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Introduction
Gradients of Na+ and K+ across the plasma membrane of ani-
mal cells are important for maintaining membrane potentials, 
cell volume, and active transport of other solutes[1]. Na+/
K+-ATPase, an intrinsic ion transporter on the plasma mem-
brane of animal cells, belongs to the family of P-type cation 
transporters, and generally consists of a heterodimer of α- and 
β-subunits[2].  It pumps 3 Na+ ions out of and 2 K+ ions into the 
cells at the expense of hydrolyzing one ATP, and thus main-
tains the gradients of Na+ and K+ ions across the cell mem-
brane.  For the continuous exchange of Na+ and K+ across the 
membrane, Na+/K+-ATPase actively consumes 20%–30% of 
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ATP energy generated in animal cells at rest[3].  
Cardiac glycosides, such as ouabain and digoxin, are ste-

roid-like compounds and have been used in the treatment of 
congestive heart failure[4].  The therapeutic effect of cardiac 
glycosides lies in their reversible inhibition on the Na+/K+-
ATPase of myocardium[5].  An inhibition on Na+/K+-ATPase 
leads to the elevation of intracellular Na+ concentration, which 
in turn activates a Na+/Ca2+ exchanger resulting in an increase 
of intracellular Ca2+ level.  The elevated intracellular Ca2+ level 
induces positive inotropy that eventually accentuates the force 
of myocardial contraction.  

Danshen, the dried roots of medicinal plant Salvia milti-
orrhiza, is one of the most popular Chinese herbal products.  
Traditionally regarded as an effective medicine for the promo-
tion of blood circulation, danshen has been extensively used 
in the treatment of cardiac and cerebrovascular diseases[6].  
Magnesium lithospermate B (MLB), a derivative of caffeic 
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acid tetramer and the major soluble ingredient in danshen, 
has been demonstrated to possess several medicinal effects, 
such as vasodilating, antihypertensive, antioxidative, and 
free radical scavenging activities[7, 8].  Recently, MLB was sug-
gested to be responsible for the cardiac therapeutic effect of 
danshen by its effective inhibition on Na+/K+-ATPase via the 
same molecular mechanism triggered by cardiac glycosides[9].  
Whether MLB leads to the elevation of intracellular Ca2+ level 
in cells as observed when they are treated with cardiac glyco-
sides has not been verified.

In this study, SH-SY5Y neuroblastoma cells were employed 
to examine if MLB treatment may lead to an elevation of intra-
cellular Ca2+ level.  Moreover, a Na+/Ca2+ exchanger inhibitor, 
KB-R7943, and an IP3 receptor antagonist, 2-APB, were utilized 
to assess possible intracellular and extracellular sources for the 
fluctuating cytosolic Ca2+ level in SH-SY5Y cells treated with 
MLB and ouabain.  Molecular modeling and docking of oua-
bain and MLB to Na+/K+-ATPase were exhibited to compare 
their inhibitory potency at molecular level.  Cell viability (tox-
icity) as well as changes of cell body and dendrite morphology 
was observed in SH-SY5Y cells.

Materials and methods
Chemicals and reagents 
Penicillin, streptomycin, RPMI (Roswell Park Memorial Insti-
tute) medium 1640, and calcium free HBSS (Hanks Balanced 
Salt Solution) buffer were purchased from GIBCO (Grand 
Island, NY, USA).  Ouabain, dimethyl sulfoxide (DMSO) and 
2-aminorthyl diphenylborinate (2-APB) were supplied from 
Sigma-Aldrich (St Louis, MO, USA).  Fetal bovine serum (FBS), 
[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide 
(MTT), fluo-4 acetoxymethyl ester (Fluo4-AM), and 2-[2-[4-(4-
nitrobenzyloxy)phenyl]ethyl] isothiourea methanesulfonate 
(KB-R7943) were purchased from USB corporation (Cleveland, 
Ohio, USA), Biological industries (Israel), Molecular Probe 
(Eugene, Oregon, USA), and Calbiochem (Darmstadt, Ger-
many), respectively.  Magnesium lithospermate B (MLB) was 
extracted from roots of danshen (Salvia miltiorrhiza) and puri-
fied as described previously[9].  Glass bottom culture dishes (35 
mm) were obtained from MatTek (Ashland, MA, USA).

Cell cultures
The human adrenergic neuroblastoma cell line, SH-SY5Y[10] 
was kindly provided by Dr Tin-ynu Ho of the Graduate Insti-
tute of Chinese Medical Science, China Medical University, 
Taiwan, China.  SH-SY5Y cells grown in RPMI-1640 culture 
medium supplemented with 10% FBS, 1% L-glutamine and 1% 
penicillin/streptomycin were maintained at 37 °C in a humidi-
fied atmosphere of 95% air/5% CO2; and passages were per-
formed every other day by trypsinization.  For MTT staining, 
cells were plated into 24-well culture plates at a density of 
1×105 cells.  For fluorescence imaging of Ca2+ level and calcula-
tion of cell volume, cells were plated in 35 mm glass bottom 
culture dishes and grown to 80% confluency (approximately 
48 h).  

Cell viability assay 
SH-SY5Y cells treated with ouabain or MLB of concentra-
tions ranging from 10 nmol/L to 100 µmol/L for 5, 10, 30, 60 
min, and 24 h were subjected to cell viability assay by MTT 
staining[11].  Cells were added with MTT to a final concentra-
tion of 500 µg/mL, and incubated at 37 °C for 2 h.  After MTT 
removal, cells were lysed with DMSO.  Absorbance was mea-
sured using SpectraMax M2 (Molecular Devices, Sunnywale, 
CA, USA) at a wavelength of 570 nm.  Control cells were 
treated in the same way without adding ouabain or MLB.  
Viability was expressed in percentage as the absorbance value 
of cells treated with ouabain or MLB over that of control cells.  

Intracellular Ca2+ imaging
Fluctuation of the intracellular Ca2+ level of SH-SY5Y cells was 
tracked and visualized by a preloaded fluorescent Ca2+-sen-
sitive dye, Fluo4-AM[12].  Cell-permeable Fluo4-AM was dis-
solved in DMSO to a concentration of 3 mmol/L, and then fur-
ther diluted to 3 µmol/L in cell media.  The cells were washed 
once with the culture medium (145 mmol/L NaCl, 5 mmol/L 
KCl, 2.6 mmol/L CaCl2, 1 mmol/L MgCl2, 10 mmol/L HEP-
ES-Na, and 5.6 mmol/L glucose adjusted to pH 7.4 with HCl) 
and added with the culture medium supplemented with 3 
µmol/L Fluo4-AM for 30 min in a humidified 5% CO2 incuba-
tor at 37 °C.  After washed with the culture medium, cells were 
added with 1 µmol/L of ouabain or MLB, and Ca2+ fluores-
cence imaging was monitored at different intervals for 30 min.  
To examine the possible sources for the elevated cytosolic 
Ca2+ level in SH-SY5Y cells, 10 µmol/L of KB-R7943 (Na+/Ca2+ 
exchanger inhibitor) or 100 µmol/L of 2-APB (IP3 receptor 
antagonist) was added to cells and incubated for 5 or 15 min 
before the loading of ouabain or MLB in the Ca2+ imaging 
detection[13, 14].  KB-R7943 was prepared in ethanol to a con-
centration of 10 mmol/L, further diluted to 1 mmol/L in Ca2+ 
free HBSS, and then finally diluted to 10 µmol/L in the culture 
medium.  2-APB of 100 µmol/L was prepared in the culture 
medium.  For Ca2+ imaging, culture dishes with adherent cells 
were mounted in the MIU-IBC CO2 incubation system (Olym-
pus, Tokyo, Japan) and placed on the microscope.  Time-lapse 
images of live cells loaded with Fluo4-AM were taken with 
an UPlanSApo 60×/1.35 oil immersion objective lens, and 
collected by the Fluoview 1000 confocal scanning microscopy 
(Olympus, Tokyo, Japan).  

Digital image processing 
Images collected at different time intervals were processed 
using the Olympus FV1000 software and NIH ImageJ pro-
gram (v 1.40) (Bethesda, Maryland, USA).  The pictures were 
acquired at 512×512 pixels, and analyzed frame by frame with 
a Time Series Analyzer[15, 16].  This plugin was used to analyze 
time-lapse image stacks.  Each cell was chosen as a region of 
interest (ROI) through mouse click and its fluorescence inten-
sity of each time point was measured.

Molecular modeling and docking
The crystal structure of shark rectal gland Na+/K+-ATPase 
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(PDB code 3A3Y) was downloaded from Protein Data Bank[17].  
In order to facilitate the docking process, the β and γ subunits 
of the Na+/K+-ATPase were removed, as well as the water 
molecules and counter-ions surrounding the remaining α 
subunit[18].  After hydrogen saturation, the modified Na+/
K+-ATPase was minimized with CHARMm force field[19] 
using the Discover Studio 2.1 package (http://accelrys.com/
products/discovery-studio/).  The 2D structures of ouabain 
and MLB were constructed by using the ChemDraw program, 
and their corresponding 3D structures were converted by the 
Chem3D program (http://www.cambridgesoft.com/).  The 
binding pocket of the Na+/K+-ATPase α subunit was defined 
as ouabain occupancy site in the structure of Na+/K+-ATPase-
ouabain complex[17].  Docking of MLB was performed in 
silico by employing the LigandFit module[20] in the Discover 
Studio 2.1 package.  The protein-ligand complexes generated 
by LigandFit were further minimized with CHARMm force-
field by Smart Minimizer algorithm.  Among the candidate 
structures, reported by the docking simulation, the docking 
structure with the highest Ligscore1 value, as computed by the 
score ligand pose module[21], was selected to represent MLB 
inside the binding pocket.

Measurement of relative cell volume
To measure volume of SH-SY5Y cells in different treatments, 
dishes were mounted in the MIU-IBC CO2 incubation system 
and placed on the microscope with a differential interference 
contrast (DIC) mode.  The cell profile was viewed through 
Nomarski optics with a 60× objective (NA, 1.35) under oil 
immersion and their images were captured consequently.  
By using the Olympus FV1000 software, ROI was drawn 
around the cell body or dendrites of each cell.  The selected 
areas were measured.  The fractional change in cell volume 
within each ROI, was expressed as [volume30 min/volume0 min]% 
where volume0 min and volume30 min represented the cell vol-
ume before and after treatment of ouabain or MLB for 30 min, 
respectively[22, 23].  

Statistical analysis
Data were expressed as mean±SEM.  Relative values for data 
were compared using analysis of variances (ANOVA) and 
t-test on SigmaPlot 2001 for Windows version 7.0 (SSI, San 
Jose, USA).  Differences were considered statistically signifi-
cant at P<0.05.  

Results
Effects of MLB and ouabain on viability of SH-SY5Y cells 
Viability of SH-SY5Y cells treated with various concentrations 
(0.01−100 µmol/L) of MLB or ouabain for 5, 10, 30, 60 min, 
and 24 h was examined (Figure 1).  No apparent MLB toxic-
ity to the cells was observed except for a partial reduction of 
viability when they were treated with 100 µmol/L of this com-
pound for more than 60 min.  In contrast, cell viability gradu-
ally decreased in a dose-dependent manner when cells were 
treated with ouabain in the range of 1−100 µmol/L within 60 
min, and severe toxicity was observed in cells treated with 

ouabain of concentration higher than 1 µmol/L for 24 h.  On 
the basis of the above observation, cells were treated with 1 
µmol/L of MLB or ouabain for 30 min in the following experi-
ments.  

Effects of MLB and ouabain on intracellular Ca2+ levels in SH-
SY5Y cells
To examine the effects of MLB and ouabain on their intracellu-
lar Ca2+ levels, SH-SY5Y cells were preloaded with Fluo4-AM, 
incubated with 1 µmol/L of MLB or ouabain, and monitored 
for their intracellular fluorescence fluctuation at different 
intervals for 30 min.  Compared with cells treated with buf-
fer alone (control), SH-SY5Y cells treated with either MLB or 
ouabain displayed significantly elevated fluorescence intensity 
that reached maximum approximately 5-10 min after treat-
ment (Figure 2).  These results indicate that MLB and ouabain 
increased the intracellular Ca2+ levels of SH-SY5Y cells in simi-
lar patterns.

Effects of KB-R7943 and 2-APB on the elevation of Ca2+ levels of 
MLB- and ouabain-treated SH-SY5Y cells
To evaluate the possible calcium sources for the elevation of 
cytosolic Ca2+ levels in SH-SY5Y cells treated with MLB and 
ouabain, a Na+/Ca2+ exchanger inhibitor, KB-R7943, or an IP3 
receptor antagonist, 2-APB, was added to cells before loading 
MLB and ouabain.  Significant reduction of fluorescence inten-

Figure 1.  Effects of MLB and ouabain on viability of SH-SY5Y cells.  SH-
SY5Y cells were treated with various concentrations of MLB and ouabain 
for 5, 10, 30, 60 min, and 24 h.  Viability was measured by MTT assay.  
Data are mean±SEM (n=3).
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sity in SH-SY5Y cells by either MLB or ouabain was observed 
in the presence of KB-R7943 (Figure 3) or 2-APB (Figure 4).  
These results suggest that the elevated intracellular Ca2+ lev-
els of SH-SY5Y cells treated with either MLB or ouabain were 
possibly supplied by extracellular Ca2+ influx through the 
Na+/Ca2+ exchanger on the plasma membrane and intracellu-
lar Ca2+ release via the IP3 receptor channel on the membrane 
of endoplasmic reticulum (ER).  

Docking of MLB to Na+/K+-ATPase
To compare the inhibitory potency of ouabain and MLB on 
Na+/K+-ATPase at molecular level, both compounds were sub-
jected to molecular modeling and docking to the extracellular 
domain of Na+/K+-ATPase α subunit.  The results showed 
that MLB could be localized in the ouabain binding pocket 
of Na+/K+-ATPase, and that equivalent interaction with the 
binding cavity of Na+/K+-ATPase was observed for ouabain 
and MLB by forming five intermolecular hydrogen bonds 
(H-bonds), respectively (Figure 5).  Detailed analyses showed 
that three H-bonds are formed between the lactone of oua-
bain and Ile328 (forming one H-bond) and Ala330 (forming 
two H-bonds) of Na+/K+-ATPase, and two H-bonds between 
the hydroxyl group at C-14 of ouabain and Thr804 of Na+/
K+-ATPase.  In contrast, three H-bonds are formed between 
the hydroxyl group at C-4’ position of MLB and Lys912 (form-
ing two H-bonds) and Glu915 (forming one H-bond) of Na+/
K+-ATPase, one H-bond between the carbonyl group at C-9’ 
position of MLB and Thr804 of Na+/K+-ATPase, and one 
H-bond between the hydroxyl group at C-4’’’ position of MLB 
and Leu110 of Na+/K+-ATPase.  Similar to the hydrophobic 
steroidal core of ouabain, the four aromatic rings of MLB form 
strong hydrophobic interaction with hydrophobic residues 
(Leu132, Tyr315, Ile322, Phe323, Ile325, Phe793, Ile794, and 
Leu802) around the binding pocket of Na+/K+-ATPase.  

Effects of MLB or ouabain treatment on cell and dendrite 
morphology
Changes of cell body and dendrite morphology after treated 
with 1 µmol/L of MLB or ouabain for 30 min were calculated 

Figure 2.  Fluctuation of intracellular Ca2+ levels of SH-SY5Y cells treated with MLB and ouabain.  SH-SY5Y cells were loaded with Fluo4-AM prior to 
incubation with 1 µmol/L of MLB or ouabain.  Intensity of fluorescence was collected and calculated at different time intervals for 30 min (A).  Each 
point is representative for 40 ROIs of time-lapse images in 5 independent experiments.  Serial images of cells treated with MLB and ouabain for 0.5, 7, 
15, and 30 min were captured to display the fluctuation of intracellular Ca2+ levels (B).  Scale bar represents 20 µm.

Figure 3.  Effects of KB-R7943 on intracellular Ca2+ levels of SH-SY5Y cells 
elevated by MLB and ouabain.  Similar Ca2+ fluorescence imaging was 
executed as described in Figure 2 except that cells were treated with KB-
R7943 for 5 min before the loading of MLB and ouabain.  Data represent 
mean±SEM (n=3).
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by measuring the volumes of cell body and dendrites before 
and after treatment over the same location.  Similar to cells of 
the control group, no significant changes were observed in the 
volumes of cells treated with MLB or ouabain (Figure 6, left 
panels).  However, a significant shrink of dendrite volume was 
noticed in cells treated with ouabain, but not in those treated 
with MLB and those of the control group (Figure 6, right pan-
els).  These results suggest that treatment of ouabain, but not 
MLB, induced dendritic shrink of SH-SY5Y cells under our 
experimental conditions.

Discussion
In a previous study, we demonstrated that MLB could pro-
duce potent inhibition of Na+/K+-ATPase in vitro, and pro-
posed that its cardiac therapeutic effects could have been due 
to the same molecular mechanism as triggered by cardiac 
glycosides[9].  In this study, we demonstrated that intracellular 
Ca2+ levels of SH-SY5Y cells treated with MLB were substan-
tially elevated in a manner similar to that observed in cells 
treated with ouabain, a cardiac glycoside.  Molecular model-
ing showed that equivalent hydrogen bonding and hydro-
phobic interaction were observed for ouabain and MLB when 
these two compounds bound to the cavity of Na+/K+-ATPase, 
and the results were in agreement with our previous observa-
tion that both ouabain and MLB possessed strong inhibitory 

potency on Na+/K+-ATPase[9].  Evidently, the results reinforce 
our previous proposition that MLB, being a potent inhibitor of 
Na+/K+-ATPase, acts as the active component responsible for 
the cardiac therapeutic effect of danshen via the same physi-
ological responses subsequently activated by effective inhibi-
tion of cardiac glycosides on Na+/K+-ATPase.  

Calcium signals are mostly delivered as brief transients that 
are often organized into regulatory oscillations[24].  Fluctuation 
of cytosolic Ca2+ level is generally a coordinated consequence 
of a number of molecular cascade reactions responsible for 
Ca2+ influx and efflux in exchange with either extracellular 
space or intracellular ER storage compartment[25].  Free Ca2+ 
enters the cells through either voltage-gated channels or 
receptor-operated channels located in their plasma mem-
brane[26, 27].  However, much of the signal Ca2+ comes from the 

Figure 4.  Effect of 2-APB on intracellular Ca2+ levels of SH-SY5Y cells 
elevated by MLB and ouabain.  Similar Ca2+ fluorescence imaging was 
executed as described in Figure 2 except that cells were treated with 
2-APB for 15 min before the loading of MLB and ouabain.  Data represent 
mean±SEM (n=3).  

Figure 5.  Detailed molecular interactions between the extracellular 
binding pocket of Na+/K+-ATPase and ouabain or MLB.  (Upper panels) 
Chemical structures of ouabain and MLB.  (Middle panels) Modeling of 
ouabain and MLB binding to the extracellular pocket of Na+/K+-ATPase α 
subunit.  The amino acid residues around the binding pocket of Na+/K+-
ATPase are shown in ribbon structure, and ouabain and MLB in scaled 
ball and stick.  (Lower panels) The amino acid residues of Na+/K+-ATPase 
close to ouabain or MLB are shown in wireframe, and the structures of 
ouabain and MLB in scaled ball and stick.  Green box or oval represents 
one or two hydrogen bonds formed between Na+/K+-ATPase and ouabain 
or MLB.
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intracellular Ca2+ sources, and is primarily released via the IP3 
receptor channel on the ER membrane[28, 29].  According to the 
reduction effects of two inhibitors KB-R7943 and 2-APB on 
the intracellular Ca2+ levels elevated by the treatment of either 
MLB or ouabain (Figures 3 and 4), the elevation of cytosolic 
Ca2+ level was likely supplied by both Ca2+ influx through the 
reversed mode of the Na+/Ca2+ exchanger and intracellular 
release from ER storage compartment.  Whether other sources 
are also involved in the elevation of intracellular Ca2+ levels 
in SH-SY5Y cells treated with MLB or ouabain has not been 

evaluated.  
Na+/K+-ATPase is well known for its role as a maintainer of 

electrolyte and fluid balance in cells, organs and whole body.  
More and more findings indicate that Na+/K+-ATPase can be 
a drug target for the treatment of several diseases, including 
congestive heart failure, ischemic stroke, neurodegenerative 
diseases and even cancer[30–32].  These therapeutic effects may 
be possibly resulted from the inhibition of Na+/K+-ATPase 
leading to the fluctuation of Ca2+ level, which in turn activates 
diverse physiological responses in different cells in variable 
microenvironments[33, 34].  However, the inhibition of Na+/K+-
ATPase may also lead to the fluctuation of other cations pre-
sumably via cross-talks held among different ion channels[35, 36].  
Therefore, the possibility that some pharmacological effects 
following Na+/K+-ATPase inhibition may be generated by bio-
logical reactions insensitive to Ca2+ concentration should not 
be ruled out.

Dendrite structure is correlated to neuronal function, and 
its degeneration is generally regarded as an early indicator 
of cell damage[37].  In the current study, dendritic shrink was 
observed in SH-SY5Y cells treated with ouabain, but not in 
cells treated with MLB (Figure 6); and this observation was in 
agreement with the toxicity of SH-SY5Y cells treated with high 
dosages of ouabain, but not with MLB in the viability assay 
(Figure 1).  Similar cell toxicity caused by ouabain at high 
concentrations has also been noticed in other studies, and the 
toxicity is blamed to ouabain for its putative triggering of sev-
eral signaling cascade responses that lead to cell death[38].  In 
contrast, MLB is generally regarded as a non-toxic antioxidant, 
and has also been shown to possess neuroprotective effects 
against ischemic stroke in a brain slice assay model[9].  More-
over, water extraction of Salvia miltiorrhiza containing mainly 
MLB has no toxicity to neonatal rat cardiomyocytes at dosage 
of 5–80 µg/ml[39].  Taken together, we surmise that MLB has a 
great potential, after clinical trials, to become a safer drug than 
cardiac glycosides.  
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