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Abstract

Social Internet content plays an increasingly critical role in many domains, including public

health, disaster management, and politics. However, its utility is limited by missing geographic

information; for example, fewer than 1.6% of Twitter messages (tweets) contain a geotag. We

propose a scalable, content-based approach to estimate the location of tweets using a novel yet

simple variant of gaussian mixture models. Further, because real-world applications depend on

quantified uncertainty for such estimates, we propose novel metrics of accuracy, precision, and

calibration, and we evaluate our approach accordingly. Experiments on 13 million global,

comprehensively multi-lingual tweets show that our approach yields reliable, well-calibrated

results competitive with previous computationally intensive methods. We also show that a

relatively small number of training data are required for good estimates (roughly 30,000 tweets)

and models are quite time-invariant (effective on tweets many weeks newer than the training set).

Finally, we show that toponyms and languages with small geographic footprint provide the most

useful location signals.

1. INTRODUCTION

Applications in public health [9], politics [29], disaster management [21], and other domains

are increasingly turning to social Internet data to inform policy and intervention strategies.

However, the value of these data is limited because the geographic origin of content is

frequently unknown. Thus, there is growing interest in the task of location inference: given

an item, estimate its geographic true origin.

We propose an inference method based on gaussian mixture models (GMMs) [22]. Our

models are trained on geotagged tweets, i.e., messages with user profile and geographic true

origin points.1 For each unique n-gram, we fit a two-dimensional GMM to model its

geographic distribution. To infer the origin of a new tweet, we combine previously trained

GMMs for the n-grams it contains, using weights inferred from data; Figure 1 shows an

example estimate. This approach is simple, scalable, and competitive with more complex

approaches.

1Our implementation is open source: http://github.com/reidpr/quac
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Location estimates using any method contain uncertainty, and it is important for downstream

applications to quantify this uncertainty. While previous work considers only point

estimates, we argue that a more useful form consists of a density estimate (of a probability

distribution) covering the entire globe, and that estimates should be assessed on three

independent dimensions of accuracy, precision, and calibration. We propose new metrics for

doing so.

To validate our approach, we performed experiments on twelve months of tweets from

across the globe, in the context of answering four research questions:

RQ1. Improved approach. How can the origin locations of social Internet messages be

estimated accurately, precisely, and with quantitative uncertainty? Our novel, simple, and

scalable GMM-based approach produces well-calibrated estimates with a global mean

accuracy error of roughly 1,800 km and precision of 900,000 square kilometers (or better);

this is competitive with more complex approaches on the metrics available in prior work.

RQ2. Training size. How many training data are required? We find that approximately

30,000 tweets (i.e., roughly 0.01% of total daily Twitter activity) are sufficient for high-

quality models, and that performance can be further improved with more training data at a

cost of increased time and memory. We also find that models are improved by including rare

n-grams, even those occurring just 3 times.

RQ3. Time dependence. What is the effect of a temporal gap between training and testing

data? We find that our models are nearly independent of time, performing just 6% worse

with a gap of 4 months (vs. no gap).

RQ4. Location signal sources. Which types of content provide the most valuable location

signals? Our results suggest that the user location string and time zone fields provide the

strongest signals, tweet text and user language are weaker but important to offer an estimate

for all test tweets, and user description has essentially no location value. Our results also

suggest that mentioning toponyms (i.e., names of places), especially at the city scale,

provides a strong signal, as does using languages with a small geographic footprint.

The remainder of our paper is organized as follows. We first survey related work, then

propose desirable properties of a location inference method and metrics which measure

those properties. We then describe our experimental framework and detail our mixture

model approach. Finally, we discuss our experimental results and their implications.

Appendices with implementation details follow the body of the paper.

2. RELATED WORK

Over the past few years, the problem of inferring the origin locations of social Internet

content has become an increasingly active research area. Below, we summarize the four

primary lines of work and contrast them with this paper.
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2.1 Geocoding

Perhaps the simplest approach to location inference is geocoding: looking up the user

profile’s free-text location field in a gazetteer (list of toponyms), and if a match is found,

inferring that the message originated from the matching place. Researchers have used

commercial geocoding services such as Yahoo! Geocoder [32], U.S. Geological Survey data

[26], and Wikipedia [16] to do this. This technique can be extended to the message text itself

by first using a geoparser named-entity recognizer to extract toponyms [13].

Schulz et al. [30] recently reported accurate results using a scheme which combines multiple

geocoding sources, including Internet queries. Crucial to its performance was the discovery

that an additional 26% of tweets can be matched to precise coordinates using text parsing

and by following links to location-based services (FourSquare, Flickr, etc.), an approach that

can be incorporated into competing methods as well. Another 8% of tweets – likely the most

difficult ones, as they contain the most subtle location evidence – could not be estimated and

are not included in accuracy results.

In addition to one or more accurate, comprehensive gazetteers, these approaches require

careful text cleaning before geocoding is attempted, as grossly erroneous false matches are

common [16], and they tend to favor precision over recall (because only toponyms are used

as evidence). Finally, under one view, our approach essentially infers a probabilistic

gazetteer that weights toponyms (and pseudo-toponyms) according to the location

information they actually carry.

2.2 Statistical classifiers

These approaches build a statistical mapping of text to discrete pre-defined regions such as

cities and countries (i.e., treating “origin location” as membership in one of these classes

rather than a geographic point); thus, any token can be used to inform location inference.

We categorize this work by the type of classifier and by place granularity. For example,

Cheng et al. apply a variant of naiv̈e Bayes to classify messages by city [6], Hecht et al. use

a similar classifier at the state and country level [16], and Kinsella et al. use language

models to classify messages by neighborhood, city, state, zip code, and country [19].

Mahmud et al. classify users by city with higher accuracy than Cheng et al. by combining a

hierarchical classifier with many heuristics and gazetteers [20]. Other work instead classifies

messages into arbitrary regions of fixed [25, 34] or dynamic size [28]. All of these require

aggressively smoothing estimates for regions with few observations [6]

Recently, Chang et al. [5] classified tweet text by city using GMMs. While more related to

the present paper because of the underlying statistical technique, this work is still

fundamentally a classification approach, and it does not attempt the probabilistic evaluation

that we advocate. Additionally, the algorithm resorts to heuristic feature selection to handle

noisy n-grams; instead, we offer two learning algorithms to set n-gram weights which are

both theoretically grounded and empirically crucial for accuracy.
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Fundamentally, these approaches can only classify messages into regions specified before

training; in contrast, our GMM approach can be used both for direct location inference as

well as classification, even if regions are post-specified.

2.3 Geographic topic models

These techniques endow traditional topic models [2] with location awareness [33].

Eisenstein et al. developed a cascading topic model that produces region-specific topics and

used these topics to infer the locations of Twitter users [10]; follow-on work uses sparse

additive models to combine region-specific, user-specific, and non-informative topics more

efficiently [11, 17].

Topic modeling does not require explicit pre-specified regions. However, regions are

inferred as a preprocessing step: Eisenstein et al. with a Dirichlet Process mixture [10] and

Hong et al. with K-means clustering [17]. The latter also suggests that more regions

increases inference accuracy.

While these approaches result in accurate models, the bulk of modeling and computational

complexity arises from the need to produce geographically coherent topics. Also, while

topic models can be parallelized with considerable effort, doing so often requires

approximations, and their global state limits the potential speedup. In contrast, our approach

focusing solely on geolocation is simpler and more scalable.

Finally, the efforts cited restrict messages to either the United States or the English

language, and they report simply the mean and median distance between the true and

predicted location, omitting any precision or uncertainty assessment. While these limitations

are not fundamental to topic modeling, the novel evaluation and analysis we provide offer

new insights into the strengths and weaknesses of this family of algorithms.

2.4 Social network information

Recent work suggests that using social link information (e.g., followers or friends) can aid in

location inference [4, 8]. We view these approaches as complementary to our own;

accordingly, we do not explore them more deeply at present.

2.5 Contrasting our approach

We offer the following principal distinctions compared to prior work: (a) location estimates

are multi-modal probability distributions, rather than points or regions, and are rigorously

evaluated as such, (b) because we deal with geographic coordinates directly, there is no need

to pre-specify regions of interest; (c) no gazetteers or other supplementary data are required,

and (d) we evaluate on a dataset that is more comprehensive temporally (one year of data),

geographically (global), and linguistically (all languages except Chinese, Thai, Lao,

Cambodian, and Burmese).

3. EXPERIMENT DESIGN

In this section, we present three properties of a good location estimate, metrics and

experiments to measure them, and new algorithms motivated by them.
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3.1 What makes a good location estimate?

An estimate of the origin location of a message should be able to answer two closely related

but different questions:

Q1. What is the true origin of the message? That is, at which geographic point was the

person who created the message located when he or she did so?

Q2. Was the true origin within a specified geographical region? For example, did a given

message originate from Washington State?

It is inescapable that all estimates are uncertain. We argue that they should be quantitatively

treated as such and offer probabilistic answers to these questions. That is, we argue that a

location estimate should be a geographic density estimate: a function which estimates the

probability of every point on the globe being the true origin. Considered through this lens, a

high-quality estimate has the following properties:

• It is accurate: the density of the estimate is skewed strongly towards the true origin

(i.e., the estimate rates points near the true origin as more probable than points far

from it). Then, Q1 can be answered effectively because the most dense regions of

the distribution are near the true origin, and Q2 can be answered effectively

because if the true origin is within the specified region, then much of the

distribution’s density will be as well.

• It is precise: the most dense regions of the estimate are compact. Then, Q1 can be

answered effectively because fewer candidate locations are offered, and Q2 can be

answered effectively because the distribution’s density is focused within few

distinct regions.

• It is well calibrated: the probabilities it claims are close to the true probabilities.

Then, both questions can be answered effectively regardless of the estimate’s

accuracy and precision, because its uncertainty is quantified. For example, the two

estimates “the true origin is within New York City with 90% confidence” and “the

true origin is within North America with 90% confidence” are both useful even

though the latter is much less accurate and precise.

Our goal, then, is to discover an estimator which produces estimates that optimize the above

properties.

3.2 Metrics

We now map these properties to operationalizable metrics. This section presents our metrics

and their intuitive reasoning; rigorous mathematical implementations are in the appendices.

3.2.1 Accuracy—Our core metric to evaluate the accuracy of an estimate is

comprehensive accuracy error (CAE): the expected distance between the true origin and a

point randomly selected from the estimate’s density function, or in other words, the mean

distance between the true origin and every point on the globe, weighted by the estimate’s

density value.2 The goal here is to offer a notion of the distance from the true origin to the

density estimate as a whole.
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This contrasts with a common prior metric that we refer to as simple accuracy error (SAE):

the distance from the best single-point estimate to the true origin. Figure 2 illustrates this

contrast. The tight clusters around both Washington, D.C. and Washington State suggest that

any estimate based on the unigram washington is inherently bimodal; that is, no single point

at either cluster or anywhere in between is a good estimated location. More generally, SAE

is a poor match for the continuous, multi-modal density estimates that we argue are more

useful for downstream analysis, because good single-point distillations are often

unavailable. However, we report both metrics in order to make comparisons with prior

work.

The units of CAE (and SAE) are kilometers. For a given estimator (i.e., a specific algorithm

which produces location estimates), we report mean comprehensive accuracy error

(MCAE), which is simply the mean of each estimate’s CAE. CAE ≥ 0, and an ideal

estimator has MCAE = 0.

3.2.2 Precision—In order to evaluate precision, we extend the notion of one-dimensional

prediction intervals [3, 12] to two dimensions. An estimate’s prediction region is the

minimal, perhaps non-contiguous geographic region which contains the true origin with

some specified probability (the region’s coverage).

Accordingly, the metric we propose for precision is simply the area of this region: prediction

region area (PRA) parameterized by the coverage, e.g., PRA50 is the area of the minimal

region which contains the true origin with 50% probability.

Units are square kilometers. For a given estimator, we report mean prediction region area

(MPRA), i.e., the mean of each estimate’s PRA. PRA ≥ 0; an ideal estimator has MPRA = 0.

3.2.3 Calibration—Calibration is tested by measuring the difference between an

estimate’s claimed probability that a particular point is the true origin and its actual

probability.

We accomplish this by building upon prediction regions. That is, given a set of estimates,

we compute a prediction region at a given coverage for each estimate and measure the

fraction of true origins that fall within the regions. The result should be close to the specified

coverage. For example, for prediction regions at coverage 0.5, the fraction of true origins

that actually fall within the prediction region should be close to 0.5.

We refer to this fraction as observed coverage (OC) at a given expected coverage; for

example, OC50 is the observed coverage for an expected coverage of 0.5. (This measure is

common in the statistical literature for one-dimensional problems [3].) Calibration can vary

among different expected coverage levels (because fitted density distributions may not

exactly match actual true origin densities), so multiple coverage levels should be reported

(in this paper, OC50 and OC90).

2A similar metric, called Expected Distance Error, has been proposed by Cho et al. for a different task of user tracking [7].
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Note that OC is defined at the estimator level, not for single messages. OC is unitless, and 0

≤ OC ≤ 1. An ideal estimator has observed coverage equal to expected coverage, an

overconfident estimator has observed less than expected, and an underconfident one greater.

3.3 Experiment implementation

In this section, we explain the basic structure of our experiments: data source, preprocessing

and tokenization, and test procedures.

3.3.1 Data—We used the Twitter Streaming API to collect an approximately continuous

1% sample of all global tweets from January 25, 2012 to January 23, 2013. Between 0.8%

and 1.6% of these, depending on timeframe, contained a geotag (i.e., specific geographic

coordinates marking the true origin of the tweet, derived from GPS or other automated

means), yielding a total of approximately 13 million geotagged tweets.3

We tokenized the message text (tx), user description (ds), and user location (lo) fields, which

are free-text, into bigrams by splitting on Unicode character category and script boundaries

and then further subdividing bigrams appearing to be Japanese using the TinySegmenter

algorithm [15].4 This covers all languages except a few that have low usage on Twitter:

Thai, Lao, Cambodian, and Burmese (which do not separate words with a delimiter) as well

as Chinese (which is difficult to distinguish from Japanese). For example, the string “Can’t

wait for ” becomes the set of bigrams can, t, wait, for, , can t, t wait, wait for, for ,

and . (Details of our algorithm are presented in the appendices.)

For the language (ln) and time zone (tz) fields, which are selected from a set of options, we

form n-grams by simply removing whitespace and punctuation and converting to lower-

case. For example, “Eastern Time (US & Canada)” becomes simply easterntimeuscanada.

3.3.2 Experiments—Each experiment is implemented using a Python script on tweets

selected with a regular schedule. For example, we might train a model on all tweets from

May 1 and test on a random sample of tweets from May 2, then train on May 7 and test on

May 8, etc. This schedule has four parameters:

• Training duration. The length of time from which to select training tweets. We

used all selected tweets for training, except only the first tweet from a given user is

retained, to avoid over-weighting frequent tweeters.

• Test duration. The length of time from which to select test tweets. In all

experiments, we tested on a random sample of 2,000 tweets selected from one day.

We excluded users with a tweet in the training set from testing, in order to avoid

tainting the test set.

• Gap. The length of time between the end of training data and the beginning of test

data.

3As in prior work [10, 17, 28], we ignore the sampling bias introduced by considering only geotagged tweets. A preliminary analysis
suggests this bias is limited. In a random sample of 11,694,033 geotagged and 17,175,563 non-geotagged tweets from 2012, we find a
correlation of 0.85 between the unigram frequency vectors for each set; when retweets are removed, the correlation is 0.93.
4More complex tokenization methods yielded no notable effect.
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• Stride. The length of time from the beginning of one training set to the beginning

of the next. This was fixed at 6 days unless otherwise noted.

For example, an experiment with training size of one day, no gap, and stride of 6 days would

schedule 61 tests across our 12 months of data and yield results which were the mean of the

58 tests with sufficient data (i.e., 3 tests were not attempted due to missing data). The

advantage of this approach is that test data always chronologically follow training data,

minimizing temporal biases and better reflecting real-world use.

We built families of related experiments (as described below) and report results on these

families.

4. OUR APPROACH: GEOGRAPHIC GMMS

Here, we present our location inference approach. We first motivate and summarize it, then

detail the specific algorithms we tested. (Mathematical implementations are in the

appendices.)

4.1 Motivation

Examining the geographic distribution of n-grams can suggest appropriate inference models.

For example, recall Figure 2 above; the two clusters, along with scattered locations

elsewhere, suggest that a multi-modal distribution consisting of two-dimensional gaussians

may be a reasonable fit.

Based on this intuition and coupled with the desiderata above, we propose an estimator

using one of the mature density estimation techniques: gaussian mixture models (GMMs).

These models are precisely the weighted sum of multiple gaussian (normal) distributions

and have natural probabilistic interpretations. Further, they have previously been applied to

human mobility patterns [7, 14].

Our algorithm is summarized as follows:

1. For each n-gram that appears more than a threshold number of times in the training

data, fit a GMM to the true origin points of the tweets in the training set that

contain that n-gram. This n-gram/GMM mapping forms the trained location model.

2. To locate a test tweet, collect the GMMs from the location models which

correspond to n-grams in the test tweet. The weighted sum of these GMMs — itself

a GMM — is the geographic density function which forms the estimate of the test

tweet’s location.

It is clear that some n-grams will carry more location information than others. For example,

n-gram density for the word the should have high variance and be dispersed across all

English-speaking regions; on the other hand, density for washington should be concentrated

in places named after that president.5 That is, n-grams with much location information

should be assigned high weight, and those with little information low weight — but not zero,

5Indeed, Eisenstein et al. attribute the poor performance of several of their baselines to this tendency of uninformative words to dilute
the predictive power of informative words [10].
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so that messages with only low-information n-grams will have a quantifiably poor estimate

rather than none at all. Accordingly, we propose three methods to set the GMM weights.

4.2 Weighting by quality properties

One approach is to simply assign higher weight to GMMs which have a crisper signal or fit

the data better. We tested 15 quality properties which measure this in different ways.

We tried weighting each GMM by the inverse of (1) the number of fitted points, (2) the

spatial variance of these points, and (3) the number of components in the mixture. We also

tried metrics based on the covariance matrices of the gaussian components: the inverse of

(4) the sum of all elements, and (5) the sum of the products of the elements in each matrix.

Finally, we tried normalizing: by both the number of fitted points (properties 6–9) and the

number of components (10–13). Of these, property 5, which we call GMM-Qpr-Covar-Sum-

Prod, performed the best, so we carry it forward for discussion.

Additionally, we tried two metrics designed specifically to test goodness of fit: (14) Akaike

information criterion [1] and (15) Bayesian information criterion [31], transformed into

weights by subtracting from the maximum observed value. Of this pair, property 14, which

we call GMM-Qpr-AIC, performed best, so we carry it forward.

4.3 Weighting by error

Another approach is to weight each n-gram by its error among the training set. Specifically,

for each n-gram in the learned model, we compute the error of its GMM (CAE or SAE)

against each of the points to which it was fitted. We then raise this error to a power (in order

to increase the dominance of relatively good n-grams over relatively poor ones) and use the

inverse of this value as the n-gram’s weight (i.e., larger errors yield smaller weights).

We refer to these algorithms as (for example) GMM-Err-SAE4, which uses the SAE error

metric and an exponent of 4. We tried exponent values from 0.5 to 10 as well as both CAE

and SAE; because the latter was faster and gave comparable results, we report only SAE.

4.4 Weighting by optimization

The above approaches are advantaged by varying degrees of speed and simplicity. However,

it seems plausibly better to learn optimized weights from the data themselves. Our basic

approach is to assign each n-gram a set of features with their own weights, let each n-gram’s

weight be a linear combination of the feature weights, and use gradient descent to find

feature weights such that the total error across all n-grams is minimized (i.e., total geo-

location accuracy is maximized).

For optimization, we tried three types of n-gram features:

1. The quality properties noted above (Attr).

2. Identity features. That is, the first n-gram had Feature 1 and no others, the second

n-gram had Feature 2 and no others, and so on (ID).

3. Both types of features (Both).
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Finally, we further classify these algorithms by whether we fit a mixture for each n-gram

(GMM) or a single gaussian (Gaussian). For example, GMM-Opt-ID uses GMMs and

weights optimized using ID features only.

4.5 Baseline weighting algorithms

As two final baselines, we considered GMM-All-Tweets, which fits a single GMM to all

tweets in the training set and returns that GMM for all locate operations, and GMM-One,

which weights all n-gram mixtures equally.

5. RESULTS

We present in this section our experimental results and discussion, framed in the context of

our four research questions. (In addition to the experiments described in detail above, we

tried several variants that had limited useful impact. These results are summarized in the

appendices.)

5.1 RQ1: Improved approach

Here we evaluate the performance of our algorithms, first with a comparison between each

other and then against prior work (which is less detailed due to available metrics).

5.1.1 Performance of our algorithms—We tested each of our algorithms with one day

of training data and no gap, all fields except user description, and minimum n-gram

instances set to 3 (detailed reasoning for these choices is given below in further

experiments). With a stride of 6 days, this yielded 58 tests on each algorithm, with 3 tests

not attempted due to gaps in the data. Table 1 summarizes our results, making clear the

importance of choosing n-gram weights well.

Considering accuracy (MCAE), GMM-Err-SAE10 is 10% better than the best optimization-

based algorithm (GMM-Opt-ID) and 26% better than the best property-based algorithm

(GMM-Qpr-Covar-Sum-Prod); the baselines GMM-One and GMM-All-Tweets performed

poorly. These results suggest that a weighting scheme directly related to performance, rather

than the simpler quality properties, is important — even including quality properties in

optimization (-Opt-Attr and -Opt-Both) yields poor results. Another highlight is the poor

performance of Gaussian-Opt-ID vs. GMM-Opt-ID. Recall that the former uses a single

Gaussian for each n-gram; as such, it cannot fit the multi-modal nature of these data well.

Turning to precision (MPRA50), the advantage of GMM-Err-SAE10 is further highlighted; it

is 50% better than GMM-Opt-ID and 38% better than GMM-Qpr-Covar-Sum-Prod (note

that the relative order of these two algorithms has reversed).

However, calibration complicates the picture. While GMM-Err-SAE10 is somewhat

overconfident at coverage level 0.5 (OC50 = 0.453 instead of the desired 0.5), GMM-Err-

SAE4 is calibrated very well at this level (OC50 = 0.497) and has better calibration at

coverage 0.9 (OC90 = 0.775 instead of 0.724). GMM-Opt-ID has still better calibration at

this level (OC90 = 0.864), though worse at coverage 0.5 (OC50 = 0.584), and interestingly it

is overconfident at one level and underconfident at the other. A final observation is that
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some algorithms with poor accuracy are quite well calibrated at the 0.9 coverage level

(Gaussian-Opt-ID) or both levels (GMM-All-Tweets). In short, our calibration results imply

that algorithms should be evaluated at multiple coverage levels, and in particular gaussians

may not be quite the right distribution to fit.

These performance results, which are notably inconsistent between the three metrics,

highlight the value of carefully considering and tuning all three of accuracy, precision, and

calibration. For the remainder of this paper, we will focus on GMM-Err-SAE4, with its

simplicity, superior calibration, time efficiency, and second-best accuracy and precision.

5.1.2 Is CAE necessary?—A plausible hypothesis is that the more complex CAE metric

is not needed, and algorithm accuracy can be sufficiently well judged with the simpler and

faster SAE. However, Gaussian-Opt-ID offers evidence that this is not the case: while it is

only 4% worse than GMM-Err-SAE4 on MSAE, the relative difference is nearly 6 times

greater in MCAE.

Several other algorithms are more consistent between the two metrics, so SAE may be

appropriate in some cases, but caution should be used, particularly when comparing

different types of algorithms.

5.1.3 Distribution of error—Figure 3 plots the CAE of each estimate from four key

algorithms. These curves are classic long-tail distributions (as are similar ones for PRA50

omitted for brevity); that is, a relatively small number of difficult tweets comprise the bulk

of the error. Accordingly, summarizing our results by median instead of mean may be of

some value: for example, the median CAE of GMM-Err-SAE4 is 778 km, and its median

PRA50 is 83,000 km2 (roughly the size of Kansas or Austria). However, we have elected to

focus on reporting means in order to not conceal poor performance on difficult tweets.

It is plausible that different algorithms may perform poorly on different types of test tweets,

though we have not explored this; the implication is that selecting different strategies based

on properties of the tweet being located may be of value.

5.1.4 Compared to prior work with the Eisenstein data set—Table 2 compares

GMM-Opt-ID and GMM-Err-SAE to five competing approaches using data from Eisenstein

et al. [10], using mean and median SAE (as these were the only metrics reported).

These data and our own have important differences. First, they are limited to tweets from the

United States — thus, we expect lower error here than in our data, which contain tweets

from across the globe. Second, these data were created for user location inference, not

message location (that is, they are designed for methods which assume users tend to stay

near the same location, whereas our model makes no such assumption and thus may be more

appropriate when locating messages from unknown users). To adapt them to our message-

based algorithms, we concatenate all tweets from each user, treating them as a single

message, as in [17]. Finally, the Eisenstein data contain only unigrams from the text field (as

we will show, including information from other fields can notably improve results); for
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comparison, we do the same. This yields 7,580 training and 1,895 test messages (i.e.,

roughly 380,000 tweets versus 13 million in our data set).

Judged by mean SAE, GMM-Opt-ID surpasses all other approaches except for Eisenstein et

al. [11]. Interestingly, the algorithm ranking varies depending on whether mean or median

SAE is used — e.g., GMM-Err-SAE16 has lower median SAE than [11] but a higher mean

SAE. This trade-o between mean and median SAE also appears in other work – for example,

Eisenstein et al. report the best mean SAE but have much higher median SAE [11]. Also,

Hong et al. report the best median SAE but do not report mean at all [17].

Examining the results for GMM-Err-SAE sheds light on this discrepancy. We see that as the

exponent increases from 4 to 16, the median SAE decreases from 684 km to 493 km.

However, calibration suffers rather dramatically: GMM-Err-SAE16 has a quite

overconfident OC50 = 0.36. This is explained in part by its use of fewer n-grams per

message (182 for an exponent of 4 versus 37 for exponent 16).

Moreover, to our knowledge, no prior work reports either precision or calibration metrics,

making a complete comparison impossible. For example, the better mean SAE of Eisenstein

et al. [11] may coincide with worse precision or calibration. These metrics are not unique to

our GMM method, and we argue that they are critical to understanding techniques in this

space, as the trade-o above demonstrates.

Finally, we speculate that a modest decrease in accuracy may not outweigh the simplicity

and scalability of our approach. Specifically in contrast to topic modeling approaches, our

learning phase can be trivially parallelized by n-gram.

5.2 RQ2: Training size

We evaluated the accuracy of GMM-Err-SAE4 on different training durations, no gap, all

fields except user description, and minimum instances of 3. We used a stride of 13 days for

performance reasons.

Figure 4 shows our results. The knee of the curve is 1 day of training (i.e., about 30,000

tweets), with error rapidly plateauing and training time increasing as more data are added;

accordingly, we use 1 training day in our other experiments.6

We also evaluated accuracy when varying minimum instances (the frequency threshold for

retaining n-grams), with training days fixed at 1; Figure 5 shows the results. Notably,

including n-grams which appear only 3 times in the training set improves accuracy at

modest time cost (and thus we use this value in our other experiments). This might be

explained in part by the well-known long-tail distribution of word frequencies; that is, while

the informativeness of each individual n-gram may be low, the fact that low-frequency

words occur in so many tweets can impact overall accuracy. This finding supports Wing &

Baldridge’s suggestion [34] that Eisenstein et al. [10] pruned too aggressively by setting this

threshold to 40.

6We also observed deteriorating calibration beyond 1 day; this may explain some of the accuracy improvement and should be
explored.
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5.3 RQ3: Time dependence

We evaluated the accuracy of GMM-Err-SAE4 on different temporal gaps between training

and testing, holding fixed training duration of 1 day and minimum n-gram instances of 3.

Figure 6 summarizes our results. Location inference is surprisingly time-invariant: while

error rises linearly with gap duration, it does so slowly – there is only about 6% additional

error with a four-month gap. We speculate that this is simply because location-informative

n-grams which are time-dependent (e.g., those related to a traveling music festival) are

relatively rare.

5.4 RQ4: Location signal source

We wanted to understand which types of content provide useful location information under

our algorithm. For example, Figure 1 on the first page illustrates a successful estimate by

GMM-Err-SAE4. Recall that this was based almost entirely on the n-grams angeles ca and

ca, both from the location field. Table 6 in the appendices provides a further snapshot of the

algorithm’s output. These hint that, consistent with other methods (e.g., [16]), toponyms

provide the most important signals; below, we explore this hypothesis in more detail.

5.4.1 Which fields provide the most value?—One framing of this research question is

structural. To measure this, we evaluated GMM-Err-SAE4 on each combination of the five

tweet fields, holding fixed training duration at 1 day, gap at zero, and minimum instances at

3. This requires an additional metric: success rate is the fraction of test tweets for which the

model can estimate a location (i.e., at least one n-gram in the test tweet is present in the

trained model).

Table 3 summarizes our results, while Table 4 enumerates each combination. User location

and time zone are the most accurate fields, with tweet text and language important for

success rate. For example, comparing the first and third rows of Table 4, we see that adding

text and language fields to a model that considers only location and timezone fields

improves MCAE only slightly (39 km) but improves success rate considerably (by 12.3% to

100.0%). We speculate that while tweet text is a noisier source of evidence than time zone

(due to the greater diversity of locations associated with each n-gram), our algorithm is able

to combine these sources to increase both accuracy and success rate.

It is also interesting to compare the variant considering only the location field (row 8 of

Table 4) with previous work that heuristically matches strings from the location field to

gazetteers. Hecht et al. found that 66% of user profiles contain some type of geographic

information in their location field [16], which is comparable to the 67% success rate of our

model using only location field.

Surprisingly, user description adds no value at all; we speculate that it tends to be redundant

with user location.

5.4.2 Which types of n-grams provide the most value?—We also approached this

question by content analysis. To do so, from an arbitrarily chosen test of the 58 successful

GMM-Err-SAE4 tests, we selected a “good” set of the 400 (or 20%) lowest-CAE tweets, and

a “bad” set of the 400 highest-CAE tweets. We further randomly subdivided these sets into
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100 training tweets (yielding 162 good n-grams and 457 bad ones) and 300 testing tweets

(364 good n-grams and 1,306 bad ones, of which we randomly selected 364).

Two raters independently created categories by examining n-grams from the location and

tweet text fields in the training sets. These were merged by discussion into a unified

hierarchy. The same raters then independently categorized n-grams from the two fields into

this hierarchy, using Wikipedia to confirm potential toponyms and Google Translate for

non-English n-grams. Disagreements were again resolved by discussion.7

Our results are presented in Table 5. Indeed, toponyms offer the strongest signal; fully 83%

of the n-gram weight in well-located tweets is due to toponyms, including 49% from city

names. In contrast, n-grams used for poorly-located tweets tended to be non-toponyms

(57%). Notably, languages with geographically compact user bases, such as Dutch, also

provided strong signals even for non-toponyms.

These results and those in the previous section offer a key insight into gazetteer-based

approaches [13, 16, 26, 30, 32], which favor accuracy over success rate by considering only

toponyms. However, our experiments show that both accuracy and success rate are

improved by adding non-toponyms, the latter to nearly 100%; for example, compare rows 1

and 8 of Table 4. Further, Table 5 shows that 17% of location signal in well-located tweets

is not from toponyms.

6. IMPLICATIONS

We propose new judgement criteria for location estimates and specific metrics to compute

them. We also propose a simple, scalable method for location inference that is competitive

with more complex ones, and we validate this approach using our new criteria on a dataset

of tweets that is comprehensive temporally, geographically, and linguistically.

This has implications for both location inference research as well as applications which

depend on such inference. In particular, our metrics can help these and related inference

domains better balance the trade-o between precision and recall and to reason properly in the

presence of uncertainty.

Our results also have implications for privacy. In particular, they suggest that social Internet

users wishing to maximize their location privacy should (a) mention toponyms only at state-

or country-scale, or perhaps not at all, (b) not use languages with a small geographic

footprint, and, for maximal privacy, (c) mention decoy locations. However, if widely

adopted, these measures will reduce the utility of Twitter and other social systems for

public-good uses such as disease surveillance and response. Our recommendation is that

system designers should provide guidance enabling their users to thoughtfully balance these

issues.

7We did a similar analysis of the language and time zone fields, using their well-defined vocabularies instead of human judgement.
However, this did not yield significant results, so we omit it for brevity.
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Future directions include exploring non-gaussian and non-parametric density estimators and

improved weighting algorithms (e.g., perhaps those optimizing multiple metrics), as well as

ways to combine our approach with others, in order to take advantage of a broader set of

location clues. We also plan to incorporate priors such as population density and to compare

with human location assessments.
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8. APPENDIX: MATHEMATICAL IMPLEMENTATIONS

8.1 Metrics

This section details the mathematical implementation of the metrics presented above. To do

so, we use the following vocabulary. Let m be a message represented by a binary feature

vector of n-grams (i.e., sequences of up to n adjacent tokens; we use n = 2) m = {w1 … wV},

wj ∈ {0, 1}. wj = 1 means that n-gram wj appears in message m, and V is the total size of the

vocabulary. Let  represent a geographic point (for example, latitude and longitude)

somewhere on the surface of the Earth. We represent the true origin of a message as y*;

given a new message m, our goal is to construct a geographic density estimate f(y|m), a

function which estimates the probability of each point y being the true origin of m.

These implementations are valid for any density estimate f, not just gaussian mixture

models. Specific types of estimates may require further detail; for GMMs, this is noted

below.

CAE depends further on the geodesic distance d(y, y*) between the true origin y* and some

other point y. It can be expressed as:

(1)

As computing this integral is intractable in general, we approximate it using a simple Monte

Carlo procedure. First, we generate a random sample of n points from the density f, S = {y1

… yn} (n = 1000 in our experiments).10 Using this sample, we compute CAE as follows:

8http://qgis.org
9http://naturalearthdata.com
10The implementations of our metrics depend on being able to efficiently (a) sample a point from f and (b) evaluate the probability of
any point.
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(2)

Note that in this implementation, the weighting has become implicit: points that are more

likely according to f are simply more likely to appear in S. Thus, if f is a good estimate, most

of the samples in S will be near the true origin.

To implement PRA, let Rf,β be a prediction region such that the probability of y* falling

within the geographic region R is its coverage β. Then, PRAβ is simply the area of R:

(3)

As above, we can use a sample of points S from f to construct an approximate version of R:

1. Sort S in descending order of likelihood f(yi|m). Let Sβ be the set containing the top

|S|β sample points.

2. Divide Sβ into approximately convex clusters.

3. For each cluster of points, compute its convex hull, producing a geo-polygon.

4. The union of these hulls is approximately Rf,β, and the area of this set of polygons

is approximately PRAβ.11

Finally, recall that OCβ for a given estimator and a set of test messages is the fraction of

tests where y* was within the prediction region Rf,β. That is, for a set ( , , … ) of n true

message origins:

(4)

We do not explicitly test whether y* 

R, because doing so propagates any errors in approximating R. Instead, we count how many

samples in S have likelihood less than f(y*| m); if this fraction is greater than β, then y* is

(probably) in R. Specifically:

(5)

(6)

11Because the polygons lie on an ellipsoidal Earth, not a plane, we must compute the geodesic area rather than a planar area. This is
accomplished by projecting the polygons to the Mollweide equal-area projection and computing the planar area under that projection.
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8.2 Gaussian mixture models

As introduced in section “Our Approach”, we construct our location model by training on

geographic data consisting of a set D of n (message, true origin) pairs extracted from our

database of geotagged tweets; i.e., . For each n-gram wj, we fit a gaussian

mixture model g(y|wj) based on examples in D. Then, to estimate the origin location of a

new message m, we combine the mixture models for all n-grams in m into a new density f(y|

m). These steps are detailed below.

We estimate g for each (sufficiently frequent) n-gram wj in D as follows. First, we gather the

set of true origins of all messages containing wj, and then we fit a gaussian mixture model of

r components to represent the density of these points:

(7)

where  is a vector of mixture weights and  is the normal density function

with mean  and covariance . We refer to g(y|wj) as an n-gram density.

We fit π and S independently for each n-gram using the expectation maximization

algorithm, as implemented in the Python package scikit-learn [27].

Choosing the number of components r is a well-studied problem. While Dirichlet process

mixtures [24] are a common solution, they can scale poorly. For simplicity, we instead

investigated a number of heuristic approaches from the literature [23]; in our case, r =

min(m, log(n)/2) worked well, where n is the number of points to be clustered, and m is a

parameter. We use this heuristic with m = 20 in all experiments.

Next, to estimate the origin of a new message m, we gather the available densities g for each

n-gram in m (i.e., some n-grams may appear in m but not in sufficient quantity in D). We

combine these n-gram densities into a mixture of GMMs:

(8)

where δ = {δ1…δV} are the n-gram mixture weights associated with each n-gram density g.

We refer to f(y|m) as a message density.

A mixture of GMMs can be implemented as a single GMM by multiplying δj by  for all j,

k and renormalizing so that the mixture weights sum to 1. Thus, Equation 8 can be rewritten:

(9)

where .
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We can now compute all four metrics. CAE and OCβ require no additional treatment. To

compute SAE, we distill f(y|m) into a single point estimate by the weighted average of its

component means: . Computing PRAβ requires dividing Sβ into

convex clusters; we do so by assigning each point in S to its most probable gaussian in f.

The next two sections describe methods to set the n-gram mixture weights δj.

8.3 Setting δj weights by inverse error

Mathematically, the inverse error approach introduced above can be framed as a non-

iterative optimization problem. Specifically, we set by fitting a multinomial distribution to

the observed error distribution. Let  be the error incurred by n-gram density g(y|wj)

for message mi; in our implementation, we use SAE as eij for performance reasons (results

with CAE are comparable). Let ej be the average error of n-gram 

where Nj is the number of messages containing wj. We introduce a model parameter α,

which places a non-linear (exponential) penalty on error terms ej. The problem is to

minimize the negative log likelihood, with constraints that ensure δ is a probability

distribution:

(10)

(11)

This objective can be minimized analytically. While the inequality constraints in Equation

11 will be satisfied implicitly, we express the equality constraints using a Lagrangian:

(12)

(13)

Taking the partial derivative with respect to δk and setting to 0 results in:

(14)
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(15)

(16)

The equality constraint lets us substitute Σk δk = 1 in Equation 16. Solving for λ yields:

(17)

Plugging this into 14 and solving for δk results in:

(18)

This brings us full circle to the intuitive result above: that the weight of an n-gram is

proportional to its average error.12

8.4 Setting δj weights by optimization

This section details the data-driven optimization algorithm introduced above. We tag each n-

gram density function with a feature vector. This vector contains the ID of the n-gram

density function, the quality properties, or both of these. For example, the feature vector for

the n-gram dallas might be {id = 1234, variance = 0.56, BIC = 0.01, …}. We denote the

feature vector for n-gram wj as φ(wj), with elements φk(wj) 

φ(wj).

This feature vector is paired with a corresponding real-valued parameter vector θ = {θ1, … ,

θp} setting the weight of each feature. The vectors θ and φ are passed through the logistic

function to ensure the final weights δ are in the interval [0,1]:

(19)

The goal of this approach is to assign values to θ such that properties that are predictive of

low-error n-grams have high weight (equivalently, so that these n-grams have large ). This

is accomplished by minimizing an error function (built atop the same SAE-based eij as the

previous method):

12Our implementation first assigns , then normalizes the weights per-message as in Equation 9.
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(20)

After optimizing θ, we assign δ = δθ*. The numerator in Equation 20 computes the sum of

mixture weights for each n-gram density weighted by its error; the denominator sums

mixture weights to ensure that the objective function is not trivially minimized by setting 

to 0 for all j. Thus, to minimize Equation 20, n-gram densities with large errors must be

assigned small mixture weights.

Before minimizing, we first augment the error function in Equation 20 with a regularization

term:

(21)

The extra term is an ℓ2-regularizer to encourage small values of θ to reduce overfitting; we

set λ = 1 in our experiments.13

We minimize Equation 21 using gradient descent. For brevity, let  and

 be the numerator and denominator terms from Equation 21. Then, the

gradient of Equation 21 with respect to θk is

(22)

We set Equation 22 to 0 and solve for τ using L-BFGS as implemented in the SciPy Python

package [18]. (Note that by decomposing the objective function by n-grams, we need only

compute the error metrics eij once prior to optimization.) Once θ is set, we then find

according to Equation 19 and use these values to find the message density in Equation 8.

9. APPENDIX: TOKENIZATION ALGORITHM

This section details our algorithm to convert a text string into a sequence of n-grams, used to

tokenize the message text, user description, and user location fields into bigrams (i.e., n = 2).

1. Split the string into candidate tokens, each consisting of a sequence of characters

with the same Unicode category and script. Candidates not of the letter category

are discarded, and letters are converted to lower-case. For example, the string

“Can’t wait for ” becomes five candidate tokens: can, t, wait, for, and .

13λ could be tuned on validation data; this should be explored.
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2. Candidates in certain scripts are discarded either because they do not separate

words with a delimiter (Thai, Lao, Khmer, and Myanmar, all of which have very

low usage on Twitter) or may not really be letters (Common, Inherited). Such

scripts pose tokenization difficulties which we leave for future work.

3. Candidates in the scripts Han, Hiragana, and Katakana are assumed to be Japanese

and are further subdivided using the TinySegmenter algorithm [15]. (We ignore the

possibility that text in these scripts might be Chinese, because that language has

very low usage on Twitter.) This step would split  into  and .

4. Create n-grams from adjacent tokens. Thus, the final tokenization of the example

for n = 2 would be: can, t, wait, for, , can t, t wait, wait for, for , and .

10. APPENDIX: RESULTS OF PILOT EXPERIMENTS

This section describes briefly three directions we explored but did not pursue in detail

because they seemed to be of limited potential value.

• Unifying fields. Ignoring field boundaries slightly reduced accuracy, so we

maintain these boundaries (i.e., the same n-gram appearing in different fields is

treated as multiple, separate n-grams).

• Head trim. We tried sorting n-grams by frequency and removing various fractions

of the most frequent n-grams. In some cases, this yielded a slightly better MCAE

but also slightly reduced the success rate; therefore, we retain common n-grams.

• Map projection. We tried plate carrée (i.e., WGS84 longitude and latitude used as

planar X and Y coordinates), Miller, and Mollweide projections. We found no

consistent difference with our error- and optimization-based algorithms, though

some others displayed variation in MPRA. Because this did not affect our results,

we used plate carrée for all experiments, but future work should explore exactly

when and why map projection matters.
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Figure 1.
A tweet originating near Los Angeles, CA. We show the true origin (a blue star) and a heat map illustrating the density function

that makes up our method’s estimate. This estimate, whose accuracy was at the 80th percentile, was driven by two main factors.

The unigram ca from the location field, visible as the large density oval along the California coast, contributed about 12% of the

estimate, while angeles ca, the much denser region around Los Angeles, contributed 87%. The contribution of four other n-

grams (angeles, los angeles, obama, and los) was negligible.
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Figure 2.
True origins of tweets having the unigram washington in the location field of the user’s profile.
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Figure 3.
Accuracy of each estimate using selected algorithms, in descending order of CAE.

Priedhorsky et al. Page 25

CSCW. Author manuscript; available in PMC 2014 May 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4.
Accuracy of GMM-Err-SAE4 with different amounts of training data, along with the mean time to train and test one model.

Each day contains roughly 32,000 training tweets. (The 16-day test was run in a nonstandard configuration and its timing is

therefore omitted.)
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Figure 5.
Accuracy and run time of GMM-Err-SAE4 vs. inclusion thresholds for the number of times an n-gram appears in training data.
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Figure 6.
Accuracy of GMM-Err-SAE4 with increasing delay between training and testing.
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Table 1
Performance of key algorithms; we report the mean and standard deviation of each
metric across each experiment’s tests. MCAE and MSAE are in kilometers, MPRA50 is in

thousands of km2, and OCβ is unitless. RT is the mean run time, in minutes, of one train-

test cycle using 8 threads on 6100-series Opteron processors running at 1.9 GHz

Algorithm MCAE MSAE MPRA50 OC50 OC90 RT

GMM-Err-SAE10 1735± 81 1510± 76 824 ± 75.8 0.453 ± 0.012 0.724 ± 0.013 10.6

GMM-Err-SAE4 1826± 82 1565± 78 934 ± 69.9 0.497 ± 0.012 0.775 ± 0.013 10.6

GMM-Opt-ID 1934± 77 1578± 67 1661 ± 171.0 0.584 ± 0.017 0.864 ± 0.011 29.8

GMM-Err-SAE2 2173± 82 1801± 76 1192 ± 92.5 0.567 ± 0.012 0.848 ± 0.011 11.0

GMM-Qpr-Covar-Sum-Prod 2338 ±123 2084±115 1337 ± 123.1 0.485 ± 0.013 0.736 ± 0.013 9.1

Gaussian-Opt-ID 2445 ± 81 1635± 69 6751 ± 377.5 0.731 ± 0.015 0.902 ± 0.011 30.2

GMM-Opt-Both 4780±506 4122±469 4207 ± 811.2 0.796 ± 0.078 0.943 ± 0.052 23.4

GMM-Opt-Attr 4803 ± 564 4146±505 4142 ± 811.4 0.801 ± 0.079 0.947 ± 0.053 22.4

GMM-One 5147±221 4439±251 4235 ± 443.9 0.852 ± 0.013 0.982 ± 0.003 10.0

GMM-Qpr-AIC 5154±226 4454 ± 252 4249 ± 474.9 0.851 ± 0.013 0.982 ± 0.003 10.0

GMM-All-Tweets 7871±156 7072 ± 210 5243 ± 882.7 0.480 ± 0.020 0.900 ± 0.012 15.5
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Table 2
Our algorithms compared with previous work, using the dataset from Eisenstein et al.
[10]. The n-grams column reports the mean number of n-grams used to locate each test
tweet

Algorithm
SAE

Mean Median OC50 n-grams

Hong et al. [17] 373

Eisenstein et al. [11] 845 501

GMM-Opt-ID 870 534 0.50 19

Roller et al. [28] 897 432

Eisenstein et al. [10] 900 494

GMM-Err-SAE6 946 588 0.50 153

GMM-Err-SAE16 954 493 0.36 37

Wing et al. [34] 967 479

GMM-Err-SAE4 985 684 0.55 182
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Table 3
Value of each field. Alone shows the accuracy and success rate of estimation using that
field alone, while Improvement shows the mean improvement when adding a field to each
combination of other fields (in both cases, positive indicates improvement). For example,
adding user location to some combination of the other four fields will, on average,
decrease MCAE by 1,255 km and increase the success rate by 1.7 percentage points

Field
Alone Improvement

MCAE success MCAE success

user location 2125 65.8% 1255 1.7%

user time zone 2945 76.1% 910 3.0%

tweet text 3855 95.7% 610 7.3%

user description 4482 79.7% 221 3.3%

user language 6143 100.0% −103 8.5%
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Table 4
Accuracy of including different fields. We list each combination of fields, ordered by
increasing MCAE

Rank Fields MCAE success

1 lo tz tx ln 1823 100.0%

2 lo tz tx ds ln 1826 100.0%

3 lo tz 1862 87.7%

4 lo tz tx 1878 99.2%

5 lo tz tx ds 1908 99.6%

6 lo tz ds 2013 94.1%

7 lo tz ds ln 2121 100.0%

8 lo 2125 65.8%

9 lo tx ds ln 2176 100.0%

10 lo tz ln 2207 100.0%

11 lo tx ds 2274 99.2%

12 lo tx ln 2310 100.0%

13 lo tx 2383 98.0%

14 tz tx ds ln 2492 100.0%

15 lo ds 2585 88.3%

16 tz tx ds 2594 99.4%

17 tz tx ln 2617 100.0%

18 tz tx 2691 98.7%

19 lo ds ln 2759 100.0%

20 tz 2945 76.1%

21 tz ds 2991 91.8%

22 tz ds ln 3039 100.0%

23 lo ln 3253 100.0%

24 tx ds ln 3267 100.0%

25 tx ds 3426 98.8%

26 tz ln 3496 100.0%

27 tx ln 3685 100.0%

28 tx 3855 95.7%

29 ds 4482 79.7%

30 ds ln 4484 100.0%

31 ln 6143 100.0%
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Table 5
Content analysis of n-grams in the location and text fields. For each category, we show the
fraction of total weight in all location estimates from n-grams of that category; e.g., 49%
of all estimate weight in the good estimates was from n-grams with category city (weights
do not add up to 100% because time zone and language fields are not included). Weights
that are significantly greater in good estimates than bad (or vice versa) are indicated with
a significance code (o = 0.1, * = 0.05, ** = 0.01, *** = 0.001) determined using a Mann-
Whitney U test with Bonferroni correction, the null hypothesis being that the mean
weight assigned to a category over all n-grams in the good set is equal to the mean weight
for the same category in the bad set. Categories with less than 1.5% weight in both classes
are rolled up into other. We also show the top-weighted examples in each category

Category Good Bad Examples

location *** 0.83 0.19

city *** 0.49 0.09 edinburgh, roma, leicester, houston tx

country ** 0.10 0.03 singapore, the netherlands, nederland, janeiro brasil

generic 0.01 0.02 de mar, puerta de, beach, rd singapore

state *** 0.14 0.02 maryland, houston tx, puebla, connecticut

other lo *** 0.09 0.02 essex, south yorkshire, yorkshire, gloucestershire

not-location 0.07 0.57 ***

dutch word *** 0.02 0.00 zien, bij de, uur, vrij

english word 0.01 0.37 *** st new, i, pages, check my

letter 0.01 0.04 μ, w, α, s

slang 0.00 0.08 *** bitch, lad, ass, cuz

spanish word 0.00 0.07 *** mucha, niña, los, suerte

swedish word 0.00 0.02 rätt, jävla, på, kul

turkish word 0.02 0.00 kar, restoran, biraz, daha

untranslated 0.02 0.00 cewe, gading, ung, suria

technical ** 0.03 0.02

foursquare *** 0.03 0.00 paulo http, istanbul http, miami http, brasflia http

url 0.00 0.02 co, http, http t, co h

other 0.03 0.04
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Table 6
Example output of GMM-Err-SAE4 for an arbitrarily selected test. TZ is the time zone
field (with -timeuscanada omitted), while L is the language code. N-grams which
collectively form 95% of the estimate weight are listed. CAE is in kilometers, while PRA50

is in square kilometers

%ile Tweet text Location TZ L N-grams CAE PRA50

100 I’m at Court Avenue Restaurant and
Brewing
Company (CABCO) (309 Court
Avenue, Des Moines)
w/ 3 others http://t.co/LW8cKUG3

Urbandale, IA central en 0.50 tx moines
0.50 tx des moines

4 34

90 Eyebrow threading time with
@mention :)

Cardiff, Wales en 0.73 lo cardiff
0.27 lo wales

17 379

80 Americans are optimistic about the
economy & like
what Obama is doing. What is he
doing? Campaigning
and playing golf? Ignorance is bliss

Los Angeles, CA pacific en 0.87 lo angeles ca
0.12 lo ca

115 835

70 Extreme Close Up.. Rancagua, Chile quito es 1.00 lo chile 272 1,517

60 Reaksinya bakal sama ga yaa? Pengen
tau..
http://t.co/8ABEPmKQ

ÜT: -2.9873722,104.7218631 pacific en 0.97 tx pengen 451 2,974

50 Follow @mention exhibition date
announced soon
#Fabulous

London en 1.00 lo london 688 967

40 You cannot you on ANY news station
and NOT see
NEWT being ripped apart.

quito en 0.99 tx newt 1,008 634,421

30 @mention kkkkkk besta santiago en 0.91 tx kkkkkk
0.08 tz santiago

1,496 511,405

20 @mention eu entrei no site e em dolar,
se for real eu
compro uma pra vc ir de novo Pra
Disney agora.

Belem-PA brasilia pt 0.89 tx de novo
0.07 lo pa

2,645 263,576

10 рegar ég get ekki sofið #hunangsmjolk
http://t.co/zx43NoZD

en 0.81 tx get
0.05 ln en
0.02 tx t
0.02 tx zx
0.02 tx co
0.02 tx t co

5,505 2,185,354

0 @mention cyber creeping ya mean! I’m
in New
Zealand not OZ you mad expletive
haha it’s deadly
anyways won’t b home anytime soon :P

en 1.00 tx expletive 18,578 17,827
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