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Purpose: A C-arm CT system has been shown to be capable of scanning a single cadaver leg under
loaded conditions by virtue of its highly flexible acquisition trajectories. In Part I of this study, using
the 4D XCAT-based numerical simulation, the authors predicted that the involuntary motion in the
lower body of subjects in weight-bearing positions would seriously degrade image quality and the au-
thors suggested three motion compensation methods by which the reconstructions could be corrected
to provide diagnostic image quality. Here, the authors demonstrate that a flat-panel angiography sys-
tem is appropriate for scanning both legs of subjects in vivo under weight-bearing conditions and
further evaluate the three motion-correction algorithms using in vivo data.
Methods: The geometry of a C-arm CT system for a horizontal scan trajectory was calibrated using
the PDS-2 phantom. The authors acquired images of two healthy volunteers while lying supine on
a table, standing, and squatting at several knee flexion angles. In order to identify the involuntary
motion of the lower body, nine 1-mm-diameter tantalum fiducial markers were attached around the
knee. The static mean marker position in 3D, a reference for motion compensation, was estimated
by back-projecting detected markers in multiple projections using calibrated projection matrices and
identifying the intersection points in 3D of the back-projected rays. Motion was corrected using three
different methods (described in detail previously): (1) 2D projection shifting, (2) 2D deformable
projection warping, and (3) 3D rigid body warping. For quantitative image quality analysis, SSIM
indices for the three methods were compared using the supine data as a ground truth.
Results: A 2D Euclidean distance-based metric of subjects’ motion ranged from 0.85 mm
(±0.49 mm) to 3.82 mm (±2.91 mm) (corresponding to 2.76 to 12.41 pixels) resulting in severe mo-
tion artifacts in 3D reconstructions. Shifting in 2D, 2D warping, and 3D warping improved the SSIM
in the central slice by 20.22%, 16.83%, and 25.77% in the data with the largest motion among the five
datasets (SCAN5); improvement in off-center slices was 18.94%, 29.14%, and 36.08%, respectively.
Conclusions: The authors showed that C-arm CT control can be implemented for nonstandard hor-
izontal trajectories which enabled us to scan and successfully reconstruct both legs of volunteers
in weight-bearing positions. As predicted using theoretical models, the proposed motion correction
methods improved image quality by reducing motion artifacts in reconstructions; 3D warping per-
formed better than the 2D methods, especially in off-center slices. © 2014 American Association of
Physicists in Medicine. [http://dx.doi.org/10.1118/1.4873675]

Key words: weight-bearing knee, C-arm cone-beam CT, motion artifacts, motion compensation,
fiducial marker

1. INTRODUCTION

Imaging the knee under loaded conditions is essential for
improving our understanding of knee function during activ-

ities of daily living in healthy and diseased joints. It has
long been the convention to acquire standard two-dimensional
(2D) radiographs of patients in an upright, standing position
in order to better diagnose diseases such as osteoarthritis.1
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More recently this idea has been reinforced in studies that
have shown significant differences in joint kinematics be-
tween nonweight-bearing and weight-bearing conditions.2–4

However, current three-dimensional (3D) imaging methods
including magnetic resonance (MR) and computed tomogra-
phy(CT), are routinely performed only in an unloaded supine
or prone position. Upright, weight-bearing knee kinematics
have been studied using 2D radiography in standing,5 open-
configuration MR imaging,3, 6, 7 and single- and dual-plane
fluoroscopy.8–12 The 2D radiographic projection is common
as it provides useful 2D diagnostic findings at relatively low
cost. However, it yields only limited information about the
complex 3D knee structure. Studies using an open-bore real-
time MR system showed that patellofemoral kinematics un-
der weight-bearing conditions are different than those under
unloaded conditions using 2D kinematic parameters.3, 6 How-
ever, the open-bore MR system still had a limited range of
weight-bearing postures and a subject was unable to stand
vertically supporting 100% of his/her body weight. In addi-
tion, compared to CT systems, clinical MRI scanners have a
limited ability to image bone tissue, and typically have lower
spatial resolution. Single and biplane fluoroscopy techniques
showed 3D dynamic changes in knee kinematics;8–12 how-
ever, there was no soft tissue visibility. Moreover, the sys-
tems require a static 3D CT or MR scanning model combined
with 2D-3D registration procedures in order to track individ-
ual bones’ movement, which adds computational complexity.
Liu et al.12 measured surrogate cartilage deformation using an
unloaded cartilage MR scanning model which may cause in-
accurate morphological estimation of cartilage deformation.13

A C-arm-based cone-beam CT (CBCT) scanner with a dig-
ital flat panel detector represents a promising imaging sys-
tem for evaluation of static 3D joint position and orientation
and cartilage-bone stress in vivo under weight-bearing con-
ditions. The C-arm system provides high-resolution 3D vol-
ume images (i.e., a stack of slices) with superior bone con-
trast, and highly flexible trajectories for the image acquisition.
Moreover, compared with MR imaging systems, the C-arm
system requires short image acquisition times as the angu-
lar speed of current C-arms is up to 100◦ per second through
the required π + fan rotation angle. Thus, relatively small
motion artifacts associated with patients’ involuntary move-
ment during scanning are expected. The system has the abil-
ity to rotate in a plane parallel to the floor, providing access to
a full range of weight-bearing postures. Recently, dedicated
CBCT systems for musculoskeletal extremities have been de-
veloped and are capable of imaging the lower extremities un-
der weight-bearing conditions.14, 15

In the numerical model-based optimization16 (hereafter re-
ferred to as “Part I”) of this study, the complicated involuntary
lower body movement of patients in standing positions was
simulated using the XCAT knee model. From the numerical
simulation results in Part I, it was seen that a subjects’ invol-
untary lower body motion generates considerable motion arti-
facts in volume images in vivo. Thus, an important remaining
task is to deal with motion artifacts under in vivo experimental
conditions. Three motion compensation methods (2D projec-
tion shifting, 2D projection warping, and 3D image warping)

were proposed that effectively compensated for the motion of
the lower body in standing positions on simulated data. Ear-
lier published work on CT motion compensation have been
reviewed and summarized in Part I. In this report (Part II), we
demonstrate that a C-arm CT scanner with a digital flat panel
detector is capable of scanning both legs of a human subject
in vivo in standing positions with different knee flexion an-
gles. Moreover, we confirmed that the algorithm is also suit-
able for the reconstruction of real test subjects’ data. The pro-
posed motion compensation methods will be applicable to any
high-resolution weight-bearing CBCT imaging system.14, 15

2. METHODS AND MATERIALS

2.A. Data acquisition using a C-arm CT scanner

2.A.1. Calibration of projection matrices

Prior to scanning a patient, calibration of all projection ma-
trices for the horizontal scan trajectories (i.e., the C-arm ro-
tates about the axis perpendicular to the floor) on a C-arm
CT system is performed using the PDS-2 calibration phan-
tom with a hollow cylindrical shape.17 The geometry of the
jth projection of a C-arm CT system can be expressed using a
single projection matrix (Pj) with 3 × 4 elements describing
how a certain voxel (x,y,z) in 3D is mapped onto a projection
image (u,v) in 2D in homogeneous coordinates. In the outer
wall of the PDS-2 phantom, 108 metallic spherical beads with
small and large radii are embedded along a helical trajectory.
The alternating order of the large (1) and small (0) beads func-
tions as binary representation of 8-bit-wide numbers. Thus,
any sub-sequence of 8 consecutive beads identified in a pro-
jection image allows us to identify the corresponding 8 beads
out of 108 beads in 3D. By connecting the known 3D coordi-
nates of beads to the identified corresponding 2D coordinates,
Pj can be computed.18–20

Figure 1 shows identified beads of the PDS-2 phantom in a
projection. The PDS-2 phantom was positioned so that the he-
lix of beads in a projection image does not self-overlap. Each
Pj was estimated using the following steps: (i) After taking
the numerical derivative of the original projection image in
the u and v directions to detect drastic changes in intensity
values such as at a bead edge, we took the absolute values
of the intensities. (ii) The outer wall of the PDS-2 phantom
and the beads were detected using a Hough circle and line
detection algorithm.21 (iii) The beads were grouped into six
different subsequences. The fourth subsequence in the box
(Fig. 1, right) is shown as an example. By decoding the 8-bit
alternating order of the small and large beads along the arrow,
the beads were matched to their 3D counterparts with known
coordinates in 3D, which allowed us to estimate Pj for the
jth projection image. (iv) The beads in 3D were reprojected
(drawn as “+” in Fig. 1) in order to evaluate the accuracy of
the acquired Pj.

2.A.2. Imaging of two healthy volunteers
in weight-bearing positions

Under an IRB-approved protocol, two healthy volunteers
were scanned while lying supine, upright and bearing their
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FIG. 1. The original projection of the PDS-2 phantom is shown on the left. In order to identify subsequences of beads, small and large beads (◦,�) were
detected. After computing Pj, the beads’ 3D positions were re-projected (+) using the Pj to evaluate the calibration accuracy in the jth projection.

weight at several different knee flexion angles using a C-
arm CT scanner with a digital flat panel detector (Axiom Ar-
tis dTA, Siemens AG, Forchheim, Germany). The acquisition
protocol used a tube voltage of 70 kVp, detector dose request
setting of 1.2 μGy/projection, resulting in 248 views acquired
during rotation of the C-arm through π + fan angle in 10 s.
The kV and mAs were automatically chosen by an automatic
exposure control (AEC) mechanism,22 based on the object in
the field of view and the acquisition protocol. Each projection
used a matrix of 960 × 1240 with a pixel size of 0.308 mm
× 0.308 mm after 2 × 2 binning. Five different datasets
(SCANs 1 to 5) from two subjects (see Table I) were used
to validate the results of the XCAT phantom simulation de-
scribed previously. SCANs 1 and 2 were acquired by scanning
the first subject at knee flexion angles of 0◦(full extension) and
60◦ (squatting), respectively. SCANs 3, 4, and 5 were from
the second subject at knee flexion angles of 0◦, 35◦, and 65◦,
respectively.

As shown in Fig. 2, each volunteer was scanned with a to-
tal of nine tantalum spherical markers (1 mm diameter) evenly
placed around both knees (four markers around one knee,
five around the other) in order to track the involuntary mo-
tion of the lower body. This marker placement is close to the
“EVEN” configuration we utilized in Part I; that configura-
tion was shown to be robust regardless of the motion correc-

tion method used. When the C-arm system acquires images in
lateral projections, very thick objects with high density (two
femora) pass through the center of the FOV, and the AEC
system responds by increasing the exposure. Given the lim-
ited dynamic range of the detector, this produces saturation at
the peripheral boundary of the subject. Although saturation-
correction software is available on the system, we found that
application of modeling clay (Plastalina, Van Aken Interna-
tional, Rancho Cucamonga, CA) wrapped around both legs
was necessary to prevent saturation at the posterior and an-
terior surfaces of the knees. This solution is not ideal, and
other correction methods are under investigation to either re-
duce the dynamic range of the signal at the detector, or suit-
ably constrain the reconstruction in order to reduce artifact
and eliminate the need for modeling clay.

2.A.3. Dose estimation

We carried out dose simulations using a commercial Monte
Carlo simulation package, PCXMC2.0.23 We scanned two
cylindrical phantoms simulating two legs of a subject. The
values of tube voltage and current for each projection result-
ing from AEC were acquired and used as inputs to PCXMC.
Prior to conducting the dose estimation, the half-value layer
(HVL) of the x-ray spectrum in PCXMC was set to match the

TABLE I. Image quality comparison of five dataset with different motion correction methods in terms of SSIM index. We took an average of SSIMs of three
consecutive adjacent slices around the bottom of femur for the “Central” slice SSIM index and the femoral midshaft for the “Off-center” slice SSIM index. The
best values are reported in bold face.

SSIM

Axial slice No correction 2D shifting 2D warping 3D warping

SCAN 1: Subject 1 standing straight-motion: 4.26 pixel (1.31 mm) Central 0.1879 0.4290 0.4292 0.4028
Off-center 0.2672 0.5533 0.5477 0.5260

SCAN 2: Subject 1 squatting at 60◦ flexion-motion: 6.13 pixel (1.89 mm) Central 0.1256 0.3328 0.3226 0.3025
Off-center 0.2198 0.4166 0.4078 0.4184

SCAN 3: Subject 2 standing straight-motion: 2.77 pixel (0.85 mm) Central 0.1905 0.3859 0.4318 0.3915
Off-center 0.3182 0.4357 0.4157 0.4129

SCAN 4: Subject 2 squatting at 35◦ flexion-motion: 10.50 pixel (3.23 mm) Central 0.1217 0.2801 0.2787 0.2921
Off-center 0.1038 0.2897 0.1692 0.4523

SCAN 5: Subject 2 squatting at 65◦ flexion-motion: 12.41 pixel (3.82 mm) Central 0.0797 0.2819 0.2480 0.3374
Off-center 0.1061 0.2955 0.3975 0.4669
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FIG. 2. Each volunteer was scanned while standing in a C-Arm CT. The C-Arm rotates in a horizontal plane. Nine tantalum metallic markers were suitably
attached around the knee. Both legs were wrapped with modeling clay to prevent saturation artifacts.

measured HVL (2.9 mm Al)24 at a tube voltage of 70 kVp.
The effective dose based on ICRP 103 weighting coefficients
is 0.06 mSv for a single C-arm CT scan with the exam sets of
the weight-bearing scanning including geometric system set-
ups described in Sec. 2.A.2. This dose is comparable to that
from three chest x-ray acquisitions. The effective dose asso-
ciated with this acquisition protocol is minimal compared to
2.95 mSv, the average annual total effective dose from back-
ground radiation of a resident of the United States.25

2.B. Motion compensated reconstruction

2.B.1. Estimation of the static mean marker
coordinates in 3D

Since we do not know the true 3D position of each marker
which will serve as a reference to correct temporal motion,
the reference 3D position needs to be estimated prior to the
motion correction process. If a cone beam CT system rotates
about one axis with a perfect circular trajectory, the static
mean marker location in 3D can be described as a function
of the gantry angle, source to detector distance, source to pa-
tient distance, and the marker position in a projection. Thus,
the 3D mean position of a marker can be estimated by back-
projecting the marker from multiple 2D projection images
onto a 3D space.26 Since a C-arm CT system has nonideal tra-
jectories due to mechanical instabilities, the geometry of the
system is not a simple function of gantry angle only. The 3D
mean position (x̄, ȳ, z̄) estimation of a marker in a C-arm CT
system with imperfect trajectories can be performed more ac-
curately using the acquired projection matrices Pj and identi-
fied markers in several projection images as described below.
(We will describe how the coordinates of a marker (uj, vj)
in the jth projection image were identified in Sec. 2.B.2.).
Equation (1) shows a 3 × 4 projection matrix (Pj) for the jth
projection mapping a certain voxel (x̄, ȳ, z̄) in 3D onto the jth
projection image (uj, vj) in 2D in homogeneous coordinates,

⎛
⎝ uj

vj

1

⎞
⎠ · ξj = Pj ·

⎛
⎜⎜⎝

x̄
ȳ
z̄
1

⎞
⎟⎟⎠ =

⎡
⎢⎣

p̄T
j,1 pj,14

p̄T
j,2 pj,24

p̄T
j,3 pj,34

⎤
⎥⎦ ·

⎛
⎜⎜⎝

x̄
ȳ
z̄
1

⎞
⎟⎟⎠ , (1)

where ξ j is a homogeneous term and p̄T
j,m = (pj,m1 pj,m2 pj,m3)

in the jth projection image and the subscript m is a matrix row
number. Eliminating ξ j produces[

uj · p̄T
j,3 − p̄T

j,1

vj · p̄T
j,3 − p̄T

j,2

]
·

⎛
⎝ x̄

ȳ
z̄

⎞
⎠ =

(
−uj · pj,34 + pj,14

−vj · pj,34 + pj,24

)
. (2)

A second rearrangement provides Eq. (3) below:⎛
⎝ x̄

ȳ
z̄

⎞
⎠ =

[
uj · p̄T

j,3 − p̄T
j,1

vj · p̄T
j,3 − p̄T

j,2

]−1

·
(

−uj · pj,34 + pj,14

−vj · pj,34 + pj,24

)
. (3)

The remaining unknowns are (x̄, ȳ, z̄), and with j = 248 pro-
jections we therefore have sufficient information to estimate
the unknowns using

⎛
⎝ x̄

ȳ
z̄

⎞
⎠ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1 · p̄T
1,3 − p̄T

1,1

v1 · p̄T
1,3 − p̄T

1,2

u2 · p̄T
2,3 − p̄T

2,1

v2 · p̄T
2,3 − p̄T

2,2
...

u248 · p̄T
248,3 − p̄T

248,1

v248 · p̄T
248,3 − p̄T

248,2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−u1 · p1,34 + p1,14

−v1 · p1,34 + p1,24

−u2 · p2,34 + p2,14

−v2 · p2,34 + p2,24
...

−u248 · p248,34 + p248,14

−v248 · p248,34 + p248,24

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

Medical Physics, Vol. 41, No. 6, June 2014



061902-5 Choi et al.: Fiducial marker-based correction for involuntary motion 061902-5

FIG. 3. Markers were semiautomatically detected in 2D projection images. Based on a manually identified marker position in 3 to 5 projection images and
Eq. (3), an initial estimate of (x̄, ȳ, z̄) was acquired in Step (i). The initial (x̄, ȳ, z̄) was forward-projected onto a projection image using a projection matrix.
A radial search around the forward-projected point (ūj, v̄j) shown as an open circle was conducted to locate (uj, vj) shown as a solid circle. Step (iv) updated
(x̄, ȳ, z̄) using the identified (uj, vj) from every projection and Eq. (3). The updated (x̄, ȳ, z̄) provides a reference for the following motion correction methods.

In this way, the 3D mean position of nine different markers
was individually estimated.

2.B.2. Semiautomatic marker detection in a 2D
projection image

Due to the high number of projection images and mark-
ers, manual detection of the markers is impractical in our ap-
plication. The coordinates of the nine markers in projection
j, (uj, vj) were identified using the following steps: (i) The
marker position in 3 to 5 different, well-distributed projec-
tions was manually detected as shown in Fig. 3. Using the
3 to 5 different projection coordinates (uj, vj) and Eq. (3), a
rough initial estimate of the 3D mean position of the marker,
(x̄, ȳ, z̄), was acquired. (ii) After taking the numerical deriva-
tive of the original projection image in the u and v directions,
the absolute values of the intensities were taken. (iii) The
mean estimate (x̄, ȳ, z̄) was forward-projected onto a projec-
tion j, (ūj, v̄j), shown as an open circle in Fig. 3 [Step (iii)].
Point clouds located within the distance of 10 pixels were se-
lected as candidates for (uj, vj). In the case where a patient’s
involuntary motion is severe, (uj, vj) could show large devia-
tion from (ūj, v̄j) so a larger value of the radial search distance
was needed. A Hough circle detection algorithm was applied
over the candidates and the (uj, vj), shown as a solid circle in
Fig. 3 [Step (iii)] was identified. (iv) Using the (uj, vj) from
every projection and Eq. (3), the previously acquired (x̄, ȳ, z̄)
was refined. With the re-estimated (x̄, ȳ, z̄), Step (iii) was con-
ducted again to determine amore accurate and final (uj, vj).

2.B.3. Motion correction methods

The same three methods used in the XCAT model simula-
tion were used to correct the involuntary motion-induced arti-
facts. A detailed description of the three motion compensation
algorithms is provided in Part I. The estimated 3D mean po-
sition of a marker i, r̄i = (x̄i, ȳi, z̄i), was used as a reference
and the forward-projected point of the reference in a projec-
tion image j functioned as a 2D reference, �ri,j = (ūi,j, v̄i,j).

For patients’ motion estimation, each marker’s average of
its 2D Euclidean distance from its 2D reference �ri,j in 248

projections followed by an average of the deviation over all N
markers was calculated as follows:

Patient motion (mm)

= 1

N
·
∑N

i=1

(
1

248
·
∑248

j=1
‖�ri,j − �mi,j‖

)
, (5)

where the ith marker’s 2D coordinates in the jth projection is
denoted as �mi,j and ‖ · ‖ is the Euclidean distance.

Each compensation method searches for the optimal trans-
formation that will minimize the distance between 2D refer-
ences and identified markers. However, even after the trans-
formation for the three methods, deviations of transformed 2D
references from identified markers are still present, mostly be-
cause of marker detection errors and deformable motion that
violates the rigid-body assumption for 2D shifting and 3D
warping. In order to estimate the impact of the two contribut-
ing factors on the performance of our methods, the residual
error in the jth projection was defined as the 2D Euclidean
distance between a transformed 2D reference �r′i,j and an iden-
tified marker �mi,j , as below:

Residual error (mm) = 1

N
·
∑N

i=1
‖�r′i,j − �mi,j‖. (6)

As shown in Fig. 4 (left), the deformable projection warp-
ing in the 2D method produced unrealistic bending. This
arises from the very principle of the method, which is to
correct a 3D motion by a 2D-only warping. The unrealistic
warping can be reduced using the approximate TPS mapping
with a regularization parameter λ.27 The exact spline interpo-
lation requirements over the control points were relaxed us-
ing a heuristically chosen λ with a result as shown in Fig. 4
(right). The scaling strategy decreased the 2-norm condition

number of the matrix, [ K P
PT O

](p+3)×(p+3) in Eq. (10) in Part I by

approximately 13 orders of magnitude.

2.B.4. Reconstruction

Reconstructions of the projection images were performed
using the same reconstruction pipeline and in-house frame-
work (CONRAD) (Ref. 28) used for the XCAT knee model
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FIG. 4. A projection was warped in 2D using TPS mappings. The markers (×) were mapped smoothly onto the 2D references (+). The left and right show the
warped projection with exact TPS fitting (λ = 0) and with approximate TPS fitting (λ > 0). The grid lines were inserted to improve visualization of the overall
warping of the projection.

with the addition of three steps: Automatic Exposure Control
(AEC) compensation,22 low contrast water correction,29 and
water-equivalent-thickness scatter correction with Gaussian
kernel.30 For the reconstruction of the XCAT knee model, the
three additional steps were not necessary since we directly
simulated line integral data. The images were processed us-
ing the three corrections prior to application of the previous
reconstruction pipeline. The reconstruction process resulted
in 5123 voxels with an isotropic spacing of 0.5 mm and 32-bit
depth using floating point values.

2.C. Image quality comparison and investigations

As the ground truth is typically unavailable for in vivo
motion-corrected experimental data, image quality compari-
son between the experimental data is not a straightforward
process. Here we used the Structural SIMilarity (SSIM)
index31 for quantitative image quality comparison. Assuming
no motion of patients while scanning in the supine position,
we used the supine data as a ground truth reference for the
standing data after motion correction with different methods.
Since we were unable to compute the SSIM index on the full
volumes because of the nonrigid deformation at different knee
flexion angles between the supine and standing data, compu-
tation took place only on a rigid portion of the volume (the fe-
mur area). In order to minimize patient motion for the ground
truth supine data, both legs were strapped to the table. Point
clouds of the left femur in standing and supine reconstruc-
tions were automatically segmented using localized region-
based active contours by Lankton et al.32 which take local
information into account as opposed to global image statis-
tics. Since the background of the femur in a slice is very het-
erogeneous, a spline-interpolated mask or initial guess was
roughly set around the boundaries of the femur for faster and
more accurate segmentation. The left femur in the motion-
compensated standing reconstruction was registered to the left
femur in the supine reconstruction using a rigid body trans-
formation as shown in Figs. 5(a) and 5(b). The two volumes
were reconstructed in a referential system fixed to the C-arm
coordinate frame (i.e., the patient). The upper body was po-
sitioned above and below the scanning plane during stand-

ing and supine scans, respectively, so a rotation of approxi-
mately 180◦ was required during registration of the two vol-
umes. The rotational and translational transformation matri-
ces (R, T) were computed by using an iterative closest point
algorithm (ICP) on 3D point clouds of a model (supine) and
data to fit (standing).33 A k-dimensional tree search was used
to match corresponding point sand then point-to-point min-
imization was conducted. The ICP registration error is de-
fined as the mean of the RMS errors of transformed points
to the closest point in the model. The registration errors were
on the sub-voxel scale of 0.19 mm (±0.02 mm) for the five
different datasets from the two subjects. After registering the
other standing reconstructions with different motion correc-
tion methods with the supine reconstruction using the ac-
quired R and T, the SSIM index was calculated. Assuming
the femur is rigid, the region of interest (ROI) of the SSIM
calculation was set around the boundary of the femur includ-
ing its surrounding soft tissue as shown in Fig. 5(c). Due to
different knee flexion angles, the patella is visible near the
ROI in the left (Standing), but not in the right (Supine regis-
tered) images.

We do not know how high an SSIM index could be
achieved when registering 20-s supine data (248 views) to 10-
s standing data. In other words, the registration process as well
as the reduced imaging time might affect the SSIM index even
if there is no motion at all. Thus, we scanned a human cadaver
tibia immersed in a cylindrical plastic container filled with tis-
sue fixation liquid. The tibia underwent the same registration
process as the femur in vivo and its SSIM indices were cal-
culated. The acquired SSIM indices can be considered as the
best SSIM achievable with perfect motion correction, which
in turn assists with interpretation of the significance of, e.g.,
a 1% increase in the SSIM index by the motion correction
methods. Moreover, in order to estimate only the effect of
the number of projections and the detector dose request iso-
lated from the effect of the above-mentioned registration pro-
cess, the SSIM indices were calculated for reconstructions of
the cadaver tibia in the supine position from (i) 248 views,
1.2 μGy/projection, (ii) 248 views, 0.54 μGy/projection, and
(iii) 248 views, 0.36 μGy/projection, relative to the same tibia
in supine with 494 views and 1.2 μGy/projection.

Medical Physics, Vol. 41, No. 6, June 2014



061902-7 Choi et al.: Fiducial marker-based correction for involuntary motion 061902-7

FIG. 5. (a) The point clouds of the left femur in standing (Subject 2 squatting at 35◦ flexion) and supine reconstructions were automatically segmented. The left
femur in standing reconstruction was registered to that in supine reconstruction by the rigid body transformation as shown in (b). (c) shows the ROI for SSIM
calculation.

The impact of an inaccurate estimate of marker location
on image quality was also investigated. Before conducting
the systematic detection error analysis, the following condi-
tions were taken into account: (i) The marker detection al-
gorithm fails in consecutive projections due to unfavorable
conditions of a marker’s neighboring pixels such as adjacent
high density materials (e.g., bone edges), photon starvation,
and detection saturation. (ii) Since the relative position of the
neighboring pixels having the unfavorable conditions exists in
consecutive projections, it is more reasonable to apply detec-
tion error in the same direction with the same amount rather
than to impose random error. (iii) If the amount of misplace-
ment is larger than a certain threshold, it is better to exclude
the marker from a particular projection rather than to use the
badly estimated marker. (iv) The threshold would depend on
the amount of each patient’s involuntary motion. Based on the
considerations above, misplacement errors were imposed on
one of the nine markers in SCAN 5 (Subject 2 squatting at
65◦ flexion) with the largest motion of the five datasets. The
magnitudes of the error applied to the marker were 6, 12, and
24 pixels toward its 2D reference (ūj, v̄j) from its true location
(uj, vj) in a projection image. For reference, 12 pixels amount
to the estimated patient motion in SCAN 5 using Eg. (5). The
marker was present in the 354th slice of the reconstructed vol-
ume which had 512 axial slices in total. The ROI for the SSIM

index calculation was set around the boundary of the femur in
a different adjacent axial slice to avoid the direct impact of
the metallic marker’s streak artifact on image quality.

Finally, an entropy histogram (see Appendix A) is also cal-
culated and will be used to evaluate its validity as an image
quality metric in the presence of motion artifacts.

3. RESULTS

Five dataset from two subjects were reconstructed and
each dataset showed a different amount of motion. Patients’
involuntary motion was estimated using the 2D Euclidean
distance-based metric of Eq. (5). As shown in Table I, the de-
gree of motion ranges from 2.77 pixels (0.85 mm) to 12.41
pixels (3.82 mm). Figure 6 shows representative slices of
SCAN 5 (Subject 2 squatting at 65◦ flexion) with the largest
motion of the five datasets. For the left fibula in row (a),
showing the lower off-center slice, the reconstruction with
3D warping works best and 2D shifting works second best
in terms of qualitative sharpness of the recovered bone edge.
For the right fibula in row (a), 3D warping works best and
2D warping works second best, which is more obvious in the
Postero-Anterior (PA) view in row (f). In Fig. 6(f2), the right
fibula and its adjacent edge of the tibia were still blurred, as
compared to (f3) and (f4). In the upper off-center slice shown
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FIG. 6. Reconstructed slices of subject 2 from the scan with the largest motion of the five datasets (SCAN 5). The first four rows (a) to (d) show representative
off-center or approximately central axial slices. The axial slice numbers of (a) to (d) are 145, 200, 305, and 407 out of 512 slices, respectively. The fifth row
(e1 to e4) shows sagittal slices and the sixth row (f1 to f4) shows coronal slices. The slices were reconstructed with and without the motion correction methods,
and are aligned by column as indicated.

in row (d), 3D warping clearly performs the best and 2D shift-
ing works second best, based on the recovery of the femur
edge. In the central slices shown in rows (b) and (c), it is not
easy to make a qualitative comparison between the correction
methods, as compared to off-center slices in rows (a) and (d)
where differences in image quality are more obvious. In row
(b), 3D warping works best and 2D warping works second
best when focused on the areas indicated by arrows. In row
(c), (c2) and (c3) show remnants of motion-induced, metallic
marker streaks as indicated by the left arrow that disappear in
(c4). Focusing on the areas where the arrows point in row (c),
(c4) demonstrates the clearest edge.

Figure 7 shows degradation of image quality due to marker
detection errors. Reconstructed slices in Fig. 7 are identical
to those in Fig. 6 except for marker detection errors of one

marker in two consecutive projections with 12 and 22 pixel
deviations, respectively. These errors occurred during the
semiautomatic marker detection. Although Fig. 7(a2) shows
clearer edges of the right tibia and fibula, 2D warping intro-
duced an unwanted double slanted line artifact which is not
shown in (a1). In (a3), the same streak artifacts are present,
although they are less severe than those in (a2). As few as two
marker detection errors caused image quality degradation on
the marker’s neighboring 3D areas as shown in (b2).

Figure 8 shows the impact of misplaced marker detection
in up to 15 consecutive projections on the SSIM index. As
the number of consecutive projections with erroneous detec-
tion increases, the SSIM index decreases and the SSIM index
with 2D shifting drops relatively less compared to that with
the other two methods. “Abandon” in the figure key means
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FIG. 7. Degradation of image quality due to bead detection errors. Reconstructed slices of subject 2 with the largest motion (SCAN 5) of the five datasets.
These slices are identical to those in Fig. 6 except that a bead detection error of one marker in two projections was applied.

that the marker estimate was discarded in consecutive projec-
tions and the correction methods were performed using only
the remaining markers, which allowed us to compare the im-
pact of including and excluding bad estimates on image qual-
ity. In the 2D shifting plot, data points with excluded marker
labeled “Abandon” align close to and below the 6 pixel er-
ror data points. “Abandon” data points lie below and close to
the 12 pixel error data points in the 2D warping plot and they
lie between the 12 pixel error data points and 24 pixel error
data points in the 3D warping plot. Two dimensional warp-
ing shows a greater decrease in the SSIM index with 6 pixels
and 12 pixels of marker deviation on consecutive projections
compared to the other methods.

Figure 9 shows the reconstructions of subject 2 standing
with knees at full extension with the least motion of the five
datasets. Even before motion correction in the first column,
some slices show comparable image quality to the motion-
corrected slices in Fig. 6 and suffer from much less severe mo-
tion artifacts, compared to those in the first column in Fig. 6.
All of the three methods effectively reduced motion-caused
streaks and recovered sharp edges of the bone structure. For
this case, all three methods produced the same level of image
quality improvement which made it difficult to qualitatively
determine which method was best.

As described in Sec. 2.C, the SSIM index was calculated
for quantitative image quality comparison. The SSIM indices
of the five in vivo datasets are tabulated in Table I. We used an
average of SSIM indices of three consecutive slices around
the bottom of the femur as the “Central” SSIM index. For
the “Off-center” SSIM index, we took an average of SSIM
indices of the three adjacent slices around the femoral mid-
shaft. SCANs 4 and 5 show 2 times larger motion than SCANs
1 to 3. Therefore, SCANs 4 and 5 have more severe mo-
tion artifacts, resulting in lower SSIM indices of the recon-
structed slices before motion correction, compared to SCANs
1 to 3. For the central and off-center slices of SCANs 4 and
5, 3D warping performed better than the 2D methods over-
all. 3D warping performance stood out particularly in the off-

center slices in comparison to the central slice, as evidenced
by larger differences in SSIM indices between 3D warping
and the 2D methods in the off-center slices. In general, 2D
shifting and 2D warping showed comparable performance, al-
though 2D warping sometimes works very poorly as shown in
the off-center slice of SCAN 4. In the axial slices of SCANs 1
to 3 with relatively small motion, the three different methods
showed similar image quality improvement that led to rela-
tively small increase in SSIM, compared to SCANs 4 and 5.

Figure 10 shows measured SSIM indices of SCANs 4 and
5 as a function of slice number. The lowest slice number (0)
on the X-axis corresponds to the bottom of the femur close to
the mid-plane out of 512 slices. Three-dimensional warping
tends to work better compared with 2D methods as the slice
number increases.

3D warping identified the optimal rotational matrix R and
translational matrix T for SCANs 1–5. Figure 11 shows rep-
resentative R and T matrices acquired for SCAN 5 as a func-
tion of the projection number. Matrix R defined rotation about
three-axes following the Y-X-Z convention of Euler angles.
The rotation about X-and Z-axes fluctuated roughly between
−0.5 and 0.7. Compared with the rest axes, the Y-axis rotation
showed a larger variation, ranging between −1.1◦ and 1.3◦.
Translation along the X-axis had the largest fluctuation, be-
tween −3.0 and 3.3 mm, and the Z-axis translation was con-
sidered minor compared with that of the X- and Y-axes.

Figure 12 shows residual errors after transforming the 2D
references to identified markers for 3D warping. The resid-
ual errors were computed using the 2D Euclidean distance-
based metric of Eq. (6). As seen in the magnified window
in Fig. 12(a), the positions of the identified marker and the
transformed 2D reference were not identical. Moreover, the
relative position of an identified maker to its corresponding
transformed 2D reference in Fig. 12(a) varied between the
nine markers. The residual errors ranged from 0.16 mm (0.52
pixel) to 0.45 mm (1.46 pixel). The residual errors for SCANS
of the same subject (e.g., SCANs 3–5 of Subject 2) tended to
increase as the patient motion became vigorous.
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FIG. 8. Image quality (the SSIM index) with three correction methods varies as a function of the number of consecutive projections having a displaced marker
with 6 pixel, 12 pixel, and 24 pixel error. After excluding the marker from projections, the SSIM index was also calculated as indicated by square data points
(“Abandon” in figure key).

4. DISCUSSION

The new horizontal C-arm trajectory for weight-bearing
scanning showed a significant “wobble” similar to that seen
for a standard vertical trajectory.34 However, both trajecto-
ries showed comparable reproducibility over multiple scans
acquired within one day and across one week.34 As long as
the trajectory is reproducible, we can geometrically calibrate
the system using the projection matrix approach. The amount
of wobble of the C-arm gantry should not impact the per-

formance of the proposed subject-motion correction methods
since the projection matrices are properly incorporated into
the governing equations, Eqs. (1) to (4).

In order to confirm the validity of the theoretically eval-
uated three motion correction methods, the methods were
tested on five different in vivo human subject datasets. The
experimental data show the methods efficiently corrected the
patient-motion artifacts in a similar way as in the XCAT
knee model simulation in Part I. In general, 3D warping was
shown to be superior to the 2D methods for the data with
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FIG. 9. Reconstructed slices of subject 2 with the least motion (SCAN 3) of 5 datasets. Rows (a) to (c) show representative lower off-center, central, and upper
off-center axial slices, respectively. The axial slice number of (a) to (c) are 107, 239, and 361 of 512. The slices were reconstructed with and without the motion
correction methods aligned in a different column.

comparatively large involuntary motion such as Subject 2 in
the XCAT knee model, and experimental SCANs 4 and 5.
Figure 10 also confirms that 3D warping outperforms the 2D
methods particularly in the off-center slices. This difference
in performance may be due to the fact that the 2D methods

do not take into account rotational movements of the lower
and upper leg. Figure 11 shows that the Euler angles for ro-
tational transformation about the X-, Y-, and Z-axes are not
negligible, and the rotational movement about the Y-axis (the
lateral direction) has the largest variation among three axes.

FIG. 10. A comparison of image quality improvement between axial slice images before and after applying the three different motion correction methods.
(a) and (b) show SSIM indices as a function of the axial slice number for the two data sets that demonstrate the largest motion. The axial slice with the lowest
slice number (0) on the X-axis is around the bottom of the femur and close to the central slice out of 512 slices. The highest slice number corresponds to the
slice around the upper boundary of the reconstructed volume. The plot with a solid star-shaped symbol in (b) shows image quality of the static cadaver tibia
after applying the same segmentation and registration as was done for in vivo data. (b) also shows the sensitivity of the SSIM to detector dose requests (1.2 μGy,
0.54 μGy, and 0.36 μGy per projection).
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FIG. 11. The 3D transformation matrices acquired from 3D warping for SCAN 5. (a) shows the 3D coordinates of the lower body centered between the two
knee joint. Figure (a) was generated using OpenSim available on Simtk.org. (b) shows the Euler angles about X-, Y-, and Z-axes for rotational transformation
and (c) shows the translational transformation along X-, Y-, and Z-axes during 3D warping.

Compared with 3D warping, the 2D methods are relatively
limited in their ability to map a 2D reference to an identi-
fied marker since they have to find an optimal transformation
using only translation in the detector coordinates (u, v) with-
out incorporating the rotational transformation. The rotational
movement about three axes results in increased levels of mo-
tion as the slice number increases in the off-center direction
(i.e., away from the knee joint). The 2D methods can be fur-
ther improved by implementing rotational movements after
registering 2D references to identified markers in each pro-
jection image. The SSIM index for 3D warping increases as
the slice number increases in the direction away from the cen-
tral slices. However, we cannot claim that 3D warping works
better in the off-center slices than in the central slices since
the SSIM index is computed over different ROIs for different
axial slices.

We observed a bit brighter background corresponding to
air surrounding the legs in the slices with 3D warping in
Figs. 5–7, compared to that in the slices with the 2D meth-
ods. The filtered back-projection algorithm assumes that a
series of projections corresponds to a static subject. How-
ever, 3D warping rotates and translates an object in 3D space

for every projection which distorts distance-related weight-
ings and thus results in low-frequency background noise. This
might explain why the 2D methods sometimes work better
than 3D warping for the data with relatively small motion. A
further extension of current 3D warping is to derive a theo-
retical algorithm incorporating the weighting distortion. Al-
ternatively, we could take one or more iterative forward- and
backward-projection steps in order to subtract low-frequency
background noise.35

Given the amount of errors in marker location, the three
methods exhibited different levels of image quality degra-
dation as illustrated in Figs. 7 and 8. Figure 7 shows that
as few as one misplaced marker on two consecutive pro-
jections can cause obvious image quality degradation. Two-
dimensional warping is disadvantageous in that it is very sen-
sitive to marker detection errors, compared to 2D shifting and
3D warping as shown qualitatively in Fig. 7 and quantita-
tively in displaced markers with 6 pixel and 12 pixel error
in Fig. 8. 2D warping in (a2) and (b2) introduced more se-
vere two-layered slant line artifacts than others. As expected,
2D shifting was most insensitive to marker detection errors.
It is likely that one of the markers was detected in a certain

FIG. 12. Residual errors after transformation for 3D warping for SCANs 1–5. (a) shows the locations of identified markers, 2D references, and transformed 2D
references in the projection with the largest residual error of SCAN 5. (b) shows residual errors as a function of a projection number of SCANs 1–5. The arrow
indicates the projection with the largest residual error of SCAN 5, which was used as a representative projection in (a).
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projection; however, not detected in the next projection. Then,
the two consecutive projections with 2D warping applied
could have a projected object with a very different shape
around the marker. Another global constraint could relieve
this issue by enforcing a marker’s location to lie within a cer-
tain region of interest based on its locations in several preced-
ing and following projections. Thus, sudden changes of the
body shape between neighboring projections might be sup-
pressed. Two-dimensional shifting and 3D warping methods
globally compensate motion-induced artifacts while 2D warp-
ing does so locally. Two-dimensional warping responds to a
single marker tracking error by locally warping with an er-
roneous point load while the other two approaches react to
the error by repositioning the global rigid model and there-
fore the influence that a single marker tracking error exerts
over the global model is relatively low. We confirmed that
the performance of 2D warping increases proportionally to
the marker number used up to 15. As the number of mark-
ers increases, it is more likely that two markers with differ-
ent point loads placed close to each other in a projection im-
age will be seen. Thus, a higher value of the regularization
parameter λ might work better as the number of markers is
increased. Alternatively, we may use different values of regu-
larization parameter λ for each projection based on the prox-
imity of markers with different point loads as long as they do
not cause sudden discontinuities over consecutive projections.
In comparison with data points with pixel errors in Fig. 8,
the “Abandon” data indicate that it is better to discard bad
estimates rather than to keep them for a dataset with 12.41
pixels of patient motion (SCAN 5) if detection error is larger
than approximately 6 pixels, 12 pixels, and 12 pixels for
2D shifting, 2D warping, and 3D warping, respectively. We
could identify if the marker detection algorithm fails at a
certain marker on a single projection by comparing model
shifting or warping solutions for each method with and with-
out the marker. A RANdom SAmple Consensus algorithm
(RANSAC)36 could be useful to identify suspicious outlying
markers by fitting detected markers to 2D references along all
projections.

Because by their nature our 2D shifting and 3D warping
assume a rigid body model, there are limitations in their
abilities when correcting deformable motion. Thus, the two
methods might not work when the lower body has significant
deformable motion because of knee flexion. To test for this
effect we estimated the amount of deformable motion in the
lower body. The computed residual errors shown in Fig. 12
can be used to estimate the impact of deformable motion in
the lower body. Marker detection errors also contribute to the
residual errors and thus it is not straightforward to separate
out only deformable motion-contributed errors from the resid-
ual errors. However, assuming that SCANs of the patients
standing straight (e.g., SCAN 1 of Subject 1, SCAN 3 of Sub-
ject 2) had negligible knee flexion, compared to SCANs of
squatting at deep flexion (e.g., SCAN 2 of Subject 1, SCAN 5
of Subject 2) and that marker detection performance was the
same for the same patient data (e.g., SCANs 3–5 of Subject
2), we can approximate the contribution of knee flexion to the
residual errors. The difference in the same subject’s residual

error between a scan of standing straight and a scan of squat-
ting at flexion was up to 0.19 mm (0.62 pixel) from SCAN 4
and SCAN 3 of Subject 2. Thus, the approximated deformable
motion could be considered minor and patients showed almost
rigid motion of their lower body during scanning. Moreover,
optical tracking of involuntary motion of the lower body
showed that knee flexion deviation was minor.16 In the optical
tracking study, knee flexion deviation at the right and left knee
of nine subjects squatting at approximately 60◦ of knee flex-
ion for 20 s was 0.50 (±0.18) and 0.48 (±0.17) degrees, re-
spectively. Given minor deviations in knee flexion, it is not un-
reasonable to assume that considering only a rigid body mo-
tion could work for correcting the involuntary motion in the
lower body; this was confirmed by the results, which showed
that 2D shifting and 3D warping performed well for the nu-
merical data16 and experimental data in vivo even when used
to analyze the datasets with the largest motion. We could fur-
ther reduce the residual errors by addressing deformable mo-
tion using motion vector fields estimated by significant fea-
tures in the projection images. However, deformable motion
correction in 3D would involve increased computation com-
plexity and unrealistic body warping, and thus for practical
considerations, it might be preferable not to use deformable
motion correction for the lower body motion with minor de-
viations in knee flexion. The two methods might not perform
well for the lower body with significant deviations in the
magnitude of knee flexion. As a practical way for 3D warping
to address knee flexion, we could transform the lower leg and
upper leg individually in 3D and apply both affine transforma-
tions to the region close to the knee joint center after weight-
ing the two transformations based on proximity to the joint
center, as we did for the XCAT model [see Ref. 16 in Part I].

The SSIM index differences for the different methods in
the case of datasets with relatively small motion were minor.
One to two percent differences in SSIM indices did not trans-
late to observable differences in the image quality. The SSIM
indices for experimental data were overall about 30%∼40%
lower than those for the XCAT knee model. The registered
static cadaver tibia (248 views, 1.2 μGy/projection) indi-
cated by a star-shaped symbol in Fig. 10(b) showed a 35%–
45% decrease in SSIM after segmentation and registration
to the same object imaged in a supine position (494 views,
1.2 μGy/projection). This explains some of the decrease in
SSIM for in vivo data compared to that of the XCAT knee
model. Factors such as femur registration and femur seg-
mentation contribute to lowering SSIM, as does the differ-
ent starting position of the X-ray source between the supine
and standing scanning. Moreover, we included some soft tis-
sue that surrounds the femur in the SSIM ROI, which may
deform and therefore contribute to the SSIM discrepancies,
although we expect this effect to be small. The point clouds
for the femur registration were segmented and acquired ev-
ery three axial slices and thus were three times less dense
than the voxel size in the axial direction. Thus, some of the
reported registration error could be due to lack of correspond-
ing points, especially at edges. As such, the registration er-
ror could be actually lower than the reported value, 0.19
mm (±0.02 mm) which implies the registration error was a
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relatively minor factor in decreasing the SSIM index. Thus,
we can expect that if we could apply a perfect motion cor-
rection method to in vivo data, the SSIM indices could
approach the star points “Standing static (registered)” in
Fig. 10(b). Given the differences in the SSIM index between
the star points and motion-corrected in vivo data in Fig. 10,
there is still room for improvement of the motion correction
methods. The differences between the best SSIM (1.00) and
“Supine static, 1.2 μGy/p” represents SSIM decrease due to
the decreased number of views while the differences between
“Supine static, 1.2 μGy/p”, “Supine static, 0.54 μGy/p” and
“Supine static, 0.36 μGy/p” indicates the impact of the de-
tector dose request on SSIM index. Note that the reduced
number of views brings much larger image quality degrada-
tion than the reduced detector dose request. Thus, when opti-
mizing dose acquisition protocols while maintaining the same
dose exposure to patients, it is better to acquire more views in
return for lowering the detector dose request. The SSIM index
reported in this paper is a limited image quality metric since
the SSIM is computed only on an ROI located around the left
femur. The reported SSIM cannot represent the image quality
of any other portions of the knee, including deformable soft
tissue and artifact-corrupted regions.

As shown in Table II in Appendix A, entropy is not con-
sistent with SSIM. We also observed that the entropy value
differences do not reflect the visual impression. In contrast
to this, Kyriakou et al.37 and Wicklein et al.38 showed that
entropy-based metrics are well-suited to characterizing mis-
alignment. In our study, several contributing factors caused
seemingly contradictory results. The studies mentioned above
adjusted alignment to minimize the entropy of the recon-
structed volume, which is determined only by the sharpness
of bone structures. Based on a relative displacement from the
ideal alignment, the resulting images become either blurred
or focused. However, in our study, intense involuntary motion
in the patients’ lower body induced strong streaks in the im-
ages as shown in Fig. 6, and the CT number of the streaks
approached that of bone structures. Entropy is not capable
of enforcing the iteration procedure to selectively penalize
motion streaks while sharpening the edges of bones. In addi-
tion, our images contain other artifacts from metal attenuation
and marker detection errors, and truncated objects although
these artifacts can be considered relatively minor compared
to the motion artifacts. Thus, it is possible that in the pres-
ence of severe streaks coming from multiple artifact sources,
the entropy minimization procedure becomes stuck in a lo-
cal minimum. Moreover, entropy-based metrics showed rel-
atively weak performance in scans with a lower number of
projection images,38 and thus lower image quality might af-
fect the entropy performance. To date, the entropy-based met-
rics have not been evaluated in the presence of multiple strong
artifacts, and we have not yet investigated at which level of
image noise (i.e., image quality) these metrics still function
robustly. However, our preliminary results indicate that using
entropy to evaluate the image quality of noisy images with
multiple artifacts may not be reliable.

As shown in Fig. 13 in Appendix B, we observed detec-
tor saturation artifacts near the leg periphery. While scanning

the legs from the lateral side, the Automatic Exposure Con-
trol system (AEC) increases tube current and voltage high
enough to penetrate through the two thick femur bones. Thus,
a decrease in CT number in reconstructed slices was ob-
served only along the lateral direction. Our detector with im-
age depth of 212 (4096) starts to show nonlinear response to
the signal from ∼3800 due to limited dynamic range. As a
quick fix, modeling clay was wrapped around both legs to
prevent the saturation at the periphery of the subject. Mod-
eling clay worked well to avoid detector saturation close to
the skin-air interface, particularly in the region of the patella.
However, additional weight applied to the knee joint could
make patients uncomfortable and alter knee joint kinemat-
ics. Schreiber et al.39 extrapolates missing information using
geometric information in an orthogonal projection and Mail
et al.40 implemented a bowtie filter to recover the skin line of
an object.

The measured HU values from the CT images can be con-
verted to hydroxyapatite (HA) mineral density using an HA
bone mineral calibration phantom.41, 42 A C-Arm CT scan-
ner with a flat panel detector can provide relative location of
bones including superior bone density information, cartilage
morphology, and meniscus location in vivo in 3D volumet-
ric high-resolution images during realistic weight-bearing ac-
tivity with minimal radiation dose to patients. The system is
also capable of acquiring real-time fluoroscopy of knee kine-
matics. The combination of 3D static images and fluoroscopy
could give unique diagnostic information and help us to better
understand potential causes and progression of knee disorders
such as OA.

5. CONCLUSIONS

C-arm CT control for horizontal trajectories was success-
fully implemented and the 3D knee geometry under weight-
bearing conditions was acquired using a C-arm CT scanner. In
order to evaluate three different fiducial marker-based motion
compensation methods (2D projection shifting, 2D projection
warping, and 3D image warping) previously tested on the nu-
merical XCAT knee model, we scanned both legs of healthy
volunteers under weight-bearing conditions with knee flexion
angles of approximately 0◦, 30◦, and 60◦ using a C-arm CT
scanner. We applied the methods to the five different datasets
from two subjects in vivo. The experimental outcomes con-
firm theoretical results, showing that 3D image warping is su-
perior to 2D-based methods in the presence of large motions,
especially for off-center slices. Two-dimensional shifting, 2D
warping, and 3D warping achieved enhanced values of the
SSIM index by 20.22%, 16.83%, and 25.77% in the central
slice of SCAN 5, which had the largest involuntary movement
among the five datasets.
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FIG. 13. Detector saturation artifacts were observed on the posterior and anterior surfaces of the legs of Subject 1 standing straight (SCAN 1). Because of
detector saturation, the skin lines near the object periphery were distorted, as indicated by the rectangular windows. There appears to be no skin above the patella
because of the decrease in CT number at the periphery of the reconstruction.

APPENDIX A: HISTOGRAM ENTROPY

Unlike the SSIM index, the histogram entropy does not re-
quire a reference image for comparison. Entropy has its max-
imum with a perfectly uniform image and decreases as image
sharpness increases. Previous studies used entropy as a mea-
sure of misalignment-induced artifacts.37, 38 However, motion
blurs out image intensities in certain pixels and thus entropy
increases whereas motion-caused streaks decrease entropy.
Therefore, it is not guaranteed that entropy will change mono-
tonically as motion correction improves image quality. Shan-
non entropy43 is defined as

E = −
∑n

i=1
pi · log2 pi, (A1)

where pi is the histogram counts with integer-valued HU num-
bers of i and n is 214 bins. In order to avoid aliasing arti-
facts, we used as many bins as there are HU values for the
histogram.

Entropy of SCANs 4 and 5 is calculated and shown in
Table II using the same ROI as in the SSIM calculation in Ta-
ble I above. Entropy is not consistent with the SSIM indices
nor with the visual impression of the images, does not change
significantly, and may increase or decrease with applied cor-
rection.

TABLE II. Entropy of SCAN 4 and 5 calculated using the same ROI as in
SSIM calculation.

Entropy

Axial slice No correction 2D shifting 2D warping 3D warping

SCAN 4 Central 6.0829 6.0376 6.0372 6.1304
Off-center 6.6457 6.6788 6.7213 6.6338

SCAN 5 Central 6.0124 6.0002 6.0080 6.0785
Off-center 6.4637 6.4710 6.4710 6.4787

APPENDIX B: DETECTOR SATURATION ARTIFACT

Figure 13 shows representative reconstructed axial slices
of SCAN 1 without wrapping around both legs using model-
ing clay. Saturation-correction software on the system did not
perform well so that detector saturation artifacts near the leg
periphery were still present.
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