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Introduction
The protein tyrosine phosphatases (PTPs) constitute a family 
of closely related key regulatory enzymes that dephosphory-
late phosphotyrosine residues in their protein substrates.  They 
provide a necessary biological counterpart to protein kinases 
in signal transduction pathways and play an important role 
in the regulation of many cellular processes, including cell 
growth and differentiation, metabolism, cell migration, the 
immune response, cell apoptosis and bone development[1–6].  
Malfunctions in PTP activity lead to aberrant tyrosine phos-
phorylation and are linked to various diseases, such as dia-
betes, obesity, cancer, inflammation and neurodegenerative 
diseases[7–10].  Therefore, the development of therapeutically 
promising potent PTP inhibitors is of great importance.

Protein tyrosine phosphatase-1B (PTP1B) is an intracellular 

PTP that is implicated as a key negative regulator of the insu-
lin and leptin signaling pathways[11–13].  It acts by dephospho-
rylating specific phosphotyrosine (pTyr) residues on the insu-
lin receptor and on insulin receptor substrate proteins[7, 11, 14–16].  

Two landmark papers reported that PTP1B deficient mice are 
more sensitive to insulin, have improved glycemic control, and 
are resistant to diet induced obesity[17, 18].  Furthermore, treat-
ment of diabetic mice with PTP1B antisense oligonucleotides 
reduced the expression level of this enzyme and subsequently 
normalized blood glucose levels and improved insulin sensi-
tivity[19, 20].  A PTP1B inhibitor may provide a novel strategy for 
the treatment of type II diabetes and obesity.  Recent studies 
have shown that PTP1B also plays a role in tumorigenesis[10, 21].  
As a result, PTP1B inhibitors represent attractive pharmaceu-
tical agents for treating type II diabetes, obesity, and cancer.  
Thus, over the past decade, numerous PTP1B inhibitors have 
been developed to be used as drug candidates[22–25].  Most of 
the reported compounds have exhibited excellent potency (at 
nanomolar concentrations) in in vitro studies, but the low cell 
permeability and poor bioavailability of these compounds 
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have limited their application for the development of effective 
drugs[26–28].  Therefore, PTP1B inhibitors still represent a chal-
lenge for medicinal chemists.

Compounds of the thiazolidinedione (TZD) class have 
aroused considerable interest as antihyperglycemic com-
pounds and aldose reductase inhibitors[29–31].  Some of these 
compounds (such as pioglitazone and rosiglitazone) are 
insulin-sensitizing agents acting as peroxisome proliferator-
activated receptor γ (PPARγ) agonists[30], and they have been 
shown to be effective in treating type II diabetes in clinical sit-
uation.  In addition, some 2,4-TZDs have proved to be PTP1B 
inhibitors[32].

In our previous work, we have reported the discovery of 
PTP1B inhibitors from our combinatorial library, in which the 
thiazolidinedione moiety and substituted biphenyl scaffold 
were found to be effective[33].  Here we describe our efforts to 
extend the SAR studies leading to more potent PTP1B inhibi-
tors with antihyperglycemic activity in vivo.

Materials and methods
Chemistry
The general method of synthesis for the compounds is 
depicted in Scheme 1.  4-Bromo benzaldehyde was attached 
to the amino functionalized PEG support via an imine link-
age, and Suzuki coupling was subsequently performed to 
give polymer 4.  Products 5Aa–5Cc were obtained from the 
cleavage reaction of polymer 4 with different cleavage agents 
(Scheme 1)[33].  Since 4’-substituted compounds were identi-
fied as more potent PTP1B inhibitors, additional diversity was 
introduced at the 4’-position of the biphenyl scaffold.  Polymer 
3 was reacted with halides 6A–6I and then released from the 
PEG support using the same cleavage strategy to afford prod-
ucts 7Aa–7Ic.  This process generally provided the final prod-
ucts in >75 % yield with >85 % purity.  

In vitro enzyme assays
Enzyme-based assay of PTP1B
A colorimetric high throughput assay to measure inhibition 
against PTP1B was performed in 96-well plates.  Briefly, the 

tested compounds were solubilized in DMSO and serially 
diluted into concentrations for the inhibitory test.  The assays 
were carried out in a final volume of 100 μL containing 50 
mmol/L MOPS, pH 6.5, 2 mmol/L pNPP, 30 nmol/L GST-
PTP1B, and 2% DMSO, and the catalysis of pNPP was con-
tinuously monitored on a SpectraMax 340 microplate reader at 
405 nm for 2 min at 30 °C.  The IC50 value was calculated from 
the nonlinear curve fitting of the percent inhibition [inhibi-
tion (%)] vs the inhibitor concentration [I] using the following 
equation: %inhibition=100/{1+(IC50/[I])k}, where k is the Hill 
coefficient.

Enzyme-based assay of PTP1s
PTPase family members, such as Src homology domain 2 
(SH2)-containing tyrosine phosphatase-1 (SHP1), Src homol-
ogy domain 2 (SH2)-containing tyrosine phosphatase-2 
(SHP2), leukocyte antigen-related phosphatase (LAR), 
CDC25B and PRL-3, were prepared for the selectivity assay 
of compounds as previously mentioned[34].  Assays for these 
PTPases were performed at the optimal pH for each individual 
enzyme activity.  These enzymes and inhibitors were prein-
cubated for 3 min at 4 °C, and the assays were initiated by 
adding substrates.  Assays performed for CDC25B, SHP1 and 
SHP2, LAR and PRL-3 were done using OMFP as a substrate.

In vivo efficacy study on diabetic BKS db/db mouse
C57BLKS/J–db/db mice were introduced from Jackson Labo-
ratories. At the age of 8 weeks, db/db mice were random-
ized into the various treatment groups by body weight and 
random-fed glucose levels. Mice were orally administered 
once daily with 50 mg/kg per day 7Fb and 150 mg/kg per 
day metformin. The diabetic and wildtype mice were gavaged 
with 5% methycellulose (MC) as control group for 4 weeks. 
The random-fed and fasting blood glucose were tested after 
4 weeks treatment. The glucose tolerance test was performed 
after 6 h fasting and blood glucose were recorded in 0-120 min 
after 2 g/kg glucose ip injection. Difference between groups 
was analyzed by Student’s t-test. All animal experiments were 
approved by the Animal Ethics Committee of the Shanghai 
Institute of Materia Medica. 

Scheme 1.  Reagents and conditions: a) 4-Bromo benzaldehyde, MeOH, 50 ºC, 6 h; b) Ar-B(OH)2 (4A–4D), 1 mol% Pd(OAc)2, K2CO3, MeOH, 80 ºC, 8 h; c) 
Cleavage reagents, AcOH, NaOAc, 120 ºC, 12 h; d) Rb-Br (6A–6I), K2CO3, CH3CN, 80 ºC, 12 h.
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Results and discussion
Inhibitory activities toward PTP1B
Compounds 5Aa–5Cc and 7Aa–7Ic were evaluated in vitro for 
their inhibitory activity against PTP1B (Table 1).  As illustrated 
in Table 1, most of these compounds exhibited moderate 
inhibitory activity, with IC50 values around 10-6 mol/L.  When 
comparing 5(A–C)a and 7(A–I)a to 5(A–C)(b, c) and 7(A–I)(b, 
c), we found that compounds containing a 4-oxothiazolidine-
2-thione moiety showed better inhibitory activity against 
PTP1B.  Introduction of an acetic group in the N position of 
the 4-oxothiazolidine-2-thione moiety made little impact on its 
activity.  Bulky substituents at the 4’-position of the biphenyl 
scaffold led to favorable bioactivity.  Generally, the aryl sub-
stituents at the 4’-position provided better inhibition of PTP1B 
than the alkyl substituent.  The length of the linker between 
the biphenyl scaffold and the aryl group also influenced the 
inhibitory activity.  Benzyl substituents gave the best results 
in 7Fc and 7Fb, with IC50 values of 0.48±0.07 μmol/L and 
0.69±0.07 μmol/L, respectively.  

Furthermore, 7Fb and 7Fc were screened against a panel of 
six members of the PTPase family (Table 2).  In contrast to the 
poor selectivity of 7Fc, compound 7Fb exhibited high selectiv-
ity against several other therapeutically useful phosphatases 
(ie, SHP1, SHP2, LAR, etc).  

Cellular and in vivo activity of selected compounds
In the next step, we evaluated the two potent inhibitors of 
PTP1B, 7Fb and 7Fc, in CHO/hIR cells according to our previ-
ous method[35].  CHO/hIR cells were incubated with several 
concentrations of compounds 7Fb and 7Fc (1.1 μmol/L, 3.3 
μmol/L and 10 μmol/L) for 2 h.  This was followed by treat-
ment with 10 nmol/L insulin for 10 min (Figure 1).  DMSO 
(0.2%) and orthvanadate (1 mmol/L) were used as negative 
and positive controls, respectively.  The cell lysates were sub-
jected to SDS-PAGE, transferred to a nitrocellulose membrane, 
and probed with specific anti-pTyr1162/1163 IR antibodies.  As 
shown in Figure 1, both compounds increased the insulin-
induced tyrosine phosphorylation of IRβ and compound 7Fb 
(1.1 μmol/L) boosted IR phosphorylation more potently.

Based on the selective inhibition of PTP1B by 7Fb and its 
cellular activity of increasing IR phosphorylation, the efficacy 
study was further investigated in a diabetic mouse model.  
In vivo efficacy of 7Fb as an antihyperglycemic agent was 
evaluated in a BKS db/db diabetic mouse model at a dose 
of 50 mg/kg per day for 4 weeks.  Compound 7Fb signifi-
cantly lowered the postprandial blood glucose from 29.4±1.2 
mmol/L with the vehicle to 24.7±0.6 mmol/L (P<0.01) and the 
fasting blood glucose from 27.3±1.5 mmol/L with the vehicle 
to 23.6±1.2 mmol/L (P<0.05).  The impaired glucose tolerance 
capacity of the diabetic mice was also significantly improved 
after prolonged 7Fb treatment, and the area under the curve 
(AUC) was decreased to 3829.5±208.5 mmol/L·min from 
4404.4±100.1 mmol/L·min.  The blood glucose level declined 
more rapidly than in metformin treated mice (150 mg/kg) 
(Figure 2).

Taken together, the cellular effect of PTP1B inhibition on the 

Table 1.  In vitro activity against PTP1B.

 Compd	             Z	                          X	            Y	             IC50
a (μmol/L)                                   

 
	5Aa	 O	 H	   1.48±0.06
	5Ab	 S	 H	   1.69±0.24
	5Ac	 S	 -CH2COOH	   0.53±0.10

	5Ba	 O	 H	   4.61±0.40
	5Bb	 S	 H	   2.40±0.15
	5Bc	 S	 -CH2COOH	   1.43±0.18

	5Ca	 O	 H	   4.18±0.10
	5Cb	 S	 H	   0.82±0.03
	5Cc	 S	 -CH2COOH	   2.04±0.20

	7Aa	 O	 H	   7.79±0.44
	7Ab	 S	 H	   4.28±1.04
	7Ac	 S	 -CH2COOH	   3.87±0.10

	7Ba	 O	 H	   2.28±0.18
	7Bb	 S	 H	   1.42±0.20
	7Bc	 S	 -CH2COOH	   2.24±0.32

	7Ca	 O	 H	   7.46±0.17
	7Cb	 S	 H	   1.91±0.00
	7Cc	 S	 -CH2COOH	   3.34±0.19

	7Da	 O	 H	 12.78±0.48
	7Db	 S	 H	   2.11±0.19
	7Dc	 S	 -CH2COOH	   2.60±0.56

	7Ea	 O	 H	   4.16±0.28
	7Eb	 S	 H	   1.71±0.14
	7Ec	 S	 -CH2COOH	   2.39±0.02

	7Fa	 O	 H	   1.34±0.13
	7Fb	 S	 H	   0.69±0.07
	7Fc	 S	 -CH2COOH	   0.48±0.07

	7Ga	 O	 H	   3.66±0.18
	7Gb	 S	 H	   1.26±0.10
	7Gc	 S	 -CH2COOH	   1.10±0.17

	7Ha	 O	 H	   2.59±0.17
	7Hb	 S	 H	   1.24±0.14
	7Hc	 S	 -CH2COOH	   2.55±0.53

	7Ia	 O	 H	   2.53±0.27
	7Ib	 S	 H	   1.20±0.12
	7Ic	 S	 -CH2COOH	   1.86±0.22
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insulin receptor critical tyrosine phosphorylation and the in 
vivo efficacy of 7Fb in improving the glucose tolerance capac-
ity and blood glucose suggested that PTP1B inhibition was 
greatly involved in compound 7Fb’s bioactivity, but an alter-
native mode of PPAR activation was not excluded.  

Conclusion
In summary, with the methods developed for the synthesis of 
a biphenyl thiazolidinone library, we have found a series of 

novel PTP1B inhibitors that exhibited submicromolar potency.  
Among the compounds, 7Fb was tested in an animal model 
for its efficacy as an anti-diabetic agent.  Compound 7Fb sig-
nificantly lowered the postprandial and fasting glucose levels 
and improved the glucose tolerance in the db/db diabetic 
mice; thus, it may be a potential lead compound for the gen-
eration of a therapy for type II diabetes.

Appendix 
The reagents (chemicals) were purchased from Lancaster 
(Morecambe, England), Acros (Geel, Belgium) and Shanghai 
Chemical Reagent Company (Shanghai, China) and used 
without further purification.  The analytical thin-layer chro-
matography was done using HSGF 254 (150–200 μm thickness; 
Yantai Huiyou Company, Yantai, Shandong, China).  The 1H 
NMR (300 MHz or 400 MHz) spectra were recorded on a Var-
ian Mercury-300 or 400 High Performance Digital FT-NMR 
with TMS as an internal standard, and the 13C NMR (100 MHz) 
spectra were determined using a Varian Mercury-400 High 
Performance Digital FT-NMR.  Chemical shifts were reported 
in parts per million (ppm, d) downfield from tetramethylsi-
lane.  Proton coupling patterns were described as singlet (s), 
doublet (d), triplet (t), quartet (q), multiplet (m), and broad 
(br).  EI-MS and HRMS were performed with a Finnigan MAT 
95, EI: 70 eV, R: 10 000.  Purity was recorded on a Gilson high-
performance liquid chromatography (HPLC) system (306 

Figure 2.  Glucose tolerance capacity improved by 7Fb.  Diabetic BKS db/
db mice were treated orally with 7Fb or metformin, the diabetic and wild-
type mice were gavaged with 5% methylcellulose (MC) as control group for 
4 weeks.  The glucose tolerance test (2 g/kg glucose ip) was performed 
after 6 h fasting and blood glucose level at the above time-points were 
recorded.  Differences between groups were analyzed by Student’s t-test. 
bP<0.05, cP<0.01 vs BKS-Veh.

Table 2.  Selectivity of 7Fb and 7Fc for a panel of protein phosphatases.   

 	                                                                                                            IC50 (μmol/L)
      Compd	                   PTP1B	                      LAR	                  Cdc25B                              SHP1	                                SHP2	                  PRL3 
 
	 7Fb	 0.69±0.07	 >50	 2.22±0.14	      >50	      >50	 5.34±1.42
	 7Fc	 0.48±0.07	 >50	 0.89±0.03	 1.90±0.17	 1.61±0.13	 2.07±0.50

Figure 1.  Effects of 7Fb and 7Fc on tyrosine phosphorylation of IRβ 
in CHO/hIR cells.  The tyrosine phosphorylation level were determined 
by specific antibody of phosphorylated IR-Tyr1162/1163 with or without 
treatment, the β-actin represents the sample amount loaded.  BL1 
and BL2, 0.2% DMSO; PC, 1 mmol/L orthvandate; and the compound 
centratration unit is µmol/L.
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pump, UV/vis-156 Detector, 215 liquid handle).  

General procedures for the preparation of compounds 5Aa–5Cc 
and 7Aa–7Ic
Compounds 5Aa–5Cc and 7Aa–7Ic were prepared as previ-
ously mentioned[27]. 

(Z)-5-((4′-phenylbiphenyl-4-yl)methylene)thiazolidine-2,4-dione 
(5Aa)
1H NMR (300 MHz, d6-DMSO): δ 7.92 (d, J=8.5 Hz, 2H), 7.87 
(d, J=8.5 Hz, 2H), 7.81(m, 3H), 7.73 (m, 4H), 7.49 (m, 2H), 7.38 
(m, 1H); 13C NMR (100 MHz, d6-DMSO): 167.845, 167.362, 
141.204, 139.933, 139.423, 137.765, 132.181, 131.370, 130.824(×2), 
129.079(×2), 127.772, 127.371(×4), 127.312(×2), 126.661(×2), 
123.367; EI-MS: m/z 357 (M), 286; HRMS: calculated for 
C22H15NO2S, 357.0823, found 357.0832; HPLC Purity (retention 
time): 100% (4.54 min)

(Z)-5-((4′-phenylbiphenyl-4-yl)methylene)-2-thioxothiazolidin-4-
one (5Ab)
1H NMR (300 MHz, d6-DMSO): δ 7.93 (d, J=8.4 Hz, 2H), 7.87 
(d, J=8.4 Hz, 2H), 7.80 (d, J=8.5 Hz, 2H), 7.73 (m, 5H), 7.49 
(m, 2H), 7.39 (m, 1H); EI-MS: m/z 373 (M), 286; HPLC Purity 
(retention time): 98% (4.92 min)

(Z)-2-{4-oxo-5-[(4′-phenylbiphenyl-4-yl)methylene]-2-thioxothiazo
lidin-3-yl}acetic acid (5Ac)
1H NMR (300 MHz, d6-DMSO): δ 7.92 (m, 3H), 7.89 (d, J=8.5 
Hz, 2H), 7.85 (d, J=8.5 Hz, 2H), 7.79 (m, 4H), 7.51 (m, 2H), 
7.40 (m, 1H), 4.73 (s, 2H); EI-MS: m/z 431 (M), 306, 286; HPLC 
Purity (retention time): 96% (3.94 min)

(Z)-5-((4′-2-fluorphenylbiphenyl-4-yl)methylene)thiazolidine-2,4-
dione (5Ba)
1H NMR (300 MHz, d6-DMSO): δ 7.96 (d, J=8.5 Hz, 2H), 7.80 
(m, 2H), 7.65–7.74 (m, 4H), 7.61 (d, J=8.4 Hz, 2H), 7.50 (m, 2H), 
7.43 (m, 1H); 13C NMR (100 MHz, d6-DMSO): 167.722, 167.235, 
159.544 (d, JC–F=244.6 Hz), 140.179, 139.806, 134.631, 132.741, 
131.338, 131.234, 130.773(×2), 128.742(×3), 128.095, 127.909, 
127.476(×2), 123.686, 123.172, 114.431, 114.185; EI-MS: m/z 375 
(M), 304; HRMS: calculated for C22H14NO2FS, 375.0729, found 
375.0730; HPLC Purity (retention time): 98% (4.37 min)

(Z)-5-((4′-2-fluorphenylbiphenyl-4-yl)methylene)-2-thioxothiazo
lidin-4-one (5Bb)
1H NMR (300 MHz, d6-DMSO): δ 7.97 (d, J=8.5 Hz, 2H), 7.79 
(m, 1H), 7.65-7.74 (m, 5H), 7.61 (d, J=8.3 Hz, 2H), 7.51 (m, 2H), 
7.43 (m, 1H); EI-MS: m/z 391 (M), 304; HPLC Purity (retention 
time): 97% (4.76 min)

(Z)-2-(4-oxo-5-((4′-2-fluorphenylbiphenyl-4-yl)methylene)-2-
thioxothiazolidin-3-yl)acetic acid (5Bc)
1H NMR (300 MHz, d6-DMSO): δ 7.98 (d, J=8.4 Hz, 2H), 7.92 (s, 
1H), 7.79 (m, 1H), 7.68-7.76 (m, 4H), 7.66 (d, J=8.3 Hz, 2H), 7.54 
(m, 2H), 7.43 (m, 1H), 4.75 (s, 2H); EI-MS: m/z 449 (M), 304, 
226; HPLC Purity (retention time): 98% (3.81 min)

(Z)-5-((4′-phenoxybiphenyl-4-yl)methylene)thiazolidine-2,4-dione 
(5Ca)
1H NMR (300 MHz, d6-DMSO): δ 7.82 (m, 3H), 7.77 (d, J=8.3 
Hz, 2H), 7.67 (d, J=8.3 Hz, 2H), 7.42 (m, 2H), 7.18 (t, J=7.2 Hz, 
1H), 7.09 (m, 4H); 13C NMR (100 MHz, d6-DMSO): 167.813, 
167.326, 157.205, 156.198, 141.095, 133.802, 131.780, 130.787(×2), 
130.209(×2), 128.542(×2), 127.544, 127.116(×2), 123.941, 123.144, 
119.150(×2), 118.799(×2); EI-MS: m/z 373 (M), 302, 225; HRMS: 
calculated for C22H15NO3S, 373.0773, found 373.0771; HPLC 
Purity (retention time): 100% (4.52 min)

(Z)-5-((4′-phenoxybiphenyl-4-yl)methylene)-2-thioxothiazolidin-4-
one (5Cb)
1H NMR (300 MHz, d6-DMSO): δ 7.85 (d, J=8.5 Hz, 2H), 7.78 
(d, J=8.5 Hz, 2H), 7.69 (m, 3H), 7.43 (m, 2H), 7.19 (t, J=7.5 Hz, 
1H), 7.09 (m, 4H); 13C NMR (100 MHz, d6-DMSO): 195.315, 
169.257, 157.264, 156.139, 141.350, 133.643, 131.639, 131.247(×2), 
130.181(×2), 128.528(×2), 127.581, 127.162(×2), 124.966, 123.937, 
119.154(×2), 118.744(×2); EI-MS: m/z 389 (M), 302, 225; HRMS: 
calculated for C22H15NO2S2, 389.0544, found 389.0539; HPLC 
Purity (retention time): 100% (4.96 min)

(Z)-2-(4-oxo-5-((4′-phenoxybiphenyl-4-yl)methylene)-2-thioxo
thiazolidin-3-yl)acetic acid (5Cc)
1H NMR (300 MHz, d6-DMSO): δ 7.89 (s, 1H), 7.86 (d, J=8.6 Hz, 
2H), 7.82 (d, J=8.6 Hz, 2H), 7.70 (m, 2H), 7.45 (m, 2H), 7.19 (t, 
J=7.5 Hz, 1H), 7.09 (m, 4H), 4.75 (s, 2H); EI-MS: m/z 447 (M), 
302, 225; HPLC Purity (retention time): 98% (4.16 min)

(Z)-5-((4′-isopropoxybiphenyl-4-yl)methylene)thiazolidine-2,4-
dione (7Aa)
1H NMR (300 MHz, d6-DMSO): δ 7.81 (m, 3H), 7.63–7.70 (m, 
4H), 7.02 (d, J=8.6 Hz, 2H), 4.68 (m, 1H), 1.29 (d, J=5.7 Hz, 6H); 
EI-MS: m/z 339 (M), 297, 226; HPLC Purity (retention time): 
94% (4.27 min)

(Z)-5-((4′-isopropoxybiphenyl-4-yl)methylene)-2-thioxothiazolidin-
4-one (7Ab)
1H NMR (300 MHz, d6-DMSO): δ 7.82 (d, J=8.5 Hz, 2H), 7.63–
7.70 (m, 5H), 7.02 (d, J=8.7 Hz, 2H), 4.68 (m, 1H), 1.28 (d, J=5.8 
Hz, 6H); EI-MS: m/z 355 (M), 313, 226; HPLC Purity (retention 
time): 99% (4.60 min)

(Z)-2-(5-((4′-isopropoxybiphenyl-4-yl)methylene)-4-oxo-2-
thioxothiazolidin-3-yl)acetic acid (7Ac)
1H NMR (300 MHz, d6-DMSO): δ 7.89 (s, 1H), 7.87(d, J=8.5 Hz, 
2H), 7.68-7.75 (m, 4H), 7.03 (d, J=8.7 Hz, 2H), 4.75 (s, 2H), 4.68 
(m, 1H), 1.28 (d, J=5.8 Hz, 6H); EI-MS: m/z 413 (M), 371, 226; 
HPLC Purity (retention time): 98% (3.73 min)

(Z)-5-((4′-(allyloxy)biphenyl-4-yl)methylene)thiazolidine-2,4-dione 
(7Ba)
1H NMR (300 MHz, d6-DMSO): δ 7.82 (m, 3H), 7.68-7.75 (m, 
4H), 7.06 (d, J=8.7 Hz, 2H), 6.05 (m, 1H), 5.42 (dd, J=17.5 Hz, 
1.6 Hz, 1H), 5.27 (dd, J=10.5 Hz, 1.6 Hz, 1H), 4.63 (dd, J=5.1 
Hz, 1.6 Hz, 2H); EI-MS: m/z 337 (M), 296, 225; HPLC Purity 
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(retention time): 95% (4.35 min)

(Z)-5-([4′-(allyloxy)biphenyl-4-yl)methylene)-2-thioxothiazolidin-4-
one (7Bb)
1H NMR (300 MHz, d6-DMSO): δ 7.82 (d, J=8.3 Hz, 2H), 7.68 
(m, 5H), 7.06 (d, J=8.7 Hz, 2H), 6.05 (m, 1H), 5.41 (dd, J=17.4 
Hz, 1.6 Hz, 1H), 5.26 (dd, J=10.6 Hz, 1.6 Hz, 1H), 4.62 (dd, 
J=5.0 Hz, 1.6 Hz, 2H); EI-MS: m/z 353 (M), 312, 225; HPLC 
Purity (retention time): 98% (4.72 min)

(Z)-2-(5-((4′-(allyloxy)biphenyl-4-yl)methylene)-4-oxo-2-thioxo
thiazolidin-3-yl)acetic acid (7Bc)
1H NMR (300 MHz, d6-DMSO): δ 7.90 (s, 1H), 7.87 (d, J=8.4 Hz, 
2H), 7.76 (m, 4H), 7.07 (d, J=8.7 Hz, 2H), 6.06 (m, 1H), 5.42 (dd, 
J=17.2 Hz, 1.6 Hz, 1H), 5.26 (dd, J=10.4 Hz, 1.6 Hz, 1H), 4.74 (s, 
2H), 4.63 (dd, J=5.0 Hz, 1.6 Hz, 2H); EI-MS: m/z 411 (M), 370, 
225; HPLC Purity (retention time): 96% (3.80 min)

(Z)-5-((4′-(cyclopropylmethoxy)biphenyl-4-yl)methylene)thiazo
lidine-2,4-dione (7Ca)
1H NMR (300 MHz, d6-DMSO): δ 7.81 (m, 3H), 7.67–7.74 (m, 
4H), 7.03 (d, J=8.6 Hz, 2H), 3.85 (d, J=7.2 Hz, 2H), 1.23 (m, 1H), 
0.57 (m, 2H), 0.33 (m, 2H); EI-MS: m/z 351 (M), 297, 226; HPLC 
Purity (retention time): 94% (4.38 min)

(Z)-5-((4′-(cyclopropylmethoxy)biphenyl-4-yl)methylene)-2-
thioxothiazolidin-4-one (7Cb)
1H NMR (300 MHz, d6-DMSO): δ 7.81 (d, J=8.5 Hz, 2H), 7.67 
(m, 5H), 7.02 (d, J=8.7 Hz, 2H), 3.86 (d, J=7.0 Hz, 2H), 1.23 (m, 
1H), 0.57 (m, 2H), 0.33 (m, 2H); EI-MS: m/z 367 (M), 313, 280, 
226; HPLC Purity (retention time): 98% (4.79 min)

(Z)-2-(5-((4′-(cyclopropylmethoxy)biphenyl-4-yl)methylene)-4-oxo-
2-thioxothiazolidin-3-yl)acetic acid (7Cc)
1H NMR (300 MHz, d6-DMSO): δ 7.90 (s, 1H), 7.88 (d, J=8.4 Hz, 
2H), 7.75 (m, 4H), 7.04 (d, J=8.6 Hz, 2H), 4.75 (s, 2H), 3.86 (d, 
J=7.1 Hz, 2H), 1.24 (m, 1H), 0.57 (m, 2H), 0.33 (m, 2H); EI-MS: 
m/z 425 (M), 371, 280, 226; HPLC Purity (retention time): 96% 
(3.98 min)

(Z)-5-((4′-butoxybiphenyl-4-yl)methylene)thiazolidine-2,4-dione 
(7Da)
1H NMR (300 MHz, d6-DMSO): δ 7.81 (m, 3H), 7.67–7.74 (m, 
4H), 7.03(d, J=8.7 Hz, 2H), 4.02 (t, J=6.7 Hz, 2H), 1.69 (m, 2H), 
1.44 (m, 2H), 0.94 (t, J=7.5 Hz, 3H); EI-MS: m/z 353 (M), 297, 
226; HPLC Purity (retention time): 96% (4.25 min)

(Z)-5-((4′-butoxybiphenyl-4-yl)methylene)-2-thioxothiazolidin-4-one 
(7Db)
1H NMR (300 MHz, d6-DMSO): δ 7.81 (d, J=8.3 Hz, 2H), 7.67 
(m, 5H), 7.03(d, J=8.8 Hz, 2H), 4.01 (t, J=6.6 Hz, 2H), 1.69 (m, 
2H), 1.44 (m, 2H), 0.93 (t, J=7.5 Hz, 3H); EI-MS: m/z 369 (M), 
282, 226; HPLC Purity (retention time): 94% (4.66 min)

(Z)-2-(5-((4′-butoxybiphenyl-4-yl)methylene)-4-oxo-2-thioxothiazo
lidin-3-yl)acetic acid (7Dc)
1H NMR (300 MHz, d6-DMSO): δ 7.89 (s, 1H), 7.87 (d, J=8.5 Hz, 

2H), 7.76 (m, 4H), 7.05 (d, J=8.6 Hz, 2H), 4.75 (s, 2H), 4.02 (t, 
J=6.7 Hz, 2H), 1.69 (m, 2H), 1.45 (m, 2H), 0.94 (t, J=7.5 Hz, 3H); 
EI-MS: m/z 427 (M), 282, 226; HPLC Purity (retention time): 
100% (3.84 min)

(Z)-5-((4′-isobutoxybiphenyl-4-yl)methylene)thiazolidine-2,4-dione 
(7Ea)
1H NMR (300 MHz, d6-DMSO): δ 7.82 (m, 3H), 7.67–7.74 (m, 
4H), 7.03 (d, J=8.7 Hz, 2H), 3.79 (d, J=6.8 Hz, 2H), 2.04 (m, 1H), 
0.98 (d, J=6.9 Hz, 6H); EI-MS: m/z 353 (M), 297, 226; HPLC 
Purity (retention time): 95% (4.31 min)

(Z)-5-((4′-isobutoxybiphenyl-4-yl)methylene)-2-thioxothiazolidin-4-
one (7Eb)
1H NMR (300 MHz, d6-DMSO): δ 7.81 (d, J=8.7 Hz, 2H), 7.67 
(m, 5H), 7.03(d, J=8.7 Hz, 2H), 3.79 (d, J=6.5 Hz, 2H), 2.03 (m, 
1H), 0.98 (d, J=6.7 Hz, 6H); EI-MS: m/z 369 (M), 313, 226; HPLC 
Purity (retention time): 100% (4.70 min)

(Z)-2-(5-((4′-isobutoxybiphenyl-4-yl)methylene)-4-oxo-2-thioxo
thiazolidin-3-yl)acetic acid (7Ec)
1H NMR (300 MHz, d6-DMSO): δ 7.89 (s, 1H), 7.87 (d, J=8.7 Hz, 
2H), 7.76 (m, 4H), 7.05 (d, J=8.6 Hz, 2H), 4.75 (s, 2H), 3.80 (d, 
J=6.3 Hz, 2H), 2.03 (m, 1H), 0.99 (d, J=6.5 Hz, 6H); EI-MS: m/z 
427 (M), 371, 282, 226; HPLC Purity (retention time): 98% (3.87 
min)

(Z)-5-((4′-(benzyloxy)biphenyl-4-yl)methylene)thiazolidine-2,4-
dione (7Fa)
1H NMR (300 MHz, d6-DMSO): δ 7.81 (m, 3H), 7.68–7.73 (m, 
4H), 7.38–7.48 (m, 5H), 7.13 (m, 2H), 5.17 (s, 2H); 13C NMR (100 
MHz, d6-DMSO): 158.931, 158.662, 145.522, 143.978, 136.977, 
134.531, 131.457, 131.193, 130.746, 130.218, 129.976, 128.514(×2), 
128.423, 128.191, 128.041, 127.927, 127.726(×2), 126.701, 126.196, 
115.488, 69.320; EI-MS: m/z 387 (M), 304, 225; HRMS: calcu-
lated for C23H17NO3S, 387.0929, found 387.0936; HPLC Purity 
(retention time): 98% (4.52 min)

(Z)-5-((4′-(benzyloxy)biphenyl-4-yl)methylene)-2-thioxothiazolidin-
4-one (7Fb)
1H NMR (300 MHz, d6-DMSO): δ 7.82 (d, J=8.5 Hz, 2H), 
7.67 (m, 5H), 7.33–7.48 (m, 5H), 7.12 (d, J=8.6 Hz, 2H), 5.17 
(s, 2H); EI-MS: m/z 403 (M), 304, 225; HRMS: calculated for 
C23H17NO2S2, 403.0701, found 403.0708; HPLC Purity (retention 
time): 100% (4.95 min)

(Z)-2-(5-((4′-(benzyloxy)biphenyl-4-yl)methylene)-4-oxo-2-
thioxothiazolidin-3-yl)acetic acid (7Fc)
1H NMR (300 MHz, d6-DMSO): δ 7.90 (s, 1H), 7.88 (d, J=8.6 
Hz, 2H), 7.76 (m, 4H), 7.34–7.48 (m, 5H), 7.15 (d, J=8.6 Hz, 2H), 
5.18 (s, 2H), 4.75 (s, 2H); EI-MS: m/z 461 (M), 302, 225; HRMS: 
calculated for C25H19NO4S2, 461.0755, found 461.0762; HPLC 
Purity (retention time): 100% (4.09 min)

(Z)-5-((4′-(pyridin-3-ylmethoxy)biphenyl-4-yl)methylene)
thiazolidine-2,4-dione (7Ga)
1H NMR (300 MHz, d6-DMSO): δ 8.72 (s, 1H), 8.58 (d, J=5.0 Hz, 
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1H), 7.97 (d, J=7.2 Hz, 1H), 7.82 (m, 3H), 7.67-7.74 (m, 4H), 7.48 
(m, 1H), 7.15 (d, J=8.6 Hz, 2H), 5.24 (s, 2H); EI-MS: m/z 388 (M), 
296, 289, 225; HPLC Purity (retention time): 98% (3.63 min)

(Z)-5-((4′-(pyridin-3-ylmethoxy)biphenyl-4-yl)methylene)-2-thioxo
thiazolidin-4-one (7Gb)
1H NMR (300 MHz, d6-DMSO): δ 8.73 (s, 1H), 8.59 (d, J=5.1 Hz, 
1H), 7.97 (d, J=7.3 Hz, 1H), 7.81 (d, J=8.4 Hz, 2H), 7.67 (m, 5H), 
7.50 (dd, J=7.3 Hz, J=5.1 Hz, 1H), 7.15 (d, J=8.8 Hz, 2H), 5.23 
(s, 2H); EI-MS: m/z 404 (M), 262, 226; HPLC Purity (retention 
time): 96% (4.03 min)

(Z)-2-(4-oxo-5-((4′-(pyridin-3-ylmethoxy)biphenyl-4-yl)methylene)-
2-thioxothiazolidin-3-yl)acetic acid (7Gc)
1H NMR (300 MHz, d6-DMSO): δ 8.73 (s, 1H), 8.58 (d, J=5.0 Hz, 
1H), 7.98 (d, J=7.4 Hz, 1H), 7.91 (s, 1H), 7.89 (d, J=8.5 Hz, 2H), 
7.79 (m, 4H), 7.52 (m, 1H), 7.18 (d, J=8.7 Hz, 2H), 5.24 (s, 2H), 
4.76 (s, 2H); EI-MS: m/z 462 (M), 370, 302, 225; HPLC Purity 
(retention time): 99% (3.30 min)

(Z)-5-((4′-phenethoxybiphenyl-4-yl)methylene)thiazolidine-2,4-
dione (7Ha)
1H NMR (300 MHz, d6-DMSO): δ 7.81 (m, 3H), 7.67–7.74 (m, 
4H), 7.23–7.32 (m, 5H), 7.05 (d, J=8.7 Hz, 2H), 4.25 (t, J=6.8 Hz, 
2H), 3.05 (t, J=6.8 Hz, 2H); EI-MS: m/z 401 (M), 302, 297, 226; 
HPLC Purity (retention time): 98% (4.44 min)

(Z)-5-((4′-phenethoxybiphenyl-4-yl)methylene)-2-thioxothiazolidin-
4-one (7Hb)
1H NMR (300 MHz, d6-DMSO): δ 7.80 (d, J=8.5 Hz, 2H), 7.67 
(m, 5H), 7.23–7.33 (m, 5H), 7.04 (d, J=8.9 Hz, 2H), 4.24 (t, J=6.9 
Hz, 2H), 3.05 (t, J=6.9 Hz, 2H); EI-MS: m/z 417 (M), 313, 226; 
HPLC Purity (retention time): 96% (4.89 min)

(Z)-2-(4-oxo-5-((4′-phenethoxybiphenyl-4-yl)methylene)-2-thioxo
thiazolidin-3-yl)acetic acid (7Hc)
1H NMR (300 MHz, d6-DMSO): δ 7.89 (s, 1H), 7.87 (d, J=8.5 
Hz, 2H), 7.76 (m, 4H), 7.25–7.34 (m, 5H), 7.05 (d, J=8.7 Hz, 2H), 
4.75 (s, 2H), 4.25 (t, J=6.9 Hz, 2H), 3.05 (t, J=6.9 Hz, 2H); EI-MS: 
m/z 475 (M), 371, 226; HPLC Purity (retention time): 96% (4.05 
min)

(Z)-5-((4′-(3-phenylpropoxy)biphenyl-4-yl)methylene)thiazolidine-
2,4-dione (7Ia)
1H NMR (300 MHz, d6-DMSO): δ 7.81 (m, 3H), 7.67–7.75 (m, 
4H), 7.18–7.30 (m, 5H), 7.04 (d, J=8.7 Hz, 2H), 4.02 (t, J=6.5 Hz, 
2H), 2.75 (t, J=6.9 Hz, 2H), 2.01 (m, 2H); EI-MS: m/z 415 (M), 
344, 297, 226; HPLC Purity (retention time): 98% (4.41 min)

(Z)-5-((4′-(3-phenylpropoxy)biphenyl-4-yl)methylene)-2-thioxo
thiazolidin-4-one (7Ib)
1H NMR (300 MHz, d6-DMSO): δ 7.81 (d, J=8.4 Hz, 2H), 7.67 
(m, 5H), 7.18–7.29 (m, 5H), 7.04 (d, J=8.7 Hz, 2H), 4.01 (t, J=6.3 
Hz, 2H), 2.75 (t, J=6.9 Hz, 2H), 2.03 (m, 2H); EI-MS: m/z 431 
(M), 344, 313, 226; HPLC Purity (retention time): 99% (4.83 
min)

(Z)-2-(4-oxo-5-((4′-(3-phenylpropoxy)biphenyl-4-yl)methylene)-2-
thioxothiazolidin-3-yl)acetic acid (7Ic)
1H NMR (300 MHz, d6-DMSO): δ 7.89 (s, 1H), 7.87 (d, J=8.5 Hz, 
2H), 7.76 (m, 4H), 7.18–7.30 (m, 5H), 7.05 (d, J=8.6 Hz, 2H), 4.75 
(s, 2H), 4.03 (t, J=6.2 Hz, 2H), 2.75 (t, J=6.7 Hz, 2H), 2.04 (m, 
2H); EI-MS: m/z 489 (M), 450, 332, 226; HPLC Purity (retention 
time): 97% (4.00 min)
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