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Abstract

Animal and human studies have frequently shown that in primary sensory and motor regions the

BOLD signal correlates positively with high-frequency and negatively with low-frequency

neuronal activity. However, recent evidence suggests that this relationship may also vary across

cortical areas. Detailed knowledge of the possible spectral diversity between electrophysiological

and hemodynamic responses across the human cortex would be essential for neural-level

interpretation of fMRI data and for informative multimodal combination of electromagnetic and

hemodynamic imaging data, especially in cognitive tasks. We applied multivariate partial least

squares correlation analysis to MEG–fMRI data recorded in a reading paradigm to determine the

correlation patterns between the data types, at once, across the cortex. Our results revealed

heterogeneous patterns of high-frequency correlation between MEG and fMRI responses, with

marked dissociation between lower and higher order cortical regions. The low-frequency range

showed substantial variance, with negative and positive correlations manifesting at different

frequencies across cortical regions. These findings demonstrate the complexity of the

neurophysiological counterparts of hemodynamic fluctuations in cognitive processing.
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1. Introduction

In most functional magnetic resonance imaging (fMRI) studies, brain activity is determined

based on the blood-oxygen-level dependent (BOLD; Ogawa et al., 1992) signal, a measure

sensitive to hemodynamics. Over the last 15 years several investigations have addressed the

relationship between hemodynamic and electrophysiological measures of neuronal activity

(Logothetis et al., 2001; Mukamel et al., 2005; Ojemann et al., 2010). In their seminal work,

Logothetis et al. (2001) demonstrated that in monkey primary visual cortex, the BOLD

signal was most highly correlated with high-frequency local field potential (LFP), whereas

spiking activity offered a lower explanatory value. Subsequent investigations into systems-

level aspects of the relationship between hemodynamic and electrophysiological activity

have focused on the correlation between the BOLD signal and neural activity in specific

frequency bands. Evidence has accumulated for a positive correlation of BOLD signal with

neural activity in the gamma band (ca 40–130 Hz) (Mukamel et al., 2005; Nir et al., 2007)

and for a negative correlation of BOLD with lower-frequency neural activity (Laufs et al.,

2003; Mukamel et al., 2005).

In humans, the relationship between hemodynamic and electrophysiological signals can be

addressed by collecting intracranial electric and fMRI data from the same subjects in

separate measurement sessions (Lachaux et al., 2007; Conner et al., 2011). Such recordings

are sensitive and spatially specific but necessarily restricted to a limited number of brain

regions and subjects. Alternatively, magnetoencephalography (MEG) (Schulz et al., 2004;

Liljeström et al., 2009) or scalp electroencephalography (EEG) (Laufs et al., 2003; de

Munck et al., 2007) provide full head coverage, on a virtually unlimited population of

subjects. One benefit of scalp EEG measurements is that they can be performed

simultaneously with fMRI. However, by studying the relationship of fMRI with neural

signals through separate fMRI and MEG measurements (with the same subjects undergoing

identical experiments) it is possible to obtain estimates of correspondence between neural

activity and hemodynamics that have both good spatial coverage (compared to typical

intracranial electric measurements) and spatial specificity (compared to scalp EEG). MEG-

fMRI comparisons have shown, for example, that increases and decreases in oscillatory

power may be associated with spatially distinct BOLD effects (Stevenson et al., 2012), and

also that in some instances gamma-band activity and BOLD signal may be decoupled

(Muthukumaraswamy and Singh, 2009).

So far, most studies investigating the correlation patterns between electrophysiological and

hemodynamic responses have focused on a fairly limited set of hypotheses, using primary

sensory cortices as the model systems. Yet, recent intracranial investigations have indicated

regional differences in the electrophysiology-hemodynamics relationship (Conner et al.,

2011), with distinct mechanistic origins (Sloan et al., 2010). Notably, the variability, while

relatively small across lobes, is manifest when the relationship between electrophysiological

and hemodynamic signals is evaluated at the gyral level (Conner et al., 2011). Therefore, it

seems critical to allow spatial and spectral heterogeneity in the analysis. We used MEG and

fMRI in an unconstrained relational framework to explore the possible spatiospectral

heterogeneity of the relationship between electrophysiological and hemodynamic activity

during cognitive processing. Specifically, we analyzed the relationship between neuronal
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and hemodynamic responses voxel-by-voxel, throughout the cortex, using a dataset where

the same subjects had been presented the same, multi-condition reading paradigm in both

MEG and fMRI (Vartiainen et al., 2011). Multivariate partial least squares correlation

analysis (PLSC; McIntosh et al., 1996; Krishnan et al., 2011) was applied to discover

consistent correlation patterns between frequency-decomposed neural (MEG) and

hemodynamic (fMRI) signals simultaneously across the entire cortex, in a fully data-driven

manner, without limiting the analysis to a priori defined frequency ranges. In the PLSC

analysis, the within-condition MEG-fMRI correlation patterns were combined into a set of

orthogonal representations across conditions, allowing the study of both condition-invariant

and condition-dependent aspects of the relationship between electrophysiological

hemodynamic responses. We hypothesized that our analysis would reveal a well-defined

spatial and functional distribution of correlation patterns, with distinct low- and high-

frequency features in different brain regions.

2. Materials and methods

The following sections describe the key elements of the experimental design, MEG and

fMRI data collection, and the regular activation analysis; a more detailed description of

these aspects can be found in Vartiainen et al. (2011), where the focus was on the

relationship between activation patterns obtained with measures most often used in imaging

studies, i.e., MEG evoked responses and BOLD fMRI. EEG data, collected in both the MEG

and fMRI sessions, were used to ascertain similar task dependence of neurophysiological

responses in both environments (Vartiainen et al., 2011).

In the present study, we investigated the relationship between hemodynamic and

electrophysiological signals across the cortex from these MEG and fMRI data sets, using

PLSC analysis on estimates of oscillatory MEG activity and BOLD fMRI activity, matched

at the voxel-level. This approach allowed an unbiased data-driven determination of the

cortex-wide correlation between electrophysiological and hemodynamic responses and a

spatially specific evaluation of the possible spectral variability of the electrophysiology-

hemodynamics relationship.

2.1 Subjects

fMRI and MEG data were recorded from 15 healthy, right-handed, native Finnish-speaking

subjects (7 females, 8 males; age 20–49 years, mean 27 years). In agreement with the prior

approval of the Helsinki and Uusimaa Ethics Committee, informed consent was obtained

from all subjects.

2.2 Experimental design and behavioral data analysis

The experiment consisted of a silent reading task with five stimulus categories: Finnish

words, pseudowords, consonant strings, symbol strings, and words embedded in high-

frequency visual noise (noisy words). An identical paradigm was used in MEG and fMRI,

and the MEG and fMRI data were collected in a pseudo-randomized order across the

subjects. Each category consisted of 112 stimuli (length 7–8 letters/symbols). The stimuli

were presented one at a time, for 300 ms, in a block design, with seven stimuli of the same
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category in each block. After each stimulus, 1200 ms of gray background was shown. In

addition to 16 stimulus blocks of each condition type, 16 rest blocks were included. The

subjects were instructed to report when a stimulus appeared twice in a row (1 target block of

each condition type per subject and imaging modality, not included in the analysis).

Collection of the behavioral data from these target blocks was successful in 8 subjects in the

MEG experiment and 11 subjects in the fMRI experiment. Overall, the subjects were able to

perform the task with high accuracy, as measured by the percentage of true positives across

the target blocks in both imaging modalities (words 100%, pseudowords 89%, consonant

strings 84%, symbol strings 89%, noisy words 47 %). The average task performance over

the 5 conditions was remarkably similar in the MEG and fMRI sessions (Wilcoxon rank sum

test across subjects, p=0.64).

2.3 fMRI data collection

The MRI data were collected using a 3 Tesla Signa EXCITE scanner (GE Healthcare) at the

Advanced Magnetic Imaging Centre, Aalto University. The fMRI data were acquired using

a single-shot GRE-EPI sequence with in-plane resolution 3.4 × 3.4 mm2 (TR 2.4 s, TE 32

ms, flip angle 75°, acquisition matrix size 64 × 64, FOV 22 cm, slice thickness 3 mm). For

anatomical data, a T1-weighted 3D SPGR sequence was used, with 0.9 × 0.9 × 1.0 mm3

resolution.

2.4 MEG data collection

The MEG data were recorded in a magnetically shielded room using a 306-channel whole-

head device (Elekta Oy, Helsinki, Finland) at the MEG Core, Aalto University. The signals

were bandpass filtered to 0.03–200 Hz and sampled at 600 Hz. The data were preprocessed

using the temporal extension of the Signal Space Separation method (Taulu and Simola,

2006).

2.5 fMRI data analysis

The fMRI data preprocessing and analysis of the BOLD signal were conducted using

BrainVoyager QX software (Brain Innovation). The preprocessing steps consisted of head

movement and slice scan time correction, high-pass filtering at a 0.01 Hz cutoff frequency

and linear trend removal. Serial correlations were compensated for by using a first-order

autoregressive model. The fMRI data were coregistered with the anatomical MR data and

spatially smoothed with an 8-mm full-width-at-half-maximum Gaussian kernel. A general

linear model (GLM) was constructed by convolving the regressors for the five stimulus

types with a two-gamma canonical hemodynamic response function. For the present

analysis, percent effects of the stimulus conditions on the hemodynamic signal were

computed by subtracting the GLM constant term (reflecting the signal level during rest)

from the beta value of each condition and then dividing the result with the constant term.

2.6 MEG data analysis

Estimates of cortical-level neural activity were obtained from the MEG signals by using

event-related Dynamic Imaging of Coherent Sources (erDICS; Laaksonen et al., 2008), a

beamforming technique (Van Veen et al., 1997; Gross et al., 2001) that allows the
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evaluation of oscillatory power and coherence in the brain as a function of time. In erDICS,

a time-dependent cross-spectral density matrix (CSD) that represents the sensor-level data is

calculated via a product of the trial-level time-frequency representations, computed using

Morlet wavelets (Tallon-Baudry et al., 1997). Here, Morlet wavelets of width 7 were used to

calculate the time-dependent CSD in the range from 200 ms before stimulus onset to 800 ms

post stimulus at 30-ms intervals and spanning frequencies from 2 to 96 Hz at 2-Hz intervals

(excluding frequency bins close to the line noise, i.e., bins at 48, 50 and 52 Hz). Cortical

estimates of oscillatory power levels were then calculated separately for each condition at

each frequency bin, averaged over the time interval of 50–800 ms where salient stimulus-

evoked neural responses were observed; the reference level per frequency bin was estimated

as the power in the −200 to 0 ms baseline interval, averaged across all stimuli. The

integration of activity over the relevant post-stimulus interval ensured stable estimates of

frequency-decomposed activity. Analogously to the values extracted from fMRI, the percent

signal change in each experimental condition was computed by subtracting the common

baseline power level from the power level in that condition and dividing the difference by

the baseline power level.

For reference, the cortical distribution of evoked neural activity (reported in full in

Vartiainen et al., 2011) was visualized as noise-normalized L2-minimum-norm estimates

(MNE Suite software package by M. Hämäläinen, Martinos Center for Biomedical Imaging,

Massachusetts General Hospital); the noise covariance matrix was estimated from the 200-

ms prestimulus baseline periods of unaveraged data. For each subject and condition, t-scores

were calculated at each post-stimulus time-point in individually determined cortical surface

grids with 8-mm spacing by subtracting the mean of the baseline window from the post-

stimulus values, and by dividing the obtained values with the standard deviation of the

baseline period. The t-scores were then transformed to a common coordinate system using a

surface-based transformation (Fischl et al., 1999). Group-level evaluation was conducted by

averaging the t-scores across subjects in 50% overlapping 50-ms long time-windows that

covered the time range from 50 to 800 ms. For each condition and voxel, the largest absolute

average t-score across the time-windows was taken, and t-scores of more than 3.291

(corresponding to p < 0.001) were considered to represent significant neural activity.

2.7 MEG-fMRI correlation analysis

The PLSC analysis between the frequency-decomposed MEG estimates and BOLD fMRI

estimates was evaluated separately in each voxel of a grid that covered the cortical gray

matter. An equivalent spatial sampling across subjects was achieved by first forming a grid

with 6-mm sampling on the gray matter surface of the template brain. A grid point was

included in the analysis when an MEG sensor was located within a 7 cm radius; this

restriction excluded areas (e.g., deep cortical structures) where MEG has limited sensitivity.

The grid generated in the template brain, consisting of 7596 points, was then transformed,

via a surface-based transformation (Fischl et al., 1999), to each individual's anatomy. For

each grid point, the fMRI voxel closest to the transformed point was determined, and the

beta values in these voxels were considered to represent corresponding functional data

across subjects. For the MEG data, the estimates were calculated directly at the individual-

level grid points. The procedure yielded percent signal change estimates for each condition
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in the 7596 equivalent voxels across subjects, with a single value for the BOLD data and 45

MEG values (from 45 different frequency bins). Thus, the approach enabled the evaluation

of electrophysiology-hemodynamics relationship and its possible variability at the voxel-

level. This spatial specificity further facilitated the examination of possible detailed spectral

differences across brain regions. The procedure used for co-registering the MEG and fMRI

data is described in more detail in the Supplementary Data.

PLSC (McIntosh et al., 1996; Krishnan et al., 2011) was applied to determine the

correspondence between the MEG and fMRI signals, separately in each voxel. In the PLSC

analysis (illustrated in Fig. 1a), condition-invariant and condition-dependent aspects of the

relationship between electrophysiological hemodynamic responses were studied by

computing within-condition cross-correlation matrices, which were further combined to

calculate orthonormal representations across conditions using singular value decomposition

(SVD). Both the magnitudes and spectral shapes of these representations were then

evaluated. The multiple experimental conditions were key to this analysis design. Cross-

correlations between the MEG and fMRI signal-change estimates were first calculated

separately within-condition, across subjects, for each voxel i.e.:

(1)

where YC is the voxel's normalized fMRI activity (15×1) and XC the voxel's normalized

MEG activity (15×45) in a single condition C across the 15 subjects. These cross-correlation

matrices RC (1×45) were then stacked across the 5 conditions into a combined correlation

matrix R (5×45), and singular value decomposition was used to determine orthogonal

correlation patterns across the conditions. The decomposition,

(2)

yielded, for each voxel, 5 orthogonal MEG-fMRI correlation spectra (45×1, rows of V) and

5 singular values (diagonal elements Δ) that were used to assess the overall magnitude and

significance of the correlation. In this study, we focus only on the first singular value, which

explained the majority of the correlation between the data types, and the corresponding

MEG-fMRI correlation spectra.

In order to determine whether the magnitude of the MEG-fMRI correlation was significant,

indicating a consistent relationship between the electrophysiological and hemodynamic

responses, the order of the 75 (5 conditions × 15 subjects) fMRI values were randomly

permuted 10000 times (the permutation procedure is shown in Fig. 1b) and the largest

singular value for each permutation was computed, separately for each voxel. The

significance level was then determined by testing how many of the 10000 singular values

from the permuted data were larger than the original singular value. Voxels with p<0.05

(false discovery rate, FDR, corrected) were considered to represent significant correlation

between the data types. In voxels that showed a significant correlation, spatially

unconstrained hierarchical clustering was used to determine the grouping of similar

correlation patterns across voxels. In this clustering, correlation was calculated between all

voxel combinations for the MEG-fMRI correlation spectra. Voxels that showed a correlation
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of higher than 0.95 were linked together, resulting in a spatiospectral clustering of

electrophysiology-hemodynamics coupling patterns across voxels, and, thus, a

representation of the most systematic components of the MEG-fMRI correlation.

The permutation-based significance testing described above allowed only the evaluation of

the possible consistency of the relationship between the MEG and fMRI responses at each

location. In order to evaluate the frequency specificity of the estimated spectral shapes of

correlation, we applied bootstrapping analysis (Efron, 1979). This procedure was applied to

evaluate the uncertainty resulting from the specific data sampling in our study and, thus, to

determine whether the observed correlation patterns displayed any frequency specificity

across regions. As the PLSC analysis applied in this study is based on the cross-subject

MEG and fMRI estimates of electrophysiological and hemodynamic activity in multiple

experimental conditions, an applicable sampling test is to evaluate the stability of the

correlation spectra against varying combinations of subjects and conditions. In the

bootstrapping analysis we first determined, randomly, how large a percentage of the data

was to be left out (up to 20% of the original data). We then selected, also randomly, a

matching set of MEG-fMRI data pairs across subjects and conditions. Notably, as the

covariances are computed first within-condition, it is possible to have a different number of

subjects for each condition. The re-sampling of the data was repeated 1000 times, and the

PLSC analysis was conducted on the re-sampled datasets identically to the main PLSC

evaluation. Thus, for each re-sampling, the within-condition covariances were computed as:

(3)

where YCb is the normalized re-sampled fMRI (N×1) and XCb the normalized re-sampled

MEG activity (N×45) in a single condition, with N≤15. Critically, while the subject numbers

may be different, the dimensions of the cross-correlation RCb for the re-sampled data remain

the same across all conditions. Thus, the stacking of these matrices and the SVD

computations can be performed identically to the main PLSC analysis.

From the obtained distribution of 1000 correlation spectra per voxel we calculated the 95%

upper and lower confidence limits per frequency bin and voxel. Subsequently, both the

correlation spectra and their 95% confidence limits were averaged across the voxels

belonging to one component (determined based on the hierarchical clustering described

above) and compared to the mean correlation pattern and 95% confidence limits across all

voxels that showed significant MEG-fMRI correlation. When the confidence limits of a

specific component and of the mean of all significant voxels were non-overlapping, the

component was considered to show a spectrally specific pattern of MEG-fMRI correlation.

The possible differences in the correlation patterns between the identified components were

evaluated with independent samples t-tests, across all cluster combinations. The t-tests were

computed between the correlation spectra of the voxels in the different clusters, separately

for each frequency bin. Correlation differences between two components were considered

significant at p<0.05 (Bonferroni corrected across frequency bins and cluster combinations).
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3. Results

3.1 Partial least squares correlation between rhythmic neural activity and BOLD-fMRI

The BOLD fMRI (Fig. 2a) and MEG evoked responses (Fig. 2b) revealed typical activation

patterns in a reading task, with stimulus-driven modulation of activity in the posterior visual

areas, inferior occipitotemporal cortex, and posterior and middle temporal, inferior parietal

and frontal cortex (see Vartiainen et al., 2011 for a detailed description and discussion). The

PLSC voxel-wise, cross-condition correlation between the frequency-decomposed MEG and

BOLD fMRI signals revealed significant coupling between the data types in an extensive

cortical network (Figure 2c; Table 1). MEG-fMRI correlation reached significance in 228

voxels that were located in the bilateral occipital, parietal and posterior temporal cortex,

inferior precentral gyrus, and left frontal cortex; a higher proportion of these voxels was

located in the left than right hemisphere (143 vs. 85 voxels). Similarly, of the 750 voxels

showing consistent group-level hemodynamic activity (Fig. 2a), 510 were located in the left

and 240 in the right hemisphere. For the MEG evoked responses (Fig. 2b), of the 441 voxels

showing consistent group-level evoked activity, 254 were located in the left and 187 in the

right hemisphere. Although the occipital, parietal and temporal regions forming the MEG-

fMRI correlation network were largely similar to those identified in the separate fMRI (Fig.

2a) and MEG (Fig. 2b) activation analyses, the network of significant MEG-fMRI

correlations contained only a small number of exactly the same voxels as the fMRI (6 shared

voxels) and MEG (35 shared voxels) activity distributions.

3.2 Spatiospectral heterogeneity of the relationship between hemodynamic and
electrophysiological responses

In order to determine the spatiospectral division of correlation between electrophysiological

and hemodynamic responses, spatially unconstrained hierarchical clustering was applied to

the PLSC correlation spectra of the 228 significant voxels. Based on earlier work, the visual

cortex would be expected to display a positive correlation in the higher (gamma) frequencies

and a negative correlation in the lower frequencies (Niessing et al., 2005; Scheeringa et al.,

2011). Indeed, as illustrated in Figure 3a, such a pattern was observed in the present study in

the left primary visual cortex (Brodmann area 18, Talairach coordinates −2 −100 0; two

clustered voxels).

However, the hierarchical clustering revealed even more robust (at least 5 contiguous

voxels) MEG-fMRI correlation patterns in other brain areas. Clustering of the correlation

spectra related to the first PLSC singular value revealed 8 components that spanned 10

different cortical regions, including brain areas typically involved in higher-order cognitive

processing (Figure 3b, Table 2); for the other singular values and corresponding correlation

spectra, no clusters with comparable spatial consistency were detected. The most obvious

characteristic of the identified 8 MEG-fMRI correlation clusters was the prominent role of

high-frequency activity: a positive correlation in the range 30–100 Hz was detected in all

brain regions (the left middle and superior temporal gyrus, inferior parietal lobule and

inferior, middle and superior frontal gyrus; the right superior parietal lobule, precuneus, and

lingual gyrus) except the left precentral gyrus (component 8) which exhibited a negative

correlation at frequencies > 30 Hz.
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While a positive correlation in this so-called gamma band was a remarkably systematic

phenomenon, its detailed pattern was not uniform across brain areas (Fig. 3b): the positive

correlation was either relatively homogeneous throughout the high-frequency range or it

showed a clear distinction between low (ca 30–50 Hz) and high (ca 60–90 Hz) gamma

bands. In the precuneus and middle temporal and lingual gyri (components 1, 6 and 7), the

correlation in the high gamma range differed most markedly from the average correlation

across voxels, whereas in the middle frontal gyrus (component 5) emphasis was on the low

gamma range. In the inferior frontal and superior temporal gyrus (component 3), the

correlation differed from the average pattern in the entire gamma range.

When the MEG-fMRI correlation spectra were compared, pair-wise, among all the 8

identified components (Fig. 4), the correlation in the low gamma range, in particular,

differed significantly between several brain areas (components). Significant differences

were also observed specifically in the high-gamma range between, e.g., the frontal gyrus

(both superior and middle) and the lingual gyrus (components 4/5 vs. 7). To evaluate the

possibly different neural underpinnings of the distinct correlation patterns across regions, we

focused on the primary visual cortex (Fig. 5a) and the precentral gyrus (Fig. 5b) that showed

markedly different correlation patterns. While the fMRI activity showed clearly distinct

modulation across the regions and conditions, in MEG both the percent signal change and

the absolute power were more similar across the five conditions and two regions in the 6

examined frequency bands.

In the lower-frequency (< 30 Hz) range, the patterns of correlation between

electrophysiological and hemodynamic responses were also heterogeneous, with

components differing significantly from the average correlation pattern at various

frequencies (Fig. 3b). Marked differences were observed, e.g., in the middle temporal gyrus

(component 1), where a stronger negative correlation was observed at 2–4 and at ~8 Hz, and

in the superior temporal and inferior frontal gyrus (component 3), where a stronger positive

correlation was observed at 6–8 and 14–18 Hz compared to the average pattern. A stronger

positive correlation compared with the average pattern was detected also in the lingual gyrus

(at 22–30 Hz; component 7), inferior parietal lobule (at 20–22 Hz; component 2), precuneus

(at ~16 Hz; component 6), and precentral gyrus (at 12–14 Hz; component 8); in the

precuneus, a stronger negative correlation was also detected (at ~8 Hz). In pair-wise

comparisons among the 8 identified components (Fig. 4), the correlation spectra differed

significantly between most brain region pairs at around 2–8 Hz and 16–30 Hz.

4. Discussion

We applied partial least squares correlation analysis on MEG and fMRI data recorded from

the same subjects in a reading task to address the relationship between electrophysiological

and hemodynamic markers of neural activity in higher-order cortical regions. The selected

unconstrained PLSC approach allowed the evaluation of the consistency of the relationship

between electrophysiological and hemodynamic responses at the voxel-level, across the

cortex. The spatial specificity of the analysis allowed a detailed examination of possible

spectral differences in the observed MEG-fMRI correlations across brain regions. In general,

the observed correlation patterns were fairly similar across regions with strong positive
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correlations at high frequencies and weaker correlations at low frequencies. In some regions,

the positive gamma-frequency correlation was accompanied by a negative correlation in the

lower frequencies, in agreement with earlier reports (Niessing et al., 2005; Scheeringa et al.,

2011). However, a more detailed analysis revealed significant differences in the correlation

patterns between the electrophysiological and hemodynamic responses across brain regions

at multiple frequency bands, akin to previous observations in intracranial recordings

(Conner et al., 2011). The present findings highlight the importance of considering the

complexity of the neural origins of hemodynamic fluctuations when seeking to integrate the

views of brain processing provided by electrophysiological and BOLD fMRI measures

(Logothetis, 2008; Ekstrom, 2010; Lauritzen et al., 2012; Whitman et al., 2013).

4.1 High-frequency neural activity is not a unitary phenomenon in the correlation between
electrophysiological and hemodynamic responses

Our findings largely agree with the previously reported positive correlation between high-

frequency neural activity and hemodynamic responses (Logothetis et al., 2001; Nir et al.,

2007). However, across regions, these correlations showed notable variance in their specific

spectral distributions. Previously, positive correlations between BOLD and neural activity

have most often been attributed to activity in the so-called gamma band. The exact

frequencies, however, have varied considerably: effects have been reported, for example, at

20–60 Hz (Goense and Logothetis, 2008), 60–80 Hz (Scheeringa et al., 2011), and 40–100

Hz (Nir et al., 2008). In other instances, it has been shown that the BOLD signal may be

explained best by neural activity in a more extended frequency range (50–250 Hz; Ojemann

et al., 2010). While these phenomena occur at overlapping frequencies, they may reflect

fundamentally different kinds of neural activities (Kayser and Ermentrout, 2010). The

patterns that are limited to specific, narrower frequency bands can appropriately be called

oscillatory. However, modulations that span the range from the low-gamma frequencies up

to at least 200 Hz (He et al., 2010) are more likely to reflect arrhythmic neural activity

(Kayser and Ermentrout, 2010; Scheeringa et al., 2011).

We detected both types of phenomena. These two classes of correlation patterns between

electrophysiological and hemodynamic responses patterns were divided spatially and

functionally roughly into two categories. The brain regions that showed positive MEG-fMRI

correlation in somewhat narrower gamma bands (the left middle temporal gyrus, right

precuneus, and right lingual gyrus; components 1, 6 and 7 in Fig. 3) were located in more

posterior regions of the brain than the regions that displayed more broad-band effects (the

left superior temporal gyrus, left inferior and middle frontal gyrus; components 3, 5 and 8).

In the more posterior regions showing the band-specificity, the higher (ca 60–90 Hz)

gamma-band displayed a particularly prominent correlation with the BOLD signal, whereas

in the more anterior regions the correlation between the BOLD signal and neural activity

occurred over a wide gamma range without a clear distinction between the sub-gamma

bands. Indeed, the correlation spectra between these two types of regions typically differed

significantly at around 30–60 Hz. Moreover, in several temporal and frontal regions the

correlation spectra at 30–60 Hz differed significantly from the average correlation pattern

across all voxels where significant MEG-fMRI correlation was detected, whereas in the

more posterior regions a similar effect was observed in the high gamma range.
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This dissociation between regions may originate from the more posterior and lower-order

cortical areas exhibiting true oscillatory activity in specific bands, whereas in the more

frontal, higher-order regions the hemodynamic responses could be generated by arrhythmic

high-frequency neural activity. Furthermore, a negative broad-band correlation between the

high-frequency neural activity and the BOLD signal appeared in the precentral gyrus,

resulting in a notable distinction of the correlation patterns between two nearby areas, the

precentral gyrus (BA 6) and the inferior frontal gyrus (BA 45). One possible reason is the

different cytoarchitecture of the two regions (Amunts et al., 1999) that may be expressed

also in the their electrophysiological and hemodynamic activity relationship. It is also

possible that the central role of the precentral gyrus as a vascular source could crucially

affect the profile of BOLD activity in the region (Webb et al., 2013) and, thus, play a role in

its distinct MEG-fMRI correlation pattern compared to the neighboring inferior frontal

gyrus.

Notably, markedly different MEG- fMRI correlation patterns in the high-gamma range may

be accompanied by rather similar MEG activity profiles (cf. Fig. 5). Different correlation

patterns in the high-gamma range may thus not necessarily indicate distinct neural activities

in the different brain regions, but could possibly be linked to regional differences in the

generation of the BOLD signal, (cf. Fig. 5 for distinct condition dependence of the fMRI

patterns in the two brain areas). Different vasculature and neurovascular coupling could be

one explanatory factor for the observed distinct BOLD and correlation patterns across the

regions, despite rather similar neural activity profiles. It should also be noted that while we

detected a negative gamma-band correlation between the MEG and fMRI data sets in the

precentral gyrus, previous studies have reported a positive correlation in that general region

(Conner et al., 2011). Future studies should address whether this distinction might reflect the

specific experimental manipulations or that, in our data, the correlation pattern was

determined in the most inferior part of the precentral gyrus (vs. the entire precentral gyrus

by Conner et al).

4.2 Heterogeneous coupling of low-frequency neural activity to hemodynamics

Several investigations into the relationship between electrophysiological and hemodynamic

responses have reported negative correlations between BOLD and low-frequency (< 30 Hz)

neural activity (Laufs et al., 2003; Mukamel et al., 2005). In the present study, most of the

detected correlation patterns had a substantial low-frequency component. However, the

observed patterns were not dominated by either negative or positive correlations, but both

types of correlations, significantly different from zero, manifested at various frequencies

across brain regions. Notably, while we did detect a fairly broad-band low-frequency

negative correlation in the left middle temporal gyrus, and a slightly narrower overall

negative correlation in the left middle frontal gyrus, in many regions the observed negative

correlations were limited to very low-frequency bands (< 5 Hz); in the inferior parietal

lobule, precuneus and middle frontal gyrus, the negative correlations at < 15 Hz were also

accompanied by more salient positive correlations in the beta-band (15–30 Hz). Moreover,

in several regions, the correlation patterns differed significantly also from the average

correlation spectra across all voxels at varying frequencies (e.g., 2–4, 6–8, 12–14, 14–18,

20–22, and 22–30 Hz). In fact, the lower-frequency correlation patterns appeared to be fairly
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unique to each region. As an important exception, an identical pattern was evident in the left

inferior frontal and superior temporal gyrus (component 3 in Fig. 3); this finding suggests a

tight functional and physiological link between the two areas, in line with their known

anatomical connection (Friederici, 2009). Akin to the findings for high-frequency neural

activity, marked differences in the correlation between electrophysiological and

hemodynamic responses between close-by brain regions were detected also at the lower

frequencies: for example, the left middle (Brodmann area, BA, 9) and superior frontal gyri

(BA 6) showed a rather similar correlation pattern, except that the middle frontal gyrus

exhibited a strong positive correlation at around 20 Hz (components 4 and 5).

These findings may seem partly at odds with the currently predominant view of the

relationship between electrophysiological and hemodynamic activity. Reports of positive

correlations between low-frequency neural activity and the BOLD signal are scarce, limited

to observations, e.g., of 4–8 Hz activity in the parahippocampal gyrus (Ekstrom et al., 2009)

and the postcentral and superior temporal gyri (Conner et al., 2011). There are, however,

two key reasons why our findings are, in fact, complementary to rather than in disagreement

with previous studies. First, the vast majority of studies that have reported negative

correlation between spatially matched BOLD and low-frequency neural signals have been

conducted in the primary sensory or motor regions using relatively simple experimental

paradigms (Mukamel et al., 2005; Niessing et al., 2005). In the present study, however,

correlations between electrophysiological and hemodynamic responses were investigated

across the cortex via PLSC analysis of 5 cognitive conditions, and the most systematic

components of correlation were detected in higher-order cortical areas. These higher-level

regions showed quite heterogeneous patterns, with both negative and positive correlations in

several distinct low-frequency bands. Negative correlation between neural and

hemodynamic signals has also been reported in studies that have applied regression analyses

between a single sensor-level-based EEG measure and BOLD responses across the brain

(e.g., Laufs et al., 2003). Those types of studies have addressed, e.g., the manner in which

modulation of the posteriorly recorded alpha rhythm may be correlated with the BOLD

signal across brain regions. In contrast, we focused on spatially matched MEG and fMRI

activity measures to examine the voxel-wise spectral relationship between

electrophysiological and hemodynamic signals. By applying spatial matching across the

modalities, both the present fully noninvasive MEG-fMRI study and that of Conner and

colleagues, combining fMRI with intracranial electric recordings, detected a positive

correlation between the neural and BOLD signals below 10 Hz in the superior temporal

gyrus.

4.3 Sensitivity and specificity of group-level PLSC analysis

Significant correlation between electrophysiological and hemodynamic responses was

observed in a wide range of cortical areas that are commonly detected in activation studies

related to reading. Furthermore, in the primary visual cortex the hemodynamic signals were

negatively correlated with low and positively correlated with high frequency neural activity;

this finding agrees remarkably well with previous studies (Zumer et al., 2010; Scheeringa et

al., 2011), demonstrating the accuracy of a group-level PLSC compared to individual-level

correlation analysis. Notably, the present analysis was performed at the group-level in
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spatially matched voxels, without seeking to identify functionally exactly corresponding

regions across subjects. Together with inter-subject spectral variability of neural responses,

this resulted in slightly smaller correlation values than are sometimes observed in cases

where intermodal correlations are estimated within subjects (i.e., analysis of trial-to-trial co-

variation of electrophysiological and hemodynamic responses).

The areas showing significant correlation did not fully match the areas in which activation

levels, as measured with either fMRI or MEG, were most strongly modulated. This indicates

that the sensitivity of the PLSC approach does not depend merely on the signal-to-noise

ratio of the data. Correlation estimates are generally, and likely in this study as well, more

robust when there is salient variation in activity levels across subjects. However, such

variability tends to reduce the significance of standard, t-statistics-based group-level

activation estimates. It is also worth noting that the PLSC framework could be unsuccessful

in determining the relationship between electrophysiological and hemodynamic activity in

functional areas where the spectral patterns differ considerably across subjects. Indeed, some

of this apparent disparity between the activation and correlation patterns results from

differences in the significance levels that were reached with the different measures. For

instance, in the supramarginal gyrus, where MEG-fMRI correlation was not evident but both

MEG and fMRI activation measures exceeded the selected significance thresholds, a more

lenient (p<0.05) threshold for the PLSC analysis sufficed to reveal MEG-fMRI correlation

as well.

The observed difference between the most activated and most correlated brain regions also

yields insights into the distinct pictures of reading that have been obtained with MEG and

fMRI. For example, the fMRI data revealed the typical functional difference between words

and consonant strings in left inferior frontal cortex, whereas the MEG evoked responses did

not (Vartiainen et al., 2011). However, we detected significant correlation in that region

showing that the BOLD response was correlated with a broad-band neural response in the

gamma range. This observation suggests that the BOLD activity in the left inferior frontal

cortex is linked to modulation of high-frequency neural activity, possibly over a relatively

long time period. This type of modulation would not be readily picked up in typical MEG

analysis where the focus is on specific time windows and the signals are dominated by the

relatively high-amplitude low-frequency oscillations.

The present analysis was built on multiple, language-related task conditions. The

heterogeneous coupling between electrophysiological and hemodynamic activity we

observed thus included, not surprisingly, several key areas of language processing. The

spatiospectral MEG–fMRI correlation patterns in those areas differed considerably from that

of the visual cortex, especially in the lower frequency range. The good match of the

coupling pattern in the visual cortex detected here with those reported in previous studies

(Zumer et al., 2010; Scheeringa et al., 2011) increases confidence that the coupling patterns

observed in the higher-order regions also reflect specific linkage properties between

neuronal and hemodynamic activity. However, whether or not (or to what degree) the

correlation patterns would display spatiospectral invariance across different cognitive tasks,

remains to be determined by future studies. Furthermore, as the stability of MEG estimates

of neural activity at individual frequency bins required averaging over the entire response
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time interval, the present analysis does not allow linking the BOLD fMRI signals with

specific phases of the MEG responses. The observed MEG-fMRI correlation may reflect

different temporal and spectral properties of the neural response in different brain regions

(Supplementary data, Fig. S2).

Finally, we do not propose that the observed patterns would reflect the full profile of neural

activity; our findings merely demonstrate that these patterns of neural activity, as detected

with MEG, correlate with the hemodynamic signal, as detected with BOLD fMRI. There

may be brain areas where one imaging modality is sensitive to activity patterns that are not

detectable with the other technique. For example, non-synchronous neural activity can lead

to significant BOLD modulations without detectable signals in MEG. Conversely, there may

be other, transient neural patterns that are picked up by MEG but not reflected in the

hemodynamic signal. In addition, MEG's high sensitivity to the tangential component of

neural current flow and low sensitivity to the radial component may influence the observed

correlation spectra. Moreover, it should be noted that each MEG source localization

technique yields slightly different estimates of neural activity which could have some effect

on the observed MEG-fMRI correlation patterns.

5. Conclusions

Our holistic PLSC analysis of the relationship between BOLD fMRI and frequency-

decomposed MEG activity measures during cognitive processing revealed heterogeneous

spectral patterns of correlation across the cortex, akin to previous results from intracranial

recordings (Conner et al., 2011). Our findings further showed that brain regions involved in

different levels of cortical processing may also display distinct patterns Moreover, our

results suggest that, while high-frequency neural activity is a major component in the MEG-

fMRI coupling, in distinct functional regions this activity may be attributed to either

oscillatory components or more widely spread, possibly arrhythmic, high-frequency neural

activity. Similarly, various low-frequency oscillations contribute in a distinct manner to the

generation of the hemodynamic signal. These findings demonstrate the complexity of the

neurophysiological correlates of hemodynamic fluctuations in cognitive processing.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
PLSC analysis scheme for evaluation of the MEG-fMRI correlation. a) The analysis is done separately for each voxel. The

within-condition cross-correlations are computed by multiplying the normalized MEG spectra (15 subjects × 45 frequency bins)

with the transposed fMRI beta-values (15×1) across subjects. The within-condition cross-correlations (1×45) are then stacked

into a combined cross-correlation matrix (5×45), from which the orthogonal set of correlation patterns and corresponding

singular values are obtained via SVD. b) In the permutation testing, the procedure is otherwise the same, except that the fMRI

beta values across all conditions and subjects (5×15=75 data points) are permuted and re-divided into 5 shuffled condition

categories. This procedure shuffles simultaneously both the condition- and subject-specific relationship between the MEG and

fMRI data sets.

Kujala et al. Page 17

Neuroimage. Author manuscript; available in PMC 2015 May 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
Correspondence between neural and hemodynamic activation measures. a) BOLD fMRI results. Cortical areas in which at least

three of the five experimental conditions elicited significant (p<0.01, false discovery rate, FDR, corrected) modulation of

hemodynamic signal compared to rest. b) MEG results. Cortical areas in which evoked responses in at least three of the five

conditions indicated significant (p<0.001) neural activation compared to the prestimulus baseline. c) Cortical areas where the

frequency-decomposed MEG estimates and the BOLD fMRI signals were significantly (p<0.05, FDR) correlated across

participants and experimental conditions.

Kujala et al. Page 18

Neuroimage. Author manuscript; available in PMC 2015 May 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3.
Spatiospectral heterogeneity of the relationship between electrophysiological and hemodynamic responses. a) Medial view of a

region in the left primary visual cortex showing significant MEG-fMRI correlation, and the mean correlation pattern

(logarithmic scale) with 95% confidence limits for the two voxels that clustered together in the region. b) Components of

significant MEG-fMRI correlation patterns that were detected for clusters of at least five voxels. Cortical areas and the mean

spectral pattern (logarithmic scale) with 95% confidence limits of the correlation for each component (red line) (1, Middle

Temporal Gyrus, MTG; 2, Inferior Parietal Lobule, IPL; 3, Superior Temporal Gyrus, STG, and Inferior Frontal Gyrus, IFG; 4,

Superior Frontal Gyrus, SFG, and Superior Parietal Lobule, SPL; 5, Middle Frontal Gyrus, MFG; 6, Precuneus, PREC; 7,

Lingual Gyrus, LG; 8, Precentral Gyrus, PRCG). The black line represents the average correlation pattern across all voxels that

showed significant MEG-fMRI correlation, with the grey sidebands indicating the 95% confidence limits. Most of these

components map to a single contiguous cluster of voxels within a single cortical area, with the exception of components 3 and 4

which map to multiple contiguous cortical regions. The Talairach coordinates of the components are given in Table 2.
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Figure 4.
Differences in MEG-fMRI correlation spectra between components. Pair-wise comparisons among all the 8 identified PLSC

components (cf. Fig. 3), as a function of frequency. Each row of the figure shows a pair-wise comparison between two

components (first component in the first column, C1:1…7; second component in the second column, C2: C1+1 … 8). The black

sections denote the frequencies at which the correlation spectra between the two tested components differed significantly

(p<0.05, Bonferroni corrected); at these frequencies, the distribution of MEG-fMRI correlation values across the voxels

belonging to one region (C1) was distinct from the distribution of correlation values in the other region (C2). The anatomical

labels and Talairach coordinates of each component are given in Table 2.
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Figure 5.
Power spectra and signal modulations in the primary visual cortex (V1) and the left precentral gyrus (PRCG). fMRI percent

signal change (mean ± SEM) on top, followed by MEG percent signal change (mean ± SEM; middle) and absolute MEG

spectral power (arbitrary units, mean ± SEM; bottom). The MEG spectral power is displayed in 6 different frequency bands

(delta/theta, δ/τ, 2–6 Hz; alpha, α, 8–12 Hz; low-beta, Lβ, 14–24 Hz; high-beta, Hβ, 26–34 Hz; low-gamma, Lγ, 36–46 Hz;

high-gamma, Hγ, 54–96 Hz). Data shown in a) V1 and b) PRCG for all experimental conditions.
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Table 1

Areas of significant MEG-fMRI correlation.

Cortical areas in which the PLSC between task effects of MEG and fMRI activation measures reached

significance. Anatomical label, Talairach coordinates and Brodmann area (BA) assignment for each region.

Label X Y Z BA

LEFT HEMISPHERE

Middle Occipital Gyrus −39 −89 1 18

Middle Occipital Gyrus −32 −75 18 19

Supramarginal Gyrus −48 −50 20 40

Precentral Gyrus −52 −4 14 4

Inferior Frontal Gyrus −48 25 20 45

Superior Frontal Gyrus −35 26 47 8

Postcentral Gyrus −34 −32 57 3

Inferior Parietal Lobule −37 −45 55 40

Cuneus −2 −98 0 18

Cuneus 0 −77 35 19

Posterior Cingulate −6 −56 19 23

Precuneus −4 −38 44 7

Paracentral Lobule −7 −35 70 4

Superior Frontal Gyrus −8 37 44 8

Medial Frontal Gyrus −13 53 −6 10

Fusiform Gyrus −34 −56 −13 37

RIGHT HEMISPHERE

Superior Temporal Gyrus 59 −36 9 22

Postcentral Gyrus 50 −18 17 43

Inferior Frontal Gyrus 50 5 12 44

Inferior Frontal Gyrus 57 29 3 45

Middle Frontal Gyrus 39 3 55 6

Inferior Parietal Lobule 51 −33 43 40

Superior Parietal Lobule 27 −52 48 7

Angular Gyrus 47 −70 33 39

Fusiform Gyrus 51 −20 −23 20

Fusiform Gyrus 42 −44 −15 37

Medial Frontal Gyrus 5 −14 71 6

Precuneus 16 −77 40 7

Posterior Cingulate 17 −66 15 31

Lingual Gyrus 14 −60 4 19

Lingual Gyrus 12 −90 −1 17
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Table 2

Most systematic components of MEG-fMRI correlation.

Hierarchical clustering of voxels showing significant PLSC between MEG and fMRI. Anatomical labels,

Talairach coordinates and Brodmann areas (BA) of brain regions for the most systematic components (5 or

more clustered voxels per component).

Component and label L/R X Y Z BA

Component 1

Middle Temporal Gyrus (MTG) L −42 −73 24 39

Component 2

Inferior Parietal Lobule (IPL) L −34 −47 55 40

Component 3

Superior Temporal Gyrus (STG) L −50 −48 15 22

Inferior Frontal Gyrus (IFG) L −56 25 14 45

Component 4

Superior Frontal Gyrus (SFG) L −31 17 55 6

Superior Parietal Lobule (SPL) R 27 −52 48 7

Component 5

Middle Frontal Gyrus (MFG) L −40 28 36 9

Component 6

Precuneus (PREC) R 27 −78 33 19

Component 7

Lingual Gyrus (LG) R 12 −53 2 19

Component 8

Precentral Gyrus (PRCG) L −52 −2 11 6
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