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review

Carl Woese was the most important evolutionary scientist of 
the 20th century. He converted evolution science from a descrip-
tive and highly speculative subject into a field based on clear 
molecular evidence. In this tribute to Carl, I wish to show some 
of the ways he and other molecular biologists have opened our 
eyes to creative evolutionary possibilities unimagined in the pre-
molecular vision of the Modern Synthesis merging Darwinism 
and Mendelian genetics.1,2

Woese’s View of Core and Peripheral Cell Systems

Essential to Carl Woese revolutionizing phylogenomics was 
the recognition of how deeply embedded were the ribosome and 
associated translation functions into core information transfer 
functions of all cells. As Carl expressed this idea in a 2004 review:

“rRNA molecules are relatively large, universal in distribu-
tion, and constant in function. Importantly, their sequences are 
highly conserved overall, and, as central components of a com-
plex and essential cellular mechanism, rRNAs arguably would 
be less subject to the vagaries of reticulate evolution than would 
other cellular components.”3

The integrated nature of the cell translation apparatus made 
its central organelle, the ribosome, very stable in evolution, and 
thus, an ideal object for examining the deepest evolutionary rela-
tionships at the molecular level.

As this issue of RNA Biology demonstrates, the result of basing 
cell phylogenies on rRNA molecules was transformational for the 
life sciences. A whole new and unsuspected kingdom of life was 

uncovered,4 and core evolutionary relationships acquired a solid 
empirical basis.

What was true for the translational apparatus, also proved to 
be the case with other fundamental central features of molecu-
lar cell biology. Archaea, Bacteria, and Eukarya have complex, 
distinct, and conserved systems for DNA replication, transcrip-
tion, and membrane biogenesis. The observations that the rep-
lication,5,6 transcription,7-9 and translation initiation10 systems 
of eukaryotic cells more closely resemble those of Archaea, 
while membrane biogenesis11,12 and other features of eukaryotic 
metabolism are more closely related to those of bacteria,13 pro-
vide enticing evidence in favor of the hypothesis that the two 
prokaryotic kingdoms preceded the origins of eukaryotic cells, 
which involved one or more fusion events.14-17 

Molecular Phylogeny and Symbiogenesis: 
Evolutionary Innovation by Cell Mergers and DNA 

Transfers between Organelles and the Nucleus

Although the questions of eukaryotic origins are still actively 
debated, the molecular evidence for the symbiogenetic origins of 
the mitochondrion and the chloroplast/plastid are now incontro-
vertible.18,19 So cell fusions and the generation of cells with mul-
tiple genomic compartments in the nucleus and organelles is an 
established mechanism of genome innovation. When cells fuse, 
both the highly conserved and more variable segments of the 
genome contribute to the novel configuration. For example, our 
cells, and those of virtually all eukaryotes, contain both eukary-
otic and bacterial ribosomes.

The genome record shows that endosymbiosis and symbio-
genetic fusions are not extraordinary events and have occurred 
repeatedly.20 Both green and red algae have been involved in 
secondary and higher level fusions. The resulting photosyn-
thetic cells (or their non-photosynthetic descendants) have 
at least four genome compartments: nucleus, mitochondrion, 
plastid, and nucleomorph (the former nucleus of the algal cell). 
The important question of how cell and organelle reproduc-
tion cycles become synchronized in symbiogenetic fusions 
remains an important subject for future research. Disruption 
of this synchronization in rapidly proliferating cancer cells may 
contribute to the Warburg effect through loss of mitochondrial 
function.21,22

Active DNA transfer between genome compartments is a key 
feature of symbiogenetic fusions and a major source of continu-
ing variation for the resulting organism. Following cell fusions, 
DNA transfers occur from other genome compartments to the 
nucleus in all eukaryotic phyla.23-40 These transfers are ongoing 
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The development of rigorous molecular taxonomy pio-
neered by Carl Woese has freed evolution science to explore 
numerous cellular activities that lead to genome change in 
evolution. These activities include symbiogenesis, inter- and 
intracellular horizontal DNA transfer, incorporation of DNA 
from infectious agents, and natural genetic engineering, 
especially the activity of mobile elements. This article reviews 
documented examples of all these processes and proposes 
experiments to extend our understanding of cell-mediated 
genome change.
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and observed experimentally in real-time.36,40-45 (Less attention 
has been paid to transfers in the opposite direction.)

In certain cases, organelle–nucleus transfers accompany DNA 
break repair in both plants and animals.35,46-48 The sequence 
evidence indicates this repair occurs by non-homologous end-
joining (NHEJ).34,47 Like all cell-mediated DNA changes, organ-
elle–nucleus DNA transfers display non-random patterns,49 
notably with respect to introns44 in regions of open chromatin 
configuration.36 In addition, as is true of other genome changes, 
stress events activate organelle–nucleus DNA transfers.35

Non-homologous incorporation of organelle DNA provides 
a mechanism for the generation of genomic novelties, including 
new coding sequences.32,34,50,51 Transfer into introns sometimes 
results in novel splicing patterns and incorporation of new exons 
into the mRNA product. This and other “exonization” processes 
solve an important evolutionary problem, the rapid origination 
of novel protein domains (http://shapiro.bsd.uchicago.edu/
Origin_of_New_Protein_Domains.html). Integrated organelle 
DNA can have other effects on nuclear genome function. In 
yeast, for example, mitochondrial DNA inserts serve as sites for 
activation of DNA replication.52 There is particular interest in 
the role of “numts” (nuclear mitochondrial DNA)53 in our own 
evolutionary history.44,54,55

Molecular Phylogeny and Horizontal  
DNA Transfer Encoding Peripheral Systems: 
Evolutionary Innovation by Accumulation  

of External Coding Sequences

Woese’s insightful distinction between core and peripheral 
functions led to recognition of widespread horizontal DNA 
transfer between prokaryotic cells (http://shapiro.bsd.uchicago.
edu/ExtraRefs.AntibioticResistanceAndHorizontalTransfer.
shtml). This recognition resolved the problem that the phyloge-
netic trees computed for certain proteins agreed with the rRNA 
taxonomy while others did not:

“The many protein trees that differ in topology from the rRNA 
tree also differ in topology from one another, the hallmark of HGT. 
Moreover, some protein-based trees do exhibit topologies in agree-
ment with that of the universal rRNA tree ... Nearly all of the 
universal components of translation and transcription do so, as do 
a small number of other proteins, e.g., HSP-60 … Cellular com-
ponentry can be roughly classified according to the degree to which 
it is connected to the rest of the cell. Loosely connected, or modular, 
elements define one extreme of the spectrum. Such components tend 
to be largely self-defining in their structure/function, interacting 
minimally with other elements in the cell, and are, therefore, obvi-
ous candidates for horizontal gene displacement by alien homologs. 
At the other extreme are the tightly coupled elements, which have 
extensive, specific, and constraining physical and chemical ties to 
others of the cellular componentry and, therefore, could seldom, if 
ever, be sufficiently mimicked by an alien homolog to be displaced 
by it. The remarkable difference between the HGT profiles of the 
aminoacyl-tRNA synthetases and others of the translation compo-
nentry is thus explained by the loosely coupled, modular nature of 
the former and the tightly coupled nature of the latter ...”56

Horizontal DNA transfer between cells is another process for 
rapid genome innovation and acquisition of essential functions 
needed in changing ecologies. Recognized since the early 1960s 
as central to the rapid evolution and dissemination of multiple 
antibiotic resistance in bacteria,57 the general role of horizontal 
transfer in adaptation of bacteria and archaea to the multifarious 
ecologies on our planet came to be firmly established by the turn 
of the 21st century.58-66

Although many “eukaryote chauvinists” wish to adhere to 
strictly vertical inheritance and believe that horizontal transfer 
is exclusively a prokaryotic phenomenon, it has proven to be 
important in the evolution of eukaryotic genomes as well.67 For 
example, diverse plant parasitic nematodes owe their vegan life-
style to hydrolytic enzymes acquired from bacteria and fungi, 
which enable them to digest plant materials.68-74 Evidently, it 
proved more efficient to adapt to a new food source by borrowing 
enzymes from distant taxa rather than evolving them internally 
from the pre-existing nematode genome. It is noteworthy that 
each lineage of plant parasitic nematodes acquired these essential 
functions from different fungi and bacteria. So the horizontal 
acquisition strategy was used many times.

Chinese workers have recently reported parallel bacteria- and 
fungus-to-shrimp transfers.75 A diversity of prokaryotic donors 
for similar functions has also been found in eukaryotic micro-
bial parasites;76 eukaryotic microbes are prone to acquire DNA 
across taxonomic barriers from both prokaryotic and eukaryotic 
donors;77-80 there is evidence of extensive horizontal transfers from 
endosymbiotic bacteria to their animal hosts;81-85 and diverse 
adaptive biochemical pathways in multicellular organisms appear 
to have originated in bacteria, fungi, and other microbes.86-88

Direct horizontal transfer between multicellular eukaryotes is 
well-documented for mobile genetic elements.89-95 It is harder to 
find examples of horizontal transfer of DNA that is not intrinsi-
cally mobile, but examples have been reported.96 They include 
sequences encoding glyoxylate cycle enzymes in metazoa,97 
photosynthetic carbon cycles,98,99 anti-freeze proteins in fish,100 
mimicry pattern determinants in butterflies,101 and acquisition 
of diverse expressed functions by a parasitic plant from its host.102 
In addition to nuclear sequences, whole organelle genomes are 
subject to transfer between plants and animals.103-106

Besides interspecific hybridization between closely related 
species, microbial or arthropod parasites, viruses, and bacte-
rial endosymbionts are assumed to be vectors for DNA transfer 
between multicellular organisms.107-110 Endosymbionts transfer 
between different host species.111-113 Large DNA viruses carry a 
mixture of DNA sequences from all domains of life, and some 
can infect both protists and multicellular hosts (http://shapiro.
bsd.uchicago.edu/Viral_Composites.html).114-117

Amoebae are common hosts for many of these large DNA 
viruses and constitute an evolutionary “melting pot,”118 where 
sequences from all domains can be combined and then pack-
aged into delivery particles (http://shapiro.bsd.uchicago.edu/
Amoebal_Viruses.html). Some of the hosts for these viruses 
are phagocytic and therefore likely to acquire sequences from 
engulfed cells.119 These large viruses have satellite “virophages,” 
which can infect cells carrying diverse viral hosts,120 and they 
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even have their own transposable elements (“transpovirons”) spe-
cific to the viruses and their virophages.121,122 So there appear to 
be abundant molecular tools available for rearranging the DNA 
sequences in the evolutionary melting pot.123

Significantly, many bacteria known as vertebrate pathogens 
also infect amoeba.124 Legionella pneumophila is an example.125,126 
Legionella is also capable of taking up DNA from its environ-
ment.127,128 Thus, this normally aquatic bacterium has the cell 
tropism and DNA transfer capabilities needed to transmit 
DNA segments across virtually the whole eukaryotic lineage. 
In addition to Legionella, other bacteria infect amoebal protists, 
such as Salmonella, Mycobacterium, Klebsiella, Yersinia  entero-
colitica, Pseudomonas aeruginosa, Stenotrophomon  cenocepa-
cia, Vibrio  cholerae, Bacillus cereus, Enterococcus faecalis, 
Enteropathogenic Escherichia coli (EPEC), Enterobacter aero-
genes, Aeromonas hydrophila, and Neisseria meningitides.126,129-131 
There is even evidence of conjugal transfer within amoebae 
between animal and plant pathogenic bacteria.132 In other 
words, the amoebal melting pot, containing sequences from all 
three domains of life, has numerous infectious links to more 
complex eukaryotes.

In addition to providing evolutionary vectors and melting 
pots, viruses of all kinds (including RNA viruses) insert their 
genomes into eukaryotic host genomes with surprising fre-
quency.133-150 Integration can occur by retroviral integrase func-
tions, sometimes followed by recombination with other viral 
sequences,151 or by NHEJ at DNA breaks.152,153 Note that inte-
gration events at DNA breaks have the same potential to gener-
ate novel sequence configurations as the repair events involving 
organelle DNA cited previously.

Not surprisingly, viral functions have been recruited, or “exa-
pted,”154 for cell biology.144,146,155-159 The most extensively inves-
tigated case is the role retroviruses have played in the evolution 
of cell fusions proteins (syncytins) and the placenta, a critical 
step in mammalian evolution (http://shapiro.bsd.uchicago.edu/
Retroviral_involvement_in_placenta_evolution.html).160-162 
Other exapted coding sequences include numerous conserved 
proteins of unknown function,137,143,158,159,163-165 anti-viral func-
tions,166-168 various zinc finger DNA-binding proteins,169-171 and 
surface proteins involved in apoptosis.171 In addition to protein-
coding information, integrated viruses change the regulatory 
configuration of the genome165 by providing sequences for non-
coding ncRNAs,172 sites for transcriptional control,173-179 and epi-
genetic regulation.180-183

Beyond Horizontal Transfer: Intracellular  
Natural Genetic Engineering (NGE) of Novel  

DNA Structures and Networks

Cell abilities to acquire and transfer DNA are only a part of 
the “natural genetic engineering” (NGE) toolbox available for 
generating novel DNA sequences.184,185 In addition to integrat-
ing horizontally acquired DNA into their genomes, living cells 
have a large number of biochemical activities that allow them to 
cut, splice, mutagenize, synthesize, and amplify DNA segments 
(Table 1).

Many genomes, like ours, contain diverse specialized systems 
dedicated to genome innovation (Table 2).

The best known of these molecular genome innovation sys-
tems are the dispersed mobile genetic elements, transposons, and 
retrotransposons, which often comprise a dominant fraction of 
the genome—about two-thirds in our own case.192 Genome anal-
ysis has amply documented a historical role for these elements in 
innovation. In mammalian evolution, for example, mobile ele-
ments generated over 200 000 of the more than 1.1 million posi-
tively selected DNA elements that distinguish placentals from 
marsupials.193

Natural genetic engineering, and mobile elements in particu-
lar, provide mechanistic solutions for evolutionary innovations 
that, realistically, are impossible to explain with conventional 
assumptions about accidental, random, gradual genome change. 
Let us look at a few examples:

Evolution of novel proteins by domain accretion and exon 
shuffling

Once it was recognized that proteins contain function-specific 
segments that appear in multiple different proteins (domains), 
it was evident that much protein evolution occurs by the accre-
tion and rearrangement of distinct domains (http://shapiro.bsd.
uchicago.edu/Exon_Shuffling.html).194,195 This combinatorial 
process is far more efficient than protein evolution by individ-
ual amino acid changes because domain shuffling puts together 
established functionalities in new arrangements. The existence of 
shared domains means there must be NGE processes for domain 
amplifications and rearrangement. A number of these exon shuf-
fling processes involve mobile elements.196-205

Origination of novel coding sequences by reverse transcrip-
tion and sequence fusions

Reverse transcription of processed and edited RNA molecules 
generates novel cDNA coding sequences subject to genome 
integration.206-209 The cDNAs can be integrated as independent 
intron-free coding sequences or inserted into existing genetic loci 
to generate novel fusion protein determinants.210-212 Transposons 
can also generate novel chimeric coding sequences directly at the 
DNA level.213

Origination of novel exons
There is no mechanism for the rapid appearance of novel 

exons in conventional theory—and no mechanism that does not 
build upon pre-existing coding sequences. Nonetheless, many 
examples have been documented where segments of mobile ele-
ment or viral insertions contain the appropriate transcription 
and splicing signals to encode totally novel exons (http://shapiro.
bsd.uchicago.edu/Origin_of_New_Protein_Domains.html).214 
Since the mobile element content of each lineage is distinct, we 
can expect different exons and protein domains to appear in dif-
ferent lineages.215,216 This expectation fits with the existence of 
lineage-specific regulatory proteins and protein families.217,218

Origination of a complex cis-regulatory module (CRM) at 
a genetic locus

The assembly and recruitment of multiple interacting cis-reg-
ulatory sites at a particular locus by independent random changes 
would take an indefinitely long time. In contrast, some of the 
earliest experiments on mobile elements demonstrated their 
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ability to relocate and generate novel transcriptional signals in 
prokaryotes and eukaryotes.219-221

Origination of coordinately regulated multilocus networks
Even more complex than producing a single new transcrip-

tional complex is the formation of multi-locus networks coor-
dinated by shared regulatory signals. This latter process is 
likely to have a vanishingly small probability of success based 
on independent changes at each locus before any integrated net-
work functionality emerges. However, we know that activation 
of specific families of mobile elements can result in non-inde-
pendent insertions at multiple loci, rapidly generating networks 
that can be coordinately regulated.222 Genomic analysis tells us 
that mobile elements have indeed introduced common regula-
tory elements during network rewiring (http://shapiro.bsd.
uchicago.edu/Table5C-1.MobileElementsFoundtobeExaptedas
cis-RegulatoryControlSitesinAnimals.html).223-227

Some Ideas for Evolutionary Research  
in the 21st Century

The research agenda for the present century must include rec-
reating in real-time the innovative NGE processes we infer from 
the genomic record. That is the only way we can achieve a solid 
empirical understanding of the molecular mechanisms that pro-
duce functional genomic novelties.

Do cell control circuits play any role in facilitating the 
efficiency of the genomic search process? That these circuits 
control NGE activation and have the capacity to target NGE 
processes is well-documented (http://shapiro.bsd.uchicago.
edu/TableII.7.shtml and http://shapiro.bsd.uchicago.edu/
TableII.11.shtml).184 What seems difficult for many biologists 
to conceive is that NGE can be biased or “informed” by cell 
networks in a way that is adaptively useful. In order to initiate 
this line of evolution science research, I suggest the following 
topics:

Specificity of mutagenic events following activation of NGE 
functions by distinct life history or stress events

We know that distinct stress regimes not only stimulate the 
actions of NGE operators like SOS mutators and transposons but 
also stimulate the accumulation of different intracellular second 
messengers. In E. coli, carbohydrate starvation raises the level of 
cAMP, while amino acid starvation raises the level of (p)ppGpp. 
Can these distinct intracellular conditions alter the specificity of 
genome changes?

The relevant experiments are straightforward. Experimenters 
can isolate mutant clones of stress-activated cells using vari-
ous selections (antibiotic resistance, carbon source utilization, 
reversion of biosynthetic deficits) and then screen those clones 
for hypermutability and unselected mutations228,229 by whole 
genome sequencing. If the activating stress influences the spec-
trum of resulting genome changes, then different patterns should 
emerge in mutation type (e.g., point mutation vs. insertions) and 
location (e.g., mutations preferentially in biosynthetic vs. cata-
bolic COGs).

Failure to find any stress-induced biases would validate the 
conventional view that biological inputs do not influence genome 
change. If biases do occur, then it will be possible to investigate 
both the underlying mechanisms and their adaptive utility.

Targeting of NGE by diverse molecular interactions
We have become accustomed to adapting natural targeting 

processes to our own genome rewriting goals.230-236 It is rea-
sonable to hypothesize that the molecular targeting processes 
already identified will be found to serve adaptive functions. They 
certainly do so when NGE has evolved to become part of the 
normal lifecycle (http://shapiro.bsd.uchicago.edu/ExtraRefs.
NaturalGeneticEngineeringPartNormalLifeCycle.shtml). 
Specific examples of functionally targeted genome restructur-
ing include yeast mating-type switches,189 microbial antigenic 
variation (http://shapiro.bsd.uchicago.edu/Antigenic_Variation.
html), and the adaptive immune system (http://shapiro.bsd.uchi-
cago.edu/ExtraRefs.ImmuneSystemChanges.shtml).

The adaptive utilization of genome targeting mechanisms can 
be investigated in systems such as bacterial transposon Tn7,237 
yeast retrotransposons,238 or the Drosophila gypsy retrovirus,239 
where the molecular basis for specificity is well documented and 
amenable to genetic modification. Mutant elements lacking tar-
geting specificity can be tested for the ability to generate adaptive 
responses to stress as compared with the targeted parent element. 
Selections can include the ability to mobilize resistance determi-
nants through bacterial populations (Tn7), activation of protein 
expression in yeast,240 or establishment of chromatin boundaries 
to recover functions silenced by position-effect241 in Drosophila 
(gypsy).242

Real-time observations on domain shuffling and origination 
of novel functional domains (exonization)

The genome sequence record indicates that novel biochemical 
functions arise through domain accretion, domain shuffling, and 
the origination of novel domains by exonization of non-coding 
DNA and reverse-transcribed RNA.194,195,243 These processes have 
been documented historically and by synthetic model systems in 
the laboratory.196,197,244

But there have not been real-time experiments to exam-
ine the generation of novel biochemical capabilities by exon 

Table 1. Some biochemical activities involved in natural genetic 
engineering

Nucleases (cutting)

Ligases (splicing)

DNA Polymerases (replicative, proofreading, and error-prone “mutator”)

Excisionases (remove improper/damaged bases)

Helicases (unwinding proteins)

Annealing proteins (e.g., RecA)

Site-specific recombinases (combined cutting and splicing)

Resolvases (cutting homologous recombination intermediates)

Reverse transcriptases (RNA– > DNA)

Transposases and integrases (cutting and splicing)

Sequence-specific, structure-specific DNA/RNA binding

An extended and fully referenced version of this table is available online at 
http://shapiro.bsd.uchicago.edu/Table4A.CellBiochemicalActivitiesUsedin
NaturalGeneticEngineering(NGE).html.
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