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Abstract

The high incidence of emerging infectious diseases has highlighted the importance of effective immunization strategies,
especially the stochastic algorithms based on local available network information. Present stochastic strategies are mainly
evaluated based on classical network models, such as scale-free networks and small-world networks, and thus are
insufficient. Three frequently referred stochastic immunization strategies—acquaintance immunization, community-bridge
immunization, and ring vaccination—were analyzed in this work. The optimal immunization ratios for acquaintance
immunization and community-bridge immunization strategies were investigated, and the effectiveness of these three
strategies in controlling the spreading of epidemics were analyzed based on realistic social contact networks. The results
show all the strategies have decreased the coverage of the epidemics compared to baseline scenario (no control measures).
However the effectiveness of acquaintance immunization and community-bridge immunization are very limited, with
acquaintance immunization slightly outperforming community-bridge immunization. Ring vaccination significantly
outperforms acquaintance immunization and community-bridge immunization, and the sensitivity analysis shows it could
be applied to controlling the epidemics with a wide infectivity spectrum. The effectiveness of several classical stochastic
immunization strategies was evaluated based on realistic contact networks for the first time in this study. These results
could have important significance for epidemic control research and practice.
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Introduction

Infectious diseases are diseases caused by pathogenic microor-

ganisms, such as bacteria, viruses, parasites or fungi, which can be

spread directly or indirectly from person to person. In recent years,

newly emerging diseases have been identified with an unprece-

dented rate of one or more per year[1]. Meanwhile, highly

developed transportation systems have intensified the large-scale

spreading trend of the epidemics thus highlights the urgent

demand for the research on effective control strategies. For many

directly person-to-person transmitted diseases, such as HIV/

AIDS, SARS and the influenza, network models could capture the

specific contact patterns which could possibly lead to a successful

transmission of the diseases between individuals and thus provide

an effective way to forecast the potential epidemic dynamics and

explore the intervention measures. In network models, the

individuals are described as nodes (vertices) and the contacts

between these individuals are described as edges (links). Seeded in

a random selected node, the epidemic can be spread along the

interconnections among vertices. The initial infected nodes will

proceed to the infectious period after a short time after being

infected, during when they could spread the infection to their

contact nodes, and the newly infected nodes could then infect their

linked vertices, and so on.

Effective control of infectious diseases requires quantitative

comparisons of several interventions, such as quarantine, infection

control precautions, case identification and isolation, and immu-

nization. The success of an intervention depends on the infectivity

of the diseases and the contact patterns of the population[2].

Network models define the detailed contact structure of the

population, which would be conducive to the effectiveness

assessment of different interventions, therefore they are widely

applied to the study of immunization strategies. Several immuni-

zation strategies have been proposed based on network models.

These strategies include both deterministic algorithms based on

global network information, such as maximum-degree node

immunization[3–7], maximum-betweenness node immuniza-

tion[8,9] and long-range travelers immunization[10,11], and

stochastic algorithms based on local network information, such

as ring vaccination[12–14], acquaintance immunization[15] and

community-bridge immunization[16]. Although studies have

shown that deterministic immunization strategies regularly

outperform stochastic immunization strategies in controlling the

epidemics[16], the realistic global network information is usually

or even constantly unavailable in the infectious diseases control
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practice. Therefore the stochastic immunization strategies and

their optimizations have long been the research hotspots.

However, the effectiveness assessment of the stochastic immuni-

zation strategies mentioned above is almost entirely made based

on classical network models, such as scale-free networks[17] and

small-world networks[18]. Although these network models have

partly described the characteristics of realistic networks, there are

still many differences among them, thus the real effectiveness of

stochastic immunization strategies mentioned above has not been

performed clearly.

In this article, the optimal immunization ratio foptimal , for

acquaintance immunization and community-bridge immunization

was determined and the influences of several primary factors on

the effectiveness of ring vaccination, i.e., the case detection rate,

the contact trace escape rate and the contact trace lag were

analyzed based on the realistic urban social network of Portland.

Then the effectiveness of these three different stochastic immuni-

zation strategies in controlling the spreading of infectious diseases

were compared.

Models and Methods

Social contact networks
As the carrier of the diseases, daily activities of individuals

underlie the spread of the epidemics in the population and

people’s choices about when and where to perform their activities

are constrained by the transportation infrastructure[10]. Based on

these assumptions and the sociodemographic data, researchers

from Los Alamos National Laboratory (LANL) generate a

synthetic population of Portland along with the detailed activity

arrangement for each individual during one day. The obtained

synthetic population data were applied into the TRANSIMS and

EpiSims systems[10,19]. The activities of the population during

24 hours and exacted the contact network of Portland were

obtained from these data[20].

The final social contact network is an undirected weighted

network with the individual attributes of the synthetic population

recorded by each node and the contact duration of any two

individuals in 24 hours recorded by the weight of the link between

them. Moreover, the link between each pair of nodes has also

recorded the contact type of these two nodes, involved nine

different contact types. The nodes and edges attributes of the

contact network were listed in Table 1.

SVIDR dynamics
A simple extension of the SIR model[11,21–23], will lead to the

SVIDR model by adding three compartments, detected (D),

vaccinated (V) and recovered detected (RD), see Figure 1. At any

time, individual will be in and only in one specific state. A

susceptible individual (S) suffers from an instantaneous infection

rate l~
P

b$jd
I
j at time t, where dI

j ~1 if j is in state I, otherwise

0. Therefore after a short time Dt, the probability of the individual

being infected is 1{e{lDt. Susceptible individuals who are

infected proceed to class I, and then will recover to RI at a rate

v. Alternatively, infectious individuals could be directly detected at

probability r. Following direct detection, infectious individuals are

moved into class D and recover to class RD at the a v1, and

meanwhile trigger the interventions. The interventions will

dominate the probability of susceptible individuals proceeding to

class V and this probability varies with interventions. Moreover,

the probability of I?D is also influenced by the interventions in

addition to the direct detection probability r, which is called

second-order detection (infectious individuals who escape the

direct detection but captured by the interventions triggered by

other individuals), see section 2.3. Individuals in class V and R

(includes both RD and RI) will acquire fully immunity to the

diseases and lose the susceptibility. Individuals in class D will be

isolated and lose the capability to infect others.

Table 1. The nodes and edge attributes of the social contact network.

Node Attributes Description Edge Attributes Description

Person Id Id of the person Duration Duration of the contacts

Household Id Household containing the person Contact type:

Age Age of the person 0 Home

Gender 1 for Male, 2 for Female 1 Work

Household Size Total number of people in the household 2 Shop

3 Visit

4 Social/Recreation

5 Other

6 Pick up or drop off a passenger

7 School

8 College

doi:10.1371/journal.pone.0095911.t001

Figure 1. SIR state transition diagram with vaccination and
isolation. The self-loop transition have been omitted. Class V and class
R are absorbing states.
doi:10.1371/journal.pone.0095911.g001
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Immunization strategies
In practice of controlling infectious diseases, the global

information of the contact network is almost constantly unavail-

able, thus highlights the importance of the stochastic immuniza-

tion strategies based on local network structure. Three different

strategies, i.e., acquaintance immunization (AI), community-bridge

immunization (CBI) and ring vaccination (RV) were investigated.

For AI and CBI, after the detection of the epidemics, the

interventions were carried out across the whole social network.

The only difference between the two strategies is that the nodes

targeted to be immunized are different — AI targets high degree

nodes while CBI targets community-bridge nodes. For RV, the

interventions are implemented by tracing the contacts to detected

nodes (D) and immunizing the traced nodes. From the perspective

of the trigger mechanism and the intervention extent, AI and CBI

are epidemic-triggered and global controlled strategies, while RV is

newly confirmed case-triggered and local controlled strategy.

Denote the set of influenced nodes after the interventions were

triggered by V, named controlled set. The controlled set consists of

three different types of nodes, i.e., all the class V, D and partial

class R nodes.

Acquaintance Immunization. AI applies to the scenario

where large heterogeneity in contact structure is observed. The

analysis of Portland contact network shows both the degree

distribution and the vertex strength[24] distribution are highly

heterogeneous (see Figure 2), so AI could be used to control the

epidemics in this network. AI strategy is defined as follows: first,

selecting n random nodes from the network; second, for each

chosen node, immunizing a random neighbor. A node with k

connections will be targeted as the immunization node with the

probability q~kP kð Þ= NSkTð Þ[15], where SkT~
P

k kP kð Þ is the

average degree. Therefore, for any susceptible individual, it will

enter into the controlled set and proceed to class V with the

probability q. For each infectious individual, it will enter into the

controlled set and proceed to class D with the probability q 1{rð Þ
(second-order detection). Notice that the probability of direct

detection is r, so class I individual will proceed to class D with the

total probability rzq 1{rð Þ. For individuals in other states (V, R

and D), no influences were demonstrated on the spreading of the

epidemics, so no processing was made.

Community-Bridge Immunization. Assume that a node

will be targeted as the community-bridge node under the

community-bridge find algorithm[16] with the probability q.

Figure 2. The topological characteristics of the social contact network. (a) log-log plot of the degree distribution. (b) log-log plot of the
vertex strength distribution. (c) Sknn kð ÞT distribution. (d) heat map of p k0jkð Þ.
doi:10.1371/journal.pone.0095911.g002
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The process of the targeted nodes is the same as it in AI, so it will

not be repeated.

Ring vaccination. Suppose individual j has triggered an

intervention, then the neighbors of node j in the contact network

will enter into the controlled set with probability q
ið Þ

j , which varies

with the contact type (i ). The value of q
ið Þ

j indicates the availability

of the contact trace relate to type (i ). For example, q
ið Þ

j ~1indicates

that all the neighbors of j will enter into the controlled set, i.e., the

contact trace escape rate related to type (i ) is 0. Therefore, for

every susceptible node, it will enter into the controlled set with the

probability q~1{P 1{q
ið Þ

j dD
j

� �
and proceed to class V, where

dD
j ~1 iff j is in class D, otherwise 0. For any infectious node, it will

enter into the controlled set with probability rzq 1{rð Þ and

proceed to class D. For individuals in other states, no other

processing is required.

Let p H,tð Þ be the probability that individual is in class H at time

t. Assume that the above mentioned process is Markovian on the

relevant time scales, the dynamics of this probability is governed

by the following master equations:

Ltp S,tð Þ~e{l 1{qð Þ:p S,tð Þ

Ltp I ,tð Þ~ 1{e{l
� �

:p S,tð Þz 1{qð Þ 1{rð Þe{v:p I ,tð Þ

Ltp V ,tð Þ~e{lq:p S,tð Þzp V ,tð Þ

Ltp D,tð Þ~ rzq 1{rð Þð Þ:p I ,tð Þze{v1 :p D,tð Þ

Ltp R,tð Þ~ 1{qð Þ 1{rð Þ 1{e{vð Þ:p I ,tð Þ

z 1{e{v1ð Þ:p D,tð Þzp R,tð Þ,

ð1Þ

where the computation of q varies with interventions.

Results and Discussion

Scenarios and parameterizations
At the beginning, 50 infectious individuals are seeded in the

fully susceptible population. The fraction of class I individuals in

the population is about 3.12 per 100000. In epidemiology, the

basic reproductive number, R0 is defined as the number of cases

one case generates on average over the course of its infectious

period in an otherwise totally susceptible population[25]. R0 is one

of the most important contributions of mathematics to epidemi-

ology and it has provided a metric to evaluate the risk of the

outbreaks of the epidemics in the population. Only infectious

diseases with R0w1could possibly lead to a potential outbreak.

The infectivity levels of infectious diseases may differ considerably.

For example, for the pandemic influenza in 1918, R0 is between 2

and 3[26]; for SARS in 2003, R0 is between 1.8 and 4.2[27]; for

H1N1 in 2009, R0 is between 1.8 and 3.2[28]; for smallpox, R0

could reach 6.0[29]. Based on the analysis on the pandemic data

from the 2009 H1N1 outbreak, R0~3:0, v~0:2 were chosen to

parameterize our model for the baseline scenario in this research.

To make the investigation more generally applicable and reliable,

the scenarios when R0 varies from 2.0 to 6.0 were analyzed in the

sensitivity analysis. The relevant parameters are given in Table 2.

Contact network structures
Portland social contact network consists of more than 31 million

contacts of 1.6 million individuals during 24 hours. Each contact is

represented by an undirected weighted link, where the weight

denotes the contact duration in hours. The average degree is

SkT~38:98, which is more than the precedent empirical results

from questionnaire survey[30]. This difference is understandable

because of the report of the respondents might miss some regular

contacts and most random contacts. The comparison to the social

networks from Facebook[16] shows that their average degree is

close. The average clustering coefficient[18] is C~0:54 and the

modularity[31] is Q~0:82. High heterogeneity was observed

when taking the individual contact frequency (degree) into

consideration, shown in Figure 2a. For weighted networks, the

vertex strength[24] could be defined in addition to the degree:

si~
P

j $ij . Figure 2b shows that the vertex strength distribution

is also highly heterogeneous. The degree correlation could be

measured based on the quantity Sknn kð ÞT~
P

k0 k
0p k0jkð Þ, i.e.,

Table 2. The value of the parameters in the model.

Parameter Baseline Sensitivity analysis Notes

R0 3.0 2.0–6.0

v 0.2 N/A

v1 0.25 N/A The value of v1 doesn’t affect the epidemic dynamic

b N/A N/A Parameterized from R0 and other relevant parameters:

R0~ bSsT=vð Þ 1zCV2
� �

f N/A N/A Parameterized by optimizing controlling the epidemics

q
ið Þ

j for i = 0,1, 7,8 1.0 N/A For contact type 0, 1, 7 and 8, no contact trace escape

q
ið Þ

j for i = 2,6 0.7 0.3–1.0 For contact type 2–6, contact trace escape rate ranges from 0.3 to 1.0

t
ið Þ

j for i = 0,1, 7,8 0.0 N/A For contact type 0, 1, 7 and 8, no contact trace lag

t
ið Þ

j for i = 2,6 1.0 1.0–3.0 For contact type 2–6, contact trace lag ranges from 1.0 to 3.0

r 0.6 0.3–0.9 In each day the probability of an infectious individual is detected
(confirmed)

doi:10.1371/journal.pone.0095911.t002
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the average degree of the nearest neighbors of nodes with degree

k[32]. Figure 2c shows that the slope of Sknn kð ÞT is positive, so the

contact network is assortative mixing. The distribution of p k0jkð Þ is

given in Figure 2d.

Optimizing immunization ratios
In this work, the optimization of AI and CBI was studied firstly.

For AI and CBI, the immunization ratio f is defined as the fraction

of the immunized susceptible individuals after the interventions are

triggered, i.e., f ~V=N. We then defined an objective function to

investigate the optimal strategy. An intuitive and straightforward

form of the objective function is given by number of individuals in

class R and class V after the extinction of the epidemics,

T~R ?ð ÞzV ?ð Þ. This definition follows the minimum affected

principle and assigns equal weights to class R individuals and class

V individuals[11]. Other more complex definitions could be

obtained by weighting the two quantities.

The binary search method was adopted to explore the optimal

immunization ratio in interval [0, 1]. The search process ends

when search step lv5|10{6. One notable thing is that the

immunization ratio f for AI could be any value between 0 and 1:

f = 0 indicates no interventions and f = 1 implies that all the

individuals are immunized after the detection of the epidemics.

However, for CBI, the immunized individuals are those targeted as

community-bridge nodes by community-bridge find algorithm,

which might be finite in the network. Take the sub network in

Figure 3c as an example, according to the community-bridge find

algorithm, node 1 and 5 are community-bridge nodes, i.e.,

potential immunization targets, while node 2, 3 and 4 are

impossible to be targeted as immunization nodes. Therefore for

any specific social contact network, there will be a ceiling

immunization ratio fc for CBI. f ~fc implies all the community-

bridge nodes will be immunized. The realistic immunization ratio

will always be less than fc.

Figure 3a and Figure 3b show the convergent trajectories of the

optimal immunization ratio obtained by binary search method.

For AI, a small f will lead to the unsuccessful control of the

epidemics, while a large f will lead to a large amount of susceptible

individuals immunized. T~RzV will display a ‘‘valley’’ shape

and the optimal immunization foptimal exists. For CBI, there is two

possible different shapes of the convergent trajectory: one is the

same as that in AI, where 0vfoptimalvfc; the other is the ‘‘slope’’

shape, which arises when foptimal§fc, however, due to the

finiteness of the community-bridge nodes in the network, the

immunization ratio will be f ~fc.

Analysis of key parameters of RV
RV is targeted locally in a ring around the identified sources of

infection and is extensively investigated in theoretical studies on

immunization strategies in responding to the outbreak of the

smallpox and foot-and-mouth disease[12–14] as well as the disease

control practice[33]. The success of RV depends on several crucial

factors, such as the rapid identification of cases and the efficient

contact trace of the identified cases, which could be captured by

the following parameters: (i) the probability of diagnosis per day of

infectious individuals, denoted by r; (ii) the probability of successful

trace for the contacts of type i, denoted by q
ið Þ

j ; (iii) the time lag in

tracing for the contacts of type i, denoted by t
ið Þ

j . For close

contacts, i.e., contacts in household, school and workplace, assume

Figure 4. The effectiveness of RV. R0~3:0. The contour lines of the fraction of susceptible individuals with respect to time steps with (a) r ranging
from 0.1 to 0.9; (b) q ranging from 0.3 to 1.0; (c) t ranging from 1.0 to 3.0.
doi:10.1371/journal.pone.0095911.g004

Figure 3. Optimal immunization ratio. R0~3:0, r~0:6. (a) T=N varies with f for AI, the optimal immunization ratio foptimal~0:691414. (b) T=N
varies with f for CBI, the optimal immunization ratio foptimal~0:734326. (c) A possible local network structure of contact network.
doi:10.1371/journal.pone.0095911.g003

Comparing Three Immunization Strategies

PLOS ONE | www.plosone.org 5 May 2014 | Volume 9 | Issue 5 | e95911



that the contact escape rate and the time lag are 0, that is, all close

contacts could be traced and the immunization could be carried

out immediately. The values of the parameters and related

statements are listed in Table 2. For simplicity, the q was utilized

instead of q
ið Þ

j and t instead of t
ið Þ

j for casual contacts, where

i = 2,6.

Figure 4 shows the dynamics of the epidemics varies with the

parameters. With the increase of r and q, the contour lines of the

fraction of susceptible individuals slope upwards, indicating that

the effectiveness of RV are strengthened with the increase of the

probability of diagnosis of class I individuals and the probability of

successful traces for casual contacts, see Figure 4a and Figure 4b.

Figure 4c shows the contour lines slope downwards, indicating that

Figure 6. The effectiveness of AI and CBI with different r. The contour lines of the fraction of susceptible individuals with respect to time steps
with r ranging from 0.1 to 0.9 for (a) AI, (b) CBI and (c) CBI – AI; (d) the optimal immunization ratios of AI and CBI with respect to different r.
doi:10.1371/journal.pone.0095911.g006

Figure 5. The comparison of the effectiveness of AI, CBI and RV. R0~3:0, r~0:6, q~0:7, t~1:0. (a) the fraction of susceptible individuals
varies with time steps with each strategy; (b) the differences of the fraction of susceptible individuals between each pair strategies.
doi:10.1371/journal.pone.0095911.g005
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the increase of the time lag in tracing for casual contacts will lead

to more affected individuals (individuals with states R or V).

Effectiveness comparison and sensitivity analysis
The effectiveness of AI, CBI and RV in controlling the spread of

infectious diseases has been compared. All these three immuniza-

tion strategies were demonstrated to have successfully decreased

the coverage of the epidemics compared to the scenario with no

control measures (no control measures) in Figure 5a. A further

comparative analysis of the difference in the fraction of susceptible

individuals with respect to time steps between each pair of

strategies were made in Figure 5b. Take the comparison between

Figure 7. The effectiveness of RV compared to AI and CBI with different r, q and t. The contour lines of the fraction of susceptible individuals
with respect to time steps for (a)(c)(e) RV – AI and (b)(d)(f) RV – CBI.
doi:10.1371/journal.pone.0095911.g007
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AI and NO as an example, the intersections between the

horizontal line related to (AI – NO) and the contour lines show

that (AI – NO) is negative in the early stage of the epidemics

because of the dramatic decrease of the susceptible individuals

resulting from the immunization after the outbreak of the diseases

for AI. This phenomenon could also be observed in the scenario

for CBI. With the evolution of the epidemics, the susceptible

individuals will decrease more rapidly for NO than for AI, so (AI –

NO) will become positive. The difference peaked around t~150
and then decreased, and was eventually positive, indicating that AI

had decreased the coverage of the epidemics compared to NO.

Similar analytics could be applied to other pair strategies (CBI –

AI), (RV – CBI) and (RV – AI). Figure 5b shows AI outperforms CBI

and RV significantly outperforms CBI and AI under the definition

of the objective function T~RzV .

The optimal immunization ratios for AI and CBI decrease with

the increase of r, see Figure 6d. Figure 6a and Figure 6b give the

dynamics of the epidemics with different r. Both of the contour

lines of the fraction of susceptible individuals for AI and CBI slope

upwards, indicating that the coverage of the epidemics decrease

with the increase of r. The effectiveness of AI and CBI was further

compared in Figure 6c, which shows AI always outperforms CBI

for r ranging from 0.1 to 0.9 and the predominance will strengthen

with the increase of r.

The effectiveness of RV is greatly denominated by r, q and t.

The effectiveness of RV compared to AI and CBI with different r, q

and t was analyzed in Figure 7. The contour lines in Figure 7a to

Figure 7d slope upwards, indicating that the effectiveness of RV

improves significantly with the increase of r and q compared to AI

and CBI. It is notable that the dark colors are related to lower

fractions of susceptible individuals, so the contour lines in Figure 7e

and Figure 7f slope upwards slightly implies that the effectiveness

of RV decreases with the increase of t, yet still significantly

outperforms AI and CBI.

Although recent large-scale outbreaks of the epidemics suggest

R0 is usually between 2.0 and 4.0, studies on smallpox shows that

its R0 could reach 6.0[29]. Here the effectiveness of AI, CBI and

RV for R0 ranging from 2.0 to 6.0 was analyzed. Figure 8a to

Figure 8c show the epidemic dynamics with different R0. All the

contour lines slope downwards, indicating the coverage of the

epidemics increases with the increase of R0 for all the three

strategies. For RV, the declining rate of the contour lines decreases,

indicating the number of susceptible individuals decreases more

slowly. Therefore, RV is more effective compared to AI and CBI.

More straightforward comparisons of the effectiveness of these

three strategies with different R0 were given in Figure 8d to

Figure 8h. With the increase of R0, the affected individuals will

increase for all the strategies, however, the decrease of susceptible

individuals for RV is significantly slower than for AI and CBI, i.e.,

RV notably outperforms AI and CBI.

Figure 8. Effectiveness analysis of R0 ranging from 2.0 to 6.0. The contour lines of the fraction of susceptible individuals with respect to time
steps for (a) AI, (b) CBI and (c) RV; the fraction of susceptible individuals with respect to time steps with each strategy for (d)–(h).
doi:10.1371/journal.pone.0095911.g008
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Conclusions

In this paper the effectiveness of three stochastic immunization

strategies in controlling the spreading of the epidemics based on

realistic social contact networks was analyzed. We found that there

exists an optimal immunization ratio for AI and CBI for a specific r

which leads to a minimum number of individuals infected and

immunized. This optimal immunization ratio decreases with the

increase of r and could be determined by the binary search

method. For RV, the case detection rate, the contact trace escape

rate and the contact trace lag are three most important factors.

The effectiveness of RV improves with the increase of the case

detection rate, while decreases with the increase of the contact

escape rate and the contact trace lag. The comparison of the

effectiveness of these three strategies shows AI, CBI and RV have

decreased the coverage of the epidemics compared to a baseline

scenario (no control measures, NO), however the effectiveness of AI

and CBI are very limited, between which AI outperforms CBI. RV

is very effective in controlling the epidemics and its effectiveness

significantly outperforms AI and CBI.

The sensitivity analysis shows the effectiveness of RV decrease

with the decrease of case detection rate and the increase of contact

trace escape rate and the contact trace time lag, yet still

remarkably outperforms AI and CBI on equal terms. With the

increase of the basic reproductive number R0, the coverage of the

epidemics will increase for all these three strategies, however the

increase of the number of class R and class V individuals for RV is

much less than for AI and CBI, indicating that RV notably

outperforms AI and CBI. Even when R0 reaches 6.0, the

effectiveness of RV is prominent, implying that RV could be

applied to controlling the epidemics with a wide infectivity

spectrum. We found that RV is a newly confirmed case-triggered

and locally controlled strategy, so RV is more acceptable in

infectious disease control practice, which will improve the

effectiveness of RV in return. However, AI and CBI are

epidemic-triggered and global controlled strategies. These control

strategies call for large control resources due to a relatively high

immunization ratio as analyzed in the main text, also the

allocation and the logistics of the resources might be a problem.

Moreover, the global control strategies might encounter the

resistance of the public, so the effectiveness could be worse.

Although the social contact network used in this research is just

one instance for Portland urban population, it is the first time the

effectiveness of several classical immunization stochastic immuni-

zation strategies are evaluated based on realistic contact networks.

These results could have significant importance for epidemic

control research and practice.
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