage of time a

target site(s) will be occupied (under the assumption of real affinity landscapes and

crowding on the DNA) becomes an essential step in finding the relative expression pattern

of a gene. Usually, this occupancy-bias is determined using the statistical thermodynamic

framework, which assumes that the system reaches an equilibrium99-101. The method uses

the sequence motif of the TF(s) (the preferred DNA words) determined either in vitro or in

vivo102 and computes the steady state configuration of how a certain number of molecules

will be distributed on the genome103. The limited accuracy of the approach lead to the use of

several new methods (such as Hidden Markov Models104) and inclusion of more features

into the models (such as competition/cooperativity between TFs, nucleosomes and DNA

accessibility99,100,104), but although the quality of the results increased there was still a high

rate of false predictions.

One problem with the thermodynamic approach is that the cell is a dynamic environment

and this raises the question of whether the regulatory elements actually reach

equilibrium99,105,106. One could argue that since transcription and translation are much

slower than regulation, then this equilibrium assumption might be valid after all. However,

even if regulation is much faster than transcription there is no guarantee that the regulatory

system can reach a steady state.

In particular, long term behaviour (time average) will deviate from the average population

behaviour (ensemble average) when the ergodicity assumption is broken (for example in the

case of multiple steady states) and in that case one cannot use the statistical thermodynamic

Zabet and Adryan Page 21

Mol Biosyst. Author manuscript; available in PMC 2014 May 02.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



approach107. Actually, we observed that, in the case of crowding on the DNA and when we

assume steric hindrance between molecules on the DNA, the time average of the occupancy-

bias does not equal the ensemble average (unpublished data) and in that case the

thermodynamic approach cannot accurately describe the behaviour of the system.

In each cell, the expression pattern of a gene is an indication of the time the regulatory

region was occupied (thus when estimating gene expression one needs to perform time

averages and not ensemble ones) and then, at population level, there is an ensemble average

over the behaviour of each cell. Thus, one approach would assume first a time average of the

occupancy-bias from stochastic simulations for each “virtual” cell, which is then averaged

over multiple “virtual” cells (ensemble average). This type of model represents a more

accurate representation of the actual process that takes place in real cells and, although

speculative at this stage, might increase the quality of the computational predictions of the

occupancy-biases.
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Fig. 1. TF one-dimensional random walk on the DNA
A TF molecule (green circle) can move on the DNA (black line) by either: (i) sliding (moving to a nearby position without

losing contact with the DNA), (ii) hopping (disassociations and fast reassociations in close proximity from the unbinding

position) and (iii) jumping (disassociation, release in the bulk and reassociation anywhere on the DNA).
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Fig. 2. Experimental strategies aimed to prove the existence of hopping
(a) The addition of non-specific DNA co-linear with an enzyme restriction site leads to similar cleavage rate as in the case when

the non-specific DNA is added by catenation22. In the second scenario the restriction site is reachable from the catenane only if

hopping exists. (b) The experimental setup assumes two DNAs each with two restriction sites, but while in the first DNA, the

sites are repeated (and no reorientation of the enzyme is required), in the second DNA, the sites are inverted (and the enzyme

needs to invert its orientation which is possible only through hopping). Ensuring that only one enzyme is bound to the DNA,

Gowers et al. 13 observed that for distances longer than 50 bp the two strands display similar cleavage rates at both sites. The

processivity of the two sites is measured as P = ([A] + [C] − [BC] − [AC])/([A] + [C] + [BC] + [AC]). (c) This is a similar

strategy as in (b), but the experiments assumes only one DNA with two damaged uracil sites where the hUNG enzyme can

excise the DNA. The protein is released from a P site and if the protein leaves the DNA for long excursions then it gets

inactivated by a trap molecule and, thus, only a pure sliding mechanism will ensure a similar excision rate as in the case of a

system without the trap molecule.
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