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Abstract

Erythropoietin (EPO) was hypothesized to mitigate reperfusion injury, in part via mobilization of

endothelial progenitor cells (EPCs). The REVEAL trial found no reduction in infarct size with a

single dose of EPO (60,000 U) in patients with ST-segment elevation myocardial infarction. In a

substudy, we aimed to determine the feasibility of cryopreserving and centrally analyzing EPC

levels to assess the relationship between EPC numbers, EPO administration, and infarct size. As a

prespecified substudy, mononuclear cells were locally cryopreserved before as well as 24 and 48–

72 h after primary percutaneous coronary intervention. EPC samples were collected in 163 of 222

enrolled patients. At least one sample was obtained from 125 patients, and all three time points

were available in 83 patients. There were no significant differences in the absolute EPC numbers

over time or between EPO- and placebo-treated patients; however, there was a trend toward a

greater increase in EPC levels from 24 to 48–72 h postintervention in patients receiving ≥30,000 U

of EPO (P = 0.099 for CD133+ cells, 0.049 for CD34+ cells, 0.099 for ALDHbr cells). EPC

numbers at baseline were inversely related to infarct size (P = 0.03 for CD133+ cells, 0.006 for

CD34+ cells). Local whole cell cryopreservation and central EPC analysis in the context of a

multicenter randomized trial is feasible but challenging. High-dose (≥30,000 U) EPO may

mobilize EPCs at 48–72 h, and baseline EPC levels may be inversely associated with infarct size.
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Extensive preclinical literature suggests a benefit of erythropoietin (EPO) on ischemia

reperfusion injury [1, 2]. Although EPO may theoretically limit myocardial injury based on

anti-apoptotic and direct angiogenic signaling, EPO is also a direct mobilizer of endothelial

progenitor cells (EPCs) [3, 4], which in preclinical models contribute directly to EPO-

induced angiogenesis [5] and may be related to degree of myocardial salvage [6].

The Reduction of Infarct Expansion and Ventricular Remodeling With Erythropoietin After

Large Myocardial Infarction (REVEAL, ClinicalTrials.gov identifier NCT00378352) trial

evaluated the effectiveness of EPO to minimize infarct size in patients with ST-segment

elevation myocardial infarction (STEMI) [7, 8]. Given the association of EPO-induced EPC

mobilization and myocardial salvage [6], a defined secondary endpoint in REVEAL was to

explore the feasibility of central EPC analysis in a multicenter acute STEMI clinical trial

with the goal of assessing the relationship between EPCs, EPO dosing, and infarct size.

Methods

The design of the REVEAL study has been previously reported [7]. The investigation

conforms with the principles outlined in the Declaration of Helsinki, and the protocol was

approved by independent institutional review boards at each site.

All patients were required to present with STEMI, with symptom onset within 12 h. After

successful primary or rescue percutaneous coronary intervention (PCI), patients were treated

with a single bolus of EPO within 4 h. REVEAL included EPO dose escalation safety

phases (testing doses of 15000, 30000 and 60000 U), as well as an efficacy phase in which a

60,000 U dose was tested. Patients underwent collection of 8–10 ml of blood before EPO

administration, at 24 h (±12 h), and at either 48 or 72 h (±12 h) post-EPO administration.

Sites were provided with kits containing all tubes, reagents, and equipment required for EPC

cryopreservation. Blood was collected into cell preparation tubes (Becton, Dickinson and

Co., Franklin Lakes, NJ, USA) and centrifuged within 4 h (1,800×g for 20 min). Plasma was

removed and the buffy coat isolated using a pipette. Cells were washed twice with

phosphate-buffered saline containing 1 % bovine serum albumin, resuspended in 3 ml

Dulbecco’s modified Eagle’s medium containing 20 % fetal bovine serum and 10 % final

(vol/vol) of dimethyl sulfoxide, and frozen in cryovials at <−70 °C.

EPC analysis

Cryopreserved specimens were thawed in a 37 °C controlled temperature bath, and the

numbers of intact cells were estimated under microscopic analysis. If no intact cells were

observed, EPC enumeration was not performed after several experiments demonstrated that

microscopic visualization could accurately predict lack of viable cells on flow cytometry.
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EPC number was assayed using flow cytometry based on cell surface expression of CD133

and CD34, and on the basis of aldehyde dehydrogenase (ALDH) activity, a fundamental

property of multiple stem cell types [9, 10].

Based on previous work suggesting that analysis of ALDHbr EPCs was more reliable and

tightly associated with vascular injury [10, 11], ALDH activity was used as the preferred

method for EPC enumeration if sample quality precluded both analyses. ALDHbr cells were

identified using Aldecount, as previously described [10]. Thawed mononuclear cells

(MNCs) were washed and incubated in Aldecount tubes, and a portion of the sample was

transferred to a tube containing diethylaminobenzaldehyde, a potent inhibitor of ALDH

activity. Cells were isolated, washed, and kept on ice until completion of flow cytometry.

When sufficient MNCs were present, EPCs were also identified after incubation with

CD133-APC (Miltenyi Biotec, Cambridge, MA, USA) and CD34-FITC (Becton Dickinson)

antibodies. Nonspecific binding was inhibited using FcR reagent (Becton Dickinson).

Cells were sorted on a FACSCalibur machine (Becton Dickinson) and analyzed using

FlowJo software (Tree Star, Inc., Ashland, OR, USA). All analyses were completed prior to

unblinding of treatment assignment. All EPCs were expressed as a percentage of MNCs.

Statistical analysis

EPCs were measured at four potential time points: baseline, 24 h, and either 48 or 72 h. For

analysis purposes, the results from the 48- and 72-h time points were combined. The

analyses were exploratory in nature, but a two-sided alpha level of 0.05 was considered

statistically significant. P values were not adjusted for multiple comparisons. All analyses

were performed in SAS version 9.2 (SAS Institute, Inc., Cary, NC, USA).

Summary statistics on baseline demographics, laboratory values, and medication use were

produced. The raw EPC data were first inspected by reviewing the distributions, crude

summary statistics, and spaghetti plots for all subjects. A right skew was detected, and a

logarithmic base 2 transformation was employed to achieve a more normal distribution for

analysis. The results were back transformed for interpretability on the raw scale. REVEAL

patients who had an evaluable EPC result for at least two of the three time points were

included in the analysis.

Associations between EPC values at baseline and patient characteristics were evaluated

using the Wilcoxon–Kruskal–Wallis test for categorical variables and the Spearman rank

correlation coefficient for continuous variables. The association between baseline EPC

levels and cardiac magnetic resonance (CMR) endpoints were evaluated using the Spearman

rank correlation coefficient.

The absolute changes in EPC levels from baseline to 24 h, from baseline to 48/72 h, and

from 24 to 48/72 h were calculated by treatment group. Between-group comparisons for

each EPC type were performed with analysis of variance.
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The change in EPC levels over all three time points was evaluated using a mixed model, and

the least square means were produced by time point for each treatment group and

graphically displayed.

Results

Sample flow

REVEAL enrolled and treated a total of 222 patients at 22 sites, of whom 47 patients were

from six sites not participating in the EPC substudy, leaving 175 eligible patients (Fig. 1).

Of these, at least one EPC sample was obtained in 163 patients (477 total samples).

The EPC core laboratory received 161, 159, and 152 baseline, 24-h, and 48/72-h samples,

respectively. Analysis of ALDHbr cells was possible in 318 samples (93 from baseline, 114

from 24 h, and 111 from 48/72 h), while CD133/CD34-expressing cells were enumerated in

182 samples (58 from baseline, 63 from 24 h, and 61 from 48/72 h). ALDHbr and CD133/34

were analyzed in 15 and 14 patients, respectively, treated with 15,000 U of EPO; in nine and

eight patients, respectively, treated with 30,000 U of EPO; in 41 and 17 patients,

respectively, receiving 60,000 U; and in 60 and 30 patients, respectively, randomized to

placebo. EPC analysis was not performed uniformly across the trial, due to the activation of

high-enrolling sites that did not participate in the EPC study during late stages of enrollment.

Eight of the 12 sites that attempted to obtain EPCs on all patients provided suitable samples

in over 50 % of cases. Of the 163 participants’ EPC samples collected, 54 were of sufficient

quality to assess EPCs based on both cell surface markers and ALDH activity at a minimum

of two time points.

Baseline characteristics

The baseline demographics and medication use of the patients who contributed samples to

the EPC substudy are shown in Tables 1 and 2. These demographics are similar to those

observed in the overall REVEAL study [8].

Baseline EPC levels

We explored the association of EPC levels at baseline (prior to study intervention) with a

variety of clinical factors, including baseline demographics, cardiac biomarker levels, and

use of cardiac medications. Most of the patient characteristics were not associated with

EPCs in any consistent manner, although a few associations are noteworthy (Table 3).

CD133+ cells were correlated with baseline weight (r = 0.28, P = 0.03), and baseline

hematocrit (r = −0.34, P = 0.01). There were higher levels of ALDHbr cells in patients with

hypertension (P = 0.03), and in patients with non-left anterior descending coronary artery

infarcts (P = 0.03). CD34+ cells were numerically higher in males (P = 0.08), while there

was a trend toward higher CD133+ cells in patients with hyperlipidemia (P = 0.06). There

was no relationship between EPCs and use of aspirin, beta-blockers, angiotensin-converting

enzyme inhibitors, angiotensin receptor blockers, or lipid-lowering therapy on study entry.
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EPC time course in acute myocardial infarction

To better understand the natural time course of circulating EPCs in the acute myocardial

infarction setting, we assessed the levels of EPCs over the 48/72-h sampling period in

placebo-treated patients (Fig. 2; Table 4). The baseline EPC samples were collected 6.4

(±3.0) h (median = 6.2) after the onset of symptoms. The 24- and 48/72-h samples were

collected at 28.6 ± 4.8 (28.8) h and 55.2 ± 9.3 (53.5) h, respectively. We observed a trend,

but no statistically significant differences, with EPC levels highest on presentation and a

gradual decrease over time. This trend was observed consistently among all cell types

analyzed.

Effect of EPO on change in EPC levels

We next assessed the change in EPC types by EPO treatment. We observed a drop in levels

of all EPCs over the first 24 h. In contrast to what was observed in placebo patients, most

cell types, especially with higher EPO doses, showed a rebound at the 48/72-h time point.

While the absolute levels of EPCs were not significantly different between EPO- and

placebo-treated patients, this trend was consistently observed for each of the EPC types

investigated.

The primary prespecified EPC endpoint in the REVEAL trial was change in EPC numbers

between follow-up time points and baseline in treated versus untreated patients. We

calculated the absolute change from baseline to 24 h, from baseline to 48/72 h, and from 24

to 48/72 h (Table 5).

We initially defined treated patients using two different approaches: (1) a pooled active

group including all patients who received EPO at any dose (15000, 30000, or 60000 U), and

(2) patients who received the highest acceptable dose of EPO (60,000 U). There was no

statistically significant difference between treated and untreated patients in change of EPC

numbers between any time points. However, in contrast to placebo patients, the numbers of

EPCs increased at the 48-h time point in the high-dose (≥30,000 U) EPO-treated patients

across each of the independent cell types (P = 0.099 for CD133+, 0.049 for CD34+, and

0.099 for ALDHbr cells) (Fig. 3; Table 5).

Correlation of baseline EPC levels and primary REVEAL endpoints

The primary endpoint of the REVEAL study was CMR-assessed infarct size (expressed as

percentage of left ventricular [LV] mass) at 2–6 days after study medication. We assessed

the association of baseline EPC levels with this and other CMR findings. Baseline levels of

all EPCs defined by cell surface markers (CD133, CD34, CD133+/CD34) were correlated

inversely with the primary endpoint of infarct size at 48–144 h (r = −0.28, P = 0.05; r =

−0.39, P = 0.006; and r = −0.32, P = 0.03, respectively), while ALDHbr cells showed a

similar trend (r = −0.15, P = 0.20).

Baseline EPC levels (CD133+, CD34+, and CD133+/CD34+ cells) were also correlated with

CMR-determined infarct size at 3 months (CD133+: r = −0.38, P = 0.01; CD34+: r = −0.30,

P < 0.05; and CD133+/CD34+: r = −0.37, P = 0.01). In addition, remodeling assessed on 3-

month LV volumes, using the baseline values as covariates, also demonstrated associations
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with baseline CD133+/CD34+ cells, such that higher EPC numbers were associated with

lower volumes (r = −0.37, P = 0.01). While correlation of other EPC types did not reach

statistical significance, all EPC types correlated negatively with indices of remodeling

(higher EPCs were associated with lower volumes).

Discussion

The REVEAL EPC substudy demonstrated that although local cryopreservation of intact

cellular specimens for subsequent flow cytometric analysis proved challenging, a majority

of sites were able to proffer usable specimens in over 50 % of cases. In cases where analysis

was possible, there were limited correlations of baseline EPC levels with clinical factors;

however, high doses (>30,000 U) of EPO may be associated with EPC mobilization, and

baseline EPC levels were inversely related with infarct size, the primary REVEAL endpoint,

as well as indices of left ventricular remodeling. These findings have the following

implications: (1) central EPC analysis is feasible, but the process by which EPCs are

collected in the context of a multicenter clinical trial involving acutely ill patients needs to

be refined; (2) EPC mobilization is a potential target of therapy in patients with large

STEMI; and (3) any pleiotropic effect of EPO that is manifest through EPC number and

function remains to be confirmed in the clinical setting, as the REVEAL trial demonstrated

no reduction in infarct size with single-dose EPO administration.

EPC collection and processing

EPCs are commonly assessed locally within a short time frame of blood draw. Any

degradation in sample quality can significantly affect this analysis, as expression of cell

surface markers may change as cells undergo injury.

We considered a variety of approaches to EPC analysis in this trial, which would enroll

acutely ill patients during off-hours, including weekends. As most sites do not have the

facility or personnel to perform local EPC analysis, implementation of a central laboratory

was deemed necessary.

Two approaches to central analysis were considered: (1) expedited shipment of whole blood

to the core laboratory or (2) local cryopreservation of MNCs for shipment and batch

analysis.

Shipment of whole blood samples might minimize local requirements for sample processing

that required additional training; however, it could incur a delay of up to 96 h between

sample acquisition and arrival at the core laboratory for analysis, and require shipment of

samples on 3 consecutive days for most enrolled patients. In addition, whole blood shipment

is subject to significant variability in sample viability [12]. We did not test what such a delay

would do to the reliability of EPC analysis, but we have observed significant degradation of

cell quality 24 h after sample acquisition.

Based on these concerns, we developed a technique that would allow sites to obtain and

cryopreserve samples with provided equipment and solutions [11]. We demonstrated good

correlation between EPC numbers in fresh and processed samples based on both cell surface
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marker expression (r = 0.59, P < 0.001) or ALDH activity (r = 0.90, P < 0.001) [11]. While

easily implemented in experience laboratories, this technique proved challenging in a

multicenter clinical trial; however, most sites were able to produce samples in a majority of

patients (66.7 %), suggesting that with further refinement, such analysis may be possible.

Levels of EPCs during acute STEMI

Although levels of EPCs in acute infarction have been the subject of considerable interest,

few of these studies monitored EPCs over time. While select smaller studies suggest that

EPCs are maximally mobilized either at 3–4 [13] or 7 [14] days postinfarction, our

observations corroborate a majority of observations which find that EPC levels peak on

presentation and fall in the days following myocardial infarction [15-18]. This rapid EPC

mobilization post-ischemia mirrors what is observed after bypass surgery, where EPC

sampling can occur before and after the ischemic insult [19].

During study planning, little was known about the time course of EPC mobilization in the

period surrounding acute infarction, or the time course for EPC mobilization after EPO

administration. We elected to sample EPCs at baseline and at 24 and 72 h; however, due to

changing practice patterns, many patients were being discharged before the 72-h time point,

and a decision was made to change the final collection time to 48 h.

We analyzed the association of EPC levels at baseline, drawn after PCI and a mean of 6.4 h

after symptom onset, with a variety of clinical factors and found few associations. However,

we observed a consistent association of multiple EPCs with smaller infarct size at 48–144 h.

Given the number of associations tested, the possibility of type I error must be considered.

Nonetheless, a similar association was observed previously [20], and consideration should

be given to the fact that inadequate acute stem cell mobilization may adversely affect

recovery after myocardial injury. In addition, multiple EPC types were significantly

correlated with indices of remodeling and infarct size at 3 months, findings that have also

been reported in smaller patient cohorts [20]. The consistency of these results both across

multiple EPCs assessed as well as with previous studies suggests that EPC mobilization may

be a key determinant of myocardial salvage and remodeling post-STEMI, and that

developing strategies which enhance EPC mobilization may be of clinical interest.

Various factors may have contributed to the lack of association of EPC levels with baseline

clinical factors. First, degree of acute injury, variability in time to presentation, territory at

risk, acute ischemic burden, and other factors may lead to variability in EPC mobilization

that exceeds small differences due to chronic baseline conditions. Second, variability in the

assay on cryopreserved specimens may be greater than that observed between patients [11].

Third, associations reported in the literature may represent type I error in studies in which

many assessments are performed.

Effect of EPO on circulating EPC numbers

While we did not observe statistically significant differences in the change in EPC levels

between various time points, there are consistent trends in multiple cell types toward an

increase in EPC levels between 24 and 48/72 h in high-dose EPO-treated patients when EPC
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levels in the placebo patients continued to fall. The consistency across EPC types and

association with EPO dose lend credence to this observation.

The lack of a stronger association between EPO administration and change in EPC levels

may be due to experimental limitations discussed previously or the possibility that single

bolus EPO may not maximally affect EPC levels. Indeed, the effect of EPO on

erythropoiesis is not observed unless multiple doses of EPO are administered [21]. The

doses used in preclinical studies were also significantly higher when normalized to weight,

an observation that may explain some of the discrepancies observed between preclinical and

clinical results [16]. These observations may also explain the lack of effect of EPO in

REVEAL, which showed no benefit on infarct size or indices of LV remodeling over time

[8].

Limitations

Limitations of this study include the uneven enrollment of patients into the EPC cohort, the

lack of viability of a proportion of samples, and the possibility that variable handling at the

sites and differing quality of the samples contributed to the variability observed in the study,

affecting our ability to detect associations between EPCs and clinical factors. These

limitations point to the difficulty in implementing procedures such as EPC sampling into

multisite clinical protocols and may inform future attempts at flow cytometric analyses in

clinical studies.

Conclusions

EPC collection in a multisite clinical study enrolling during off-hours is feasible but, as

performed in the REVEAL study, poses logistical challenges. We observed no statistically

significant differences in EPC levels over time or in the absolute levels of EPCs between

EPO- and placebo-treated patients; however, high-dose EPO administration (≥30,000 U)

may increase EPC levels from 24 h to later time points. Baseline EPC levels were associated

with infarct size, suggesting that future research into the relationship between reparative

capacity and injury in acute infarction is warranted.
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Fig. 1.
Study flow. EPC endothelial progenitor cell, ALDH aldehyde dehydrogenase
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Fig. 2.
Time course of endothelial progenitor cells in pooled placebo patients. Symbols represent means, and error bars demonstrate 95

% confidence intervals for the estimate
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Fig. 3.
Time course of endothelial progenitor cells (EPCs) in placebo and pooled (30,000 and 60,000 U) erythropoietin (EPO) groups.

Solid line with squares indicates high-dose EPO (≥30,000 U) groups. Dotted line with circles indicates pooled placebo patients.

a CD133+ cells. b CD34+ cells. c CD133+/CD34+ cells. d aldehyde dehydrogenase-bright cells. Symbols represent means, and

error bars demonstrate 95 % confidence intervals for the estimate
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Table 1

Patient demographics and laboratory values

Variable Median Range

Age (years) 57.0 31–90

Weight (kg) 88.5 58–142

BMI (kg/m2) 28.5 21–55

Infarct size (% LV mass) 12.8 0–53.6

Baseline CK-MB (ratio to ULN) 10.2 0.2–119.3

Peak CK-MB (ratio to ULN) 23.7 0.8–157.3

Baseline troponin I (ng/ml) 9.5 0.01–484.9

Baseline troponin T (ng/ml) 0.8 0.01–25

Hematocrit (%) 39.8 30.3–51.2

WBC count (109/L) 10.9 4.6–24.3

hs-CRP (mg/dl) 0.3 0.01–13.1

BMI body mass index, CK-MB creatine kinase-MB, hs-CRP high-sensitivity C-reactive protein, LV left ventricular, ULN upper limit of normal,
WBC white blood cell
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Table 2

Patient demographics

Characteristic Frequency (%)

Male sex 80.9

Race

 White 78.3

 Non-hispanic 95.7

Treatment assignment

 15,000 U EPO 11.3

 30,000 U EPO 7.8

 60,000 U EPO 35.7

 Placebo 45.2

Diabetes 20.0

Hypertension 53.9

Hyperlipidemia 38.3

Cancer (<5 years) 1.7

Tobacco use

 Never 36.3

 Current 41.6

 Previous 22.1

EPO erythropoietin
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Table 3

Association of baseline clinical factors with endothelial progenitor cells (EPCs)

Variable

CD133 CD34 CD133/CD34 ALDHbr

P r P r P r P r

Categorical

 Gender 0.54 0.08 0.47 0.39

 Diabetes 0.84 0.20 0.12 0.32

 Hypertension 0.28 0.24 0.48 0.03
a

 Hyperlipidemia 0.06 0.44 0.34 0.37

 Smoking 0.40 0.34 0.19 0.20

 LAD IRA 0.52 0.39 0.52 0.03
a

Continuous

 Age 0.81 0.66 0.62 0.45

 Weight 0.03 0.28 0.08 0.47 0.39

 BMI 0.10 0.79 0.34 0.61

 Infarct size 0.05 −0.28 0.006 −0.39 0.03 −0.32 0.20

 Baseline CK-MB 0.18 0.57 0.39 0.37

 Peak CK-MB 0.21 0.62 0.16 0.12

 Baseline troponin I 0.46 0.82 0.65 0.44

 Baseline troponin T 0.99 0.69 0.77 0.16

 Hematocrit 0.01 −0.34 0.53 0.92 0.26

 WBC 0.68 0.43 0.98 0.67

 hs-CRP 0.93 0.95 0.53 0.04 −0.25

 Time from symptom onset 0.77 0.62 0.59 0.39

Correlation coefficients (or direction of association) is shown if the P value was <0.05 ALDHbr aldehyde dehydrogenase-bright, BMI body mass
index, CK-MB creatine kinase-MB, hs-CRP high-sensitivity C-reactive protein, LAD IRA left anterior descending infarct-related artery, WBC white
blood cell

a
Higher EPCs in patients with hypertension and non-LAD infarct size
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Table 4

Mean endothelial progenitor cell levels over time in pooled placebo patients

Baseline At 24 h At 48/72 h

CD133+ 0.144 0.124 0.122

CD34+ 0.312 0.259 0.259

CD133+/CD34+ 0.032 0.027 0.029

ALDHbr 0.066 0.042 0.042

ALDHbr aldehyde dehydrogenase-bright

J Thromb Thrombolysis. Author manuscript; available in PMC 2014 November 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Povsic et al. Page 19

T
ab

le
 5

C
ha

ng
es

 in
 e

nd
ot

he
lia

l p
ro

ge
ni

to
r 

ce
ll 

nu
m

be
rs

 (
as

 a
 p

er
ce

nt
ag

e 
of

 m
on

on
uc

le
ar

 c
el

ls
) 

be
tw

ee
n 

in
di

vi
du

al
 ti

m
e 

po
in

ts
 b

as
ed

 o
n 

co
m

pa
ri

so
n 

of
 p

oo
le

d

pl
ac

eb
o 

su
bj

ec
ts

 w
ith

 th
os

e 
tr

ea
te

d 
w

ith
 6

0,
00

0 
U

 o
f 

er
yt

hr
op

oi
et

in
 (

E
PO

; t
op

 r
ow

s)
, a

ny
 E

PO
 (

m
id

dl
e 

ro
w

s)
, a

nd
 ≥

30
,0

00
 U

 o
f 

E
PO

 (
bo

tto
m

 r
ow

s)

T
im

e 
po

in
t

C
D

13
3+

C
D

34
+

C
D

13
3+

/3
4+

A
L

D
H

br

E
P

O
P

oo
le

d
pl

ac
eb

o
P

 v
al

ue
E

P
O

P
oo

le
dp

la
ce

bo
P

 v
al

ue
E

P
O

P
oo

le
d

pl
ac

eb
o

P
 v

al
ue

E
P

O
P

oo
le

d
pl

ac
eb

o
P

 v
al

ue

60
,0

00
 U

 
B

L
 to

 2
4 

h
−

0.
02

0
−

0.
01

4
0.

57
5

−
0.

14
5

−
0.

10
0

0.
38

1
−

0.
00

6
−

0.
00

3
0.

89
1

−
0.

03
6

−
0.

02
0

0.
81

0

 
B

L
 to

 4
8/

72
 h

0.
01

0
−

0.
02

0
0.

42
3

−
0.

06
3

−
0.

11
2

0.
74

4
−

0.
00

2
−

0.
00

2
0.

74
6

−
0.

00
9

−
0.

02
0

0.
78

0

 
24

 to
 4

8/
72

 h
0.

03
0

0.
00

0
0.

23
4

0.
09

2
0.

01
1

0.
40

0
0.

00
0

0.
00

3
0.

76
1

0.
00

8
0.

00
2

0.
21

9

Po
ol

ed
 a

ct
iv

e 
(a

ny
 E

PO
)

 
B

L
 to

 2
4 

h
−

0.
01

6
−

0.
01

4
0.

62
6

−
0.

08
8

−
0.

10
0

0.
54

2
−

0.
00

3
−

0.
00

3
0.

74
7

−
0.

03
4

−
0.

02
0

0.
86

9

 
B

L
 to

 4
8/

72
 h

0.
01

0
−

0.
02

0
0.

24
7

−
0.

06
3

−
0.

11
2

0.
95

9
0.

00
0

−
0.

00
2

0.
98

1
−

0.
00

7
−

0.
02

0
0.

31
1

 
24

 to
 4

8/
72

 h
0.

01
1

0.
00

0
0.

79
2

0.
05

6
0.

01
1

0.
37

1
0.

00
7

0.
00

3
0.

58
8

0.
01

2
0.

00
2

0.
19

9

30
,0

00
 a

nd
 6

0,
00

0 
U

 
B

L
 to

 2
4 

h
−

0.
02

0
−

0.
01

5
0.

76
2

−
0.

10
1

−
0.

10
0

0.
36

0
−

0.
00

5
−

0.
00

3
0.

92
8

−
0.

03
2

−
0.

02
1

0.
90

1

 
B

L
 to

 4
8/

72
 h

0.
01

3
−

0.
02

0
0.

12
2

−
0.

03
8

−
0.

11
2

0.
58

9
0.

01
0

−
0.

00
2

0.
59

4
−

0.
00

7
−

0.
02

1
0.

30
4

 
24

 to
 4

8/
72

 h
0.

03
0

0.
00

0
0.

09
9

0.
09

2
0.

01
1

0.
04

9
0.

01
1

0.
00

3
0.

43
7

0.
01

2
0.

00
2

0.
09

9

A
L

D
H

br
 a

ld
eh

yd
e 

de
hy

dr
og

en
as

e-
br

ig
ht

, B
L

 b
as

el
in

e

J Thromb Thrombolysis. Author manuscript; available in PMC 2014 November 01.


