Biophysical Journal

New and Notable

Unknown Unknowns: the
Challenge of Systematic and
Statistical Error in Molecular
Dynamics Simulations

Tod D. Romo and Alan Grossfield*
Biochemistry and Biophysics, University of
Rochester Medical Center, Rochester,
New York

In this issue, Neale et al. (1) present
a calculation of the free energy to
bind an antimicrobial peptide to a lipid
bilayer using molecular dynamics sim-
ulations. This in itself is not unusual:
many groups have used simulations to
explore similar systems, and several
have attempted to derive the binding
thermodynamics. What is exceptional
(and disturbing) about this article
is the sheer computational -effort
required to get a good answer. Although
Neale et al. (2) use a state-of-the-art
Hamiltonian replica exchange tech-
nique, their results show that equilibra-
tion requires an astonishing 4 us per
simulation window. Worse yet,
the results show that the error is not
randomly distributed. Rather, the esti-
mated free energy of binding becomes
systematically more favorable as the
runs are extended, suggesting that
what we are seeing is an elongated
relaxation process as opposed to simple
improvements in statistical accuracy.
These last two concepts are often
conflated, but long relaxation times can
cause quite different symptoms in a
simulation from simple statistical error.
This is best understood by considering
the expected value of some property
A{y) computed from the simulation.
If the main concern is simple statistical
uncertainty, then we know two things:

1. Assimulation time increases, (A) —
Ao, where A, is the true value (given
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the force field and simulation condi-
tions); and

2. We can expect that if we run multi-
ple trajectories, the values of the
(A) value computed from the trajec-
tory will be distributed randomly
about A,, with a variance that drops
roughly as 1/v/Tgm, where Ty, is
the length of the simulations.

By contrast, systems with slow re-
laxations built in may not behave
in this manner. For example, consider
the system described by Fig. 1, which
has two pairs of energy minima; each
pair is separated by a small barrier in
y, but a large barrier in x. If the quantity
we are interested in is primarily a func-
tion of y (e.g. A(y)), the system will
appear to make many transitions and
(A) will appear to converge rapidly.
However, if in building the system we
consistently start on the left side of
the x barrier, (A) will initially not
converge to A,. Rather, it will converge
toward some different value A’,, repre-
senting averaging over the left-hand
side of the conformation space. More-
over, the standard tools developed for
examining a scalar time series, like
autocorrelation analysis and block
averaging (3), will fail to detect the
problem, because the kinetics of y
appear fast. Even more sophisticated
global sampling assessment methods
(4-6) may struggle to recognize the
problem, particularly if no slow transi-
tions occur at all; none of these
methods can tell you what has not yet
been seen. As a result, they are quite
good at identifying mediocre to poor
sampling, but less effective when the
sampling is truly awful.

Systems with slow relaxation will
also behave differently as the simula-
tion time 7§, is increased. Initially,
the apparent uncertainty in A(y) will
drop, but at longer times the variance
will increase again, as the systems
run long enough to occasionally cross
the barrier in x; it is only when a large
number of barrier crossings (and their
reverse) have occurred that the (A)
will converge to A,,.
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FIGURE 1 Energy surface with fast and slow
relaxing degrees of freedom. Although the ki-
netics in the y dimension appear fast, correct
averaging of y will depend on sampling the x
dimension as well, which contains a larger bar-
rier that will cause slow sampling. To see this
figure in color, go online.

Ordinarily, the gold standard for
quantifying error is to repeat the
whole calculation using a different
starting structure, but this too can
fail if the construction procedure sys-
tematically produces one of the two
states (e.g., you always start on the
left side). Such circumstances are
easily imaginable; for example, a
crystal structure might capture one of
two possible protein conformations.
The case described by Neale et al.
(1)—a peptide interacting with the
membrane-water interface—repre-
sents another. It may sound like better
system construction protocols will
resolve these problems, and in princi-
ple they could. However, in practice,
the fact is that the information needed
to make optimal choices when build-
ing the system is generally not avail-
able, because that information is
precisely what we hope to learn from
the simulation.

That molecular dynamics runs into
serious challenges trying to obtain
adequate sampling is hardly surpris-
ing—the biomolecular simulation
field has a long history of undue opti-
mism with respect to the timescales
needed to get reliably interpretable
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results. What makes the work of Neale
et al. (1) so impressive is that instead
of running from the problem, they
embraced it, and applied over-
whelming computational effort to care-
fully characterize just how hard it is. It
appears that there is no substitute for
the investigators’ chemical intuition
and sense of caution to identify in
advance the likely timescales for struc-
tural transitions in the system. The
publication of this work is a cautionary
lesson to the rest of the simulation
community about just how challenging
this class of calculation is, and the kind
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of computational investment likely
required to solve it.
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