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Transient receptor potential (TRP) channels are important mediators of sensory signals with marked effects on cellular
functions and signalling pathways. Indeed, mutations in genes encoding TRP channels are the cause of several inherited
diseases in humans (the so-called ‘TRP channelopathies’) that affect the cardiovascular, renal, skeletal and nervous systems.
TRP channels are also promising targets for drug discovery. The initial focus of research was on TRP channels that are
expressed on nociceptive neurons. Indeed, a number of potent, small-molecule TRPV1, TRPV3 and TRPA1 antagonists have
already entered clinical trials as novel analgesic agents. There has been a recent upsurge in the amount of work that expands
TRP channel drug discovery efforts into new disease areas such as asthma, cancer, anxiety, cardiac hypertrophy, as well as
obesity and metabolic disorders. A better understanding of TRP channel functions in health and disease should lead to the
discovery of first-in-class drugs for these intractable diseases. With this review, we hope to capture the current state of this
rapidly expanding and changing field.

LINKED ARTICLES
This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit
http://dx.doi.org/10.1111/bph.2014.171.issue-10

Abbreviations
ADPKD, autosomal dominant polycystic kidney disease; ALS-G, Guam variant of amyotrophic lateral sclerosis; BDNF,
brain-derived neurotrophic factor; CFA, complete Freund’s adjuvant; COPD, chronic obstructive pulmonary disease;
DNBS, dinitrobenzene sulphonic acid; FSGS, focal segmental glomerulosclerosis; GERD, gastroesophageal reflux disease;
GLP-1, glucagon-like peptide-1; IBD, inflammatory bowel disease; WDR, wide dynamic range

Introduction
Regulated transport of ions via ion channels underpins a
number of fundamental physiological functions (Bagal et al.,
2013). Conversely, inherited (‘channelopathy’) or acquired
dysfunction of these channels disrupts physiological pro-
cesses, leading to a broad array of disorders (Bagal et al.,
2013). Ion channels are important targets for many currently
prescribed drugs, second only to GPCRs (Clare, 2010). Indeed,
the worldwide sales of ion channel drugs are estimated to be
in excess of $12 billion annually. Although ion channels have
been successful drug targets, achieving subtype-selectivity has
been a major challenge, particularly with voltage-gated
sodium and calcium channels (Clare, 2010).

Recently, a number of novel, ‘druggable’ ion channels
have been identified. Of these newly discovered channels,
those of the transient receptor potential family [TRP; Figure 1
(Nilius and Owsianik, 2011); channel and receptor nomen-

clature follows Alexander et al., 2013] are arguably the most
appealing therapeutic targets (see Moran et al., 2011;
Fernandes et al., 2012; Vay et al., 2012; Kaneko and Szallasi,
2013). Generally speaking, TRP channels are cellular sensors
involved in nociception (Patapoutian et al., 2009), taste per-
ception (Nilius and Appendino, 2013), thermosensation
(Tominaga, 2007), mechano- and osmolarity sensing
(Pedersen and Nilius, 2007; Guilak et al., 2010). TRP channels
also play a crucial role in normal physiological processes such
as signal transmission (Minke, 2010; Wu et al., 2010). Dys-
function of TRP channels has been implicated in various
disease states (summarized in Figure 2) ranging from chronic
pain and overactive bladder (TRPV1) through obesity (TRPV4
and TRPM5), diabetes (TRPV1, TRPM4), chronic cough
(TRPA1, TRPV1), and chronic obstructive pulmonary disease
(COPD; TRPV4) to cardiac hypertrophy (TRPC6), familial Alz-
heimer’s disease (TRPM7), dermatological disorders (TRPV3
in Olmsted syndrome) and cancer (TRPC6, TRPV2 and
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TRPM8). Gain-of-function mutations in genes encoding TRP
channels have been linked to human diseases as exemplified
by familial episodic pain syndrome (TRPA1; Kremeyer et al.,
2010). Taming these hyperactive TRP channels by antagonists
may prove clinically beneficial. Loss-of-function mutations
(e.g. loss of TRPML1 function in type-IV mucolipidosis) are
also pathogenic, but their correction is more problematic
(Dong et al., 2008).

TRP channels are also primary targets for a number of
natural products with therapeutic potential (summarized in

Table 1). For instance, TRPV1 is highly expressed in a distinct
population of sensory neurons where it mediates excitation
and subsequent desensitization to capsaicin (see Figure 3 for
structure) and its ultrapotent analogue, resiniferatoxin
(Szallasi and Blumberg, 1999). At present, resiniferatoxin
(Figure 3) is undergoing clinical trials (NCT00804154) as a
‘molecular scalpel’ to achieve permanent analgesia in
patients with intractable cancer pain (Iadarola and Mannes,
2011; Iadarola and Gonnella, 2013). TRPM8 is the ‘menthol
receptor’ (Knowlton and McKemy, 2011) and TRPC6 is
believed to mediate the mood-improving effect of hyperforin,
the main ingredient in St. John’s Wort (Leuner et al., 2007).

Few generalizations can be made about TRP channels.
Some show a highly restricted tissue expression pattern
(TRPA1 and TRPV1 are predominantly expressed in sensory
neurons; Patapoutian et al., 2009) whereas others (TRPCs) are
rather ubiquitously expressed (Singh et al., 2012). Because

Figure 1
Simplified topographical structure of TRP channels (A). Please note
the similarities and differences between TRP channel subfamilies (B).
Reprinted, with permission, from Nilius and Owsianik (2011).

Figure 2
Schematic illustration of the tissue-distribution of TRP channels and
their putative roles in the pathogenesis of human disease.
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Figure 3
Selected TRPV1 agonists: capsaicin (the pungent ingredient in
hot chili peppers), resiniferatoxin (isolated from the cactus-like
perennial E. resinifera), and the endocannabinoids anandamide and
palmitoylethanolamide.
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Table 1
Endogenous and exogenous ligands of TRP channels

TRP channels Ligands References

TRPV1 Endogenous agonists:

Anandamide* Zygmunt et al. (1999)

N-arachidonoyldopamine Huang et al. (2002)

N-oleoyldopamine Chu et al. (2003)

12- and 15-hydroperoxyeicosatetraenoic acid,
5- and 15-hydroxyeicosatetraenoic acid,
Leukotriene B4

Hwang et al. (2000)

9- and 13-hydroxy-octadecadienoic acid(ODE),
9 and 13-oxoODE

Patwardhan et al. (2009)

Oleoylethanolamide Ahern (2003)

Palmitoylethanolamide* Ambrosino et al. (2013)

Lysophosphatidic acid Nieto-Posadas et al. (2011b)

Endogenous antagonists:

Resolvin D2 Park et al. (2011a)

Exogenous agonists

2-Aminoethoxydiphenyl borate (2-APB) Hu et al. (2004)

Ornithoctonus huwena toxin [‘double-knot’ toxin (DkTx)] Bohlen et al. (2010)

Capsaicin* Caterina et al. (1997)

Piperine McNamara et al. (2005)

Resiniferatoxin* Szallasi and Blumberg (1989)

Gingerol Liu et al. (2000)

Evodiamine Pearce et al. (2004)

Cannabidiol* Bisogno et al. (2001)

Cannabigerol De Petrocellis et al. (2011)

Polygodial Andrè et al. (2006)

Vanillotoxin Siemens et al. (2006)

Exogenous antagonists

Capsazepine Dickenson and Dray (1991)

Iodo-resiniferatoxin Seabrook et al. (2002)

BCTC Valenzano et al. (2003)

Thapsigargin Toth et al. (2002)

Yohimbine Dessaint et al. (2004)

AG489, AG505 Kitaguchi and Swartz (2005)

ABT-102*, AMG-517*, AZD-1386*, DWP-05195, GRC-6211*,
JTS-653*, MK-2295, PHE377, SB-705498*

Moran et al. (2011); Brederson et al. (2013)

TRPV2 Endogenous agonists:

Lysophosphatidylcholine, Lysophosphatidylinositol Monet et al. (2009)

Exogenous agonists

Cannabidiol*,
Δ9-tetrahydrocannabinol cannabinol*

Qin et al. (2008)

2-APB Hu et al. (2004)

Probenecid Bang et al. (2007)

Exogenous antagonists

Tranilast Hisanaga et al. (2009)
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Table 1
Continued

TRP channels Ligands References

TRPV3 Endogenous agonist:

Farnesyl pyrophosphate Bang et al. (2010a)

Endogenous antagonists:

Isopentenyl pyrophosphate Bang et al. (2011)

Resolvin D1 Bang et al. (2010b)

Exogenous agonists

Camphor Moqrich et al. 2005)

Menthol Macpherson et al. 2006)

Eugenol, thymol, carvacrol Xu et al. (2006a)

6-t-butyl-m-cresol, dihydrocarveol, (+)-borneol Vogt-Eisele et al. (2007)

2-APB Hu et al. (2004)

Incensole acetate Moussaieff et al. (2008)

Exogenous antagonist:

GRC15300 Khairatkar-Joshi et al. (2010)

TRPV4 Endogenous agonists:

Citric acid Suzuki et al. (2003)

5,6- and 8,9- epoxyeicosatrienoic acid Watanabe et al. (2003)

Dimethylallyl pyrophosphate Bang et al. (2012)

Endogenous antagonist:

Resolvin D1 Bang et al. (2010b)

Exogenous agonists:

4α-Phorbol 12, 13-dedecanoate Klausen et al. (2009)

Bisandrographolide Smith et al. (2006)

Apigenin Ma et al. (2012a)

GSK1016790A* Thorneloe et al. (2008)

RN-1747 Vincent et al. (2009)

Exogenous antagonists:

HC-067047* Everaerts et al. (2010a)

RN-1734 Vincent et al. (2009)

GSK2193874 Huh et al. (2012; Thorneloe et al. (2012)

TRPV6 Exogenous antagonist:

2-APB Kovacs et al. (2012)

TRPC3 Exogenous antagonists:

Pyr3* Kiyonaka et al. (2009)

Pyr10 Schleifer et al. (2012)

TRPC4 Exogenous antagonist:

ML204 Miller et al. (2011)

TRPC5 Endogenous agonist:

Lysophosphatidylcholine Flemming et al. (2006)

Sphingosine-1-phosphate Xu et al. (2006b)

Exogenous agonist:

Rosiglitazone Majeed et al. (2011a)

Progesterone and neurosteroids Majeed et al. (2011b)
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Table 1
Continued

TRP channels Ligands References

TRPC6 Endogenous agonist:

20-Hydroxyeicosatetraenoic acid Basora et al. (2003)

Exogenous agonists:

Hyperforin Leuner et al. (2007)

2,4-Diacylphloroglucinol Leuner et al. (2010)

Exogenous antagonist:

GsMTx-4 Spassova et al. (2006)

TRPM2 Endogenous agonists:

ADP-ribose Perraud et al. (2005)

Cyclic ADP-ribose Kolisek et al. (2005)

Exogenous antagonists:

N-(p-amylcinnamoyl)anthranilic acid Kraft et al. (2006)

Clotrimazole, econazole Hill et al. (2004a)

2-APB Togashi et al. (2008)

Flufenamic acid Hill et al. (2004b; Naziroğlu et al. (2007)

TRPM3 Endogenous agonists:

Pregnenolone sulphate Wagner et al. (2008)

D-erythro-sphingosine Grimm et al. (2005)

Endogenous antagonist:

Progesterone Majeed et al. (2012)

Exogenous antagonist:

Rosiglitazone Majeed et al. (2011a)

Mefenamic acid Klose et al. (2011)

Naringenin, hesperetin, ononetin, eriodictyol Straub et al. (2013)

TM3E3 (polyclonal antibody) Naylor et al. (2008)

TRPM4 Exogenous agonist:

BTP2 Takezawa et al. (2006)

Exogenous antagonist:

9-Phenanthrol Grand et al. (2008)

TRPM5 Exogenous antagonist:

Triphenylphosphine oxide Palmer et al. (2010)

TRPM6 Exogenous antagonist:

2-APB Li et al. (2006)

TRPM7 Endogenous antagonist:

Sphingosine Qin et al. (2013)

Exogenous antagonists:

2-APB* Li et al. (2006)

Carvacrol Parnas et al. (2009)

Nafamostat mesilate (dependent on extracellular divalent ions) Chen et al. (2010)

NDGA, AA861, MK886 Chen et al. (2010)

Waixenicin A Zierler et al. (2011)

FTY720 Qin et al. (2013)

Quinine, CyPPA, dequalinium, NS8593, SKA31, UCL 1684 Chubanov et al. (2012)
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Table 1
Continued

TRP channels Ligands References

TRPM8 Exogenous agonists:

Menthol Peier et al. (2002a)

Linalool, geraniol, hydroxycitronellal, WS-3, WS-23, FrescolatMGA,
FrescolatML, PMD38, CoolactP, Cooling Agent 10

Behrendt et al. (2004)

Cis- and trans-p-menthane3 Bandell et al. (2004)

CPS-368 Sherkheli et al. (2010)

Exogenous antagonists:

AMTB Lashinger et al. (2008)

BCTC Behrendt et al. (2004)

Benzimidazoles Parks et al. (2011); Calvo et al. (2012)

5-Benzyloxytryptamine DeFalco et al. (2010)

Compound 9l Matthews et al. (2012)

Tetrahydroisoquinoline 87 Tamayo et al. (2012)

Arylglycine derivatives Zhu et al. (2013)

TRPA1 Endogenous agonists:

15-Deoxy- Δ12,14-PGJ2, Materazzi et al. (2008;)

8-Iso-PGA2, PGA2, Δ12-PGJ2 Taylor-Clark et al. (2008a)

4-Hydroxynonenal Trevisani et al. (2007)

4-Oxononenal Taylor-Clark et al. (2008b)

Methylglyoxal Ohkawara et al. (2012)

Endogenous antagonists:

Resolvin D1 Resolvin D2 Bang et al. (2010b); Park et al. (2011a)

Exogenous agonists:

Cinnamaldehyde, methyl salicylate, eugenol, gingerol Bandell et al. (2004)

Allicin, diallyl disulfide Bautista et al. (2005)

Δ9-tetrahydrocannabinol, Isothiocyanates Jordt et al. (2004)

Acrolein Bautista et al. (2006)

Carvacrol Xu et al. (2006a)

Formalin McNamara et al. (2007)

α,β-Unsaturated aldehydes Andrè et al. (2008)

Auranofin Hatano et al. (2013)

Capsiate Shintaku et al. (2012)

Curcumin Leamy et al. (2011)

PF-4840154 Ryckmans et al. (2011)

Apomorphine (agonist in low micromolar range and antagonist
in higher concentration)

Schulze et al. (2013)

Cannabichromene, cannabidiol, cannabinol* De Petrocellis et al. (2008; 2011)

Exogenous antagonists:

Camphor Xu et al. (2005)

Menthol Macpherson et al. (2006)

Thymol Lee et al. (2008)

HC-030031 McNamara et al. (2007)

Chembridge-5861528 Wei et al. (2009)

AP18 Petrus et al. (2007)

A-967079 McGaraughty et al. (2010)

AZ465 Nyman et al. (2013)

GRC17536 Kaneko and Szallasi (2013)
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members of the TRP family of channels (Figure 1) share much
less homology with one another compared with other ion
channel families (Wu et al., 2010), the identification of highly
subtype-selective compounds is likely to be more attainable.

Despite the striking progress in our understanding of TRP
channel functions (see Owsianik et al., 2006; Wu et al., 2010;
Li et al., 2011a), some inherent problems persist. According to
Bernd Nilius, TRP channels have a fair and an ugly face
(Nilius, 2013). Activation or inhibition of a TRP channel may
be beneficial in one organ and, at the same time, may induce
unacceptable adverse effects in another. Indeed, the clinical
development of first-generation TRPV1 antagonists was
halted because they caused hyperthermia and put patients at
risk for scalding injuries by elevating the heat pain threshold
(see Moran et al., 2011; Brederson et al., 2013). Drug discov-
ery companies that find a way for exploiting the ‘fair face’ of
TRP channels without revealing the ‘ugly face’ will be able to
create a new generation of targeted therapies.

TRP channels: a brief overview

TRP channels were initially discovered in a blind strain of
Drosophila (Montell and Rubin, 1989). When exposed to pro-
longed intense light, these spontaneously mutant fruit flies
showed transient calcium influx into their photoreceptor
cells; this is why the mutant gene was termed trp, ‘transient
receptor potential’. This seminal finding paved the way to the
discovery of the first mammalian TRP channels, called
‘canonical’ (TRPC) due to their homology to the Drosophila
channel (Wes et al., 1995; Zhu et al., 1995).

Mammalian TRP channels comprise 28 members and
are divided into six subfamilies: TRPC (Canonical), TRPV
(Vanilloid), TRPM (Melastatin), TRPP (Polycystin), TRPML
(Mucolipin) and TRPA (Ankyrin) based on their homology of
amino acid sequences (Figure 1; Clapham et al., 2001; Wu
et al., 2010; Nelson et al., 2011). The mucolipin and polycys-
tin subfamilies were named after the diseases they are
associated with, mucolipidosis and autosomal dominant
polycystic kidney disease (ADPKD) respectively. The vanilloid
subfamily was named after its founding member, the vanil-
loid (capsaicin) receptor TRPV1. The first melastatin channel
(TRPM1) was discovered as a protein present in benign nevi
and absent in malignant melanoma (Duncan et al., 1998). As

of today, the ankyrin subfamily has only one member, TRPA1,
which (as the name implies) is rich in ankyrin repeats at its
N-terminus.

As a general rule, TRP channels have six transmembrane
spanning domains (S1–S6) with a pore-forming loop between
S5 and S6 (Figure 1; Wu et al., 2010). Both –NH2 and –COOH
termini are located intracellularly. Many TRP channels are
non-selective Ca2+-permeable channels with permeability
ratios PCa/PNa < 10. TRPM4 and TRPM5, in particular, are only
permeable to monovalent cations and they do not conduct
Ca2+ and Mg2+, while TRPV5 and TRPV6 are highly Ca2+ selec-
tive with PCa/PNa > 100 (Owsianik et al., 2006). Most TRPs
form functional channels as homotetramers, but heteromul-
timerization is frequently observed (Cheng et al., 2010). This
creates a potential problem for drug discovery efforts as het-
eromultimers (that are not easily recreated in heterologous
expression systems) may have distinct pharmacological
properties.

TRP channels are ‘cellular sensors’ (Clapham, 2003)
that respond to changes in the cellular environment, in-
cluding temperature, stretch/pressure, chemicals, oxidation/
reduction, osmolarity and pH, both acidic and alkaline
(Moran et al., 2011; Nieto-Posadas et al., 2011a). Of note, a
number of TRP channels are also activated by natural prod-
ucts, including herbs, spices, venoms and toxins (Vriens et al.,
2008). For example, TRPV1 is a shared target for capsaicin
(Caterina et al., 1997), jelly fish venoms and spider (tarantula)
toxins (Cromer and McIntyre, 2008). A list of ligands for TRP
channels is provided in Table 1. Representative chemical
structures of TRP channel agonists (GSK101679A for TRPV4)
and antagonists (GRC6211, AMG517, SB-705498, AZD1386,
JTS-653 and ABT-102 for TRPV1; HC-067047 for TRPV4; Pyr3
for TRPC3; and AMTB for TRPM8) are shown in Figures 4 and
5. Despite decades of intensive search, only a few endogenous
ligands of TRP channels have been identified, such as the
endocannabinoids anandamide and palmitoylethanolamide,
(structures shown in Figure 3) for TRPV1 (Zygmunt et al.,
1999; Ambrosino et al., 2013)]. How TRP channels are modu-
lated in vivo is still unknown.

Some TRPM channels like TRPM2 are unique in that they
contain a functional nucleoside diphosphate linked to some
other moiety/ADP ribose domain, as well as a kinase domain
that bears some resemblance to PKA (see Eisfeld and
Lückhoff, 2007). In other words, these TRPMs combine fea-

Table 1
Continued

TRP channels Ligands References

TRPML1 Exogenous agonists:

SF-51, ML-SA1 Shen et al. (2012)

TRPML2 Exogenous agonists:

SID24801657, SID24787221 Saldanha et al. (2010–2009)

TRPML3 Exogenous agonists:

SID24801657, SID24787221 Saldanha et al. (2010–2009)

*Denotes structures shown in Figures 3–6.
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tures of ion channels and enzymes and are thus referred to by
some as ‘chanzymes’ (Montell, 2003). TRPM2 functions as a
cellular redox (oxidative stress) sensor and has been impli-
cated in the pathogenesis of bipolar disorder, diabetes, as well
as cardiovascular and neurodegenerative disorders (Jiang
et al., 2010). Indeed, a mutant TRPM2 (Pro1018Leu) has been
linked to the Guamanian amyotrophic lateral sclerosis (ALS-
G)/Parkinsonism-dementia complex (Hermosura et al., 2008).

Importantly, TRP channels are also stimulated by intracel-
lular Ca2+ increase induced by the activation of GPCRs and

mediate downstream signalling. Furthermore, the activity of
TRP channels is modulated by various intracellular molecules
including phosphatidylinositol 4,5-bisphosphate (PIP2), DAG,
ATP and calmodulin (see Wu et al., 2010). Indeed, TRPCs are
subdivided into two groups, TRPC1, C4 and C5 and TRPC3,
C6, C7, depending on DAG-sensitivity (Wu et al., 2010). For
some TRP channels, like TRPV1, phosphorylation by PKs and
dephosphorylation by phosphatases provide important con-
tribution to setting the channel activity (reviewed in Szallasi
et al., 2007). Indeed, phosphorylation of TRPV1 by PKC is now

Figure 4
Small molecule TRPV1 antagonists: selected structures.

Figure 5
Representative examples of TRPV4 agonists (GSK1016790A), TRPV4 antagonists (HC-067047), TRPV3 agonists (2-ABT), and TRPC3 inhibitors
(Pyr3).
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thought to represent a crucial biochemical mechanism by
which TRPV1 is sensitized during inflammation to cause
thermal hyperalgesia (Jeske et al., 2009). Moreover, TRP chan-
nels were shown to interact with a growing number of intra-
cellular proteins to form ‘signalplexes’ and ‘channelosomes’
(Planells-Cases and Ferrer-Montiel, 2007). Such interactions
are now believed to be important for TRP channel trafficking,
positioning and activity (Goswami, 2012). Recent research
suggests that manipulation of the interaction between TRP
channels and their regulatory proteins can be exploited for
therapeutic purposes. A promising example of this approach,
to prevent TRPV1 sensitization by blocking the interplay
between TRPV1 and the scaffolding protein AKAP79 (Btesh
et al., 2013; Fischer et al., 2013), will be discussed later under
‘pain and TRP channels’.

Activation of TRP channels allows cations pass through
the membrane and depolarize cells, leading to a wide range of
cellular responses. Stimulated by a broad range of stimuli and
expressed probably in all the cells in the body (Nilius, 2013),
TRP channels are thought to play diverse physiological roles.
Besides, extensive research in the field has demonstrated that
TRP channels are involved in a number of diseases affecting
the peripheral and CNS (Vennekens et al., 2012; Morelli et al.,
2013), the respiratory (Preti et al., 2012), genito-urinary
(Skryma et al., 2011), gastrointestinal (GI; Holzer, 2011), car-
diovascular (Watanabe et al., 2013) and immune systems
(Schwartz et al., 2007; Smith and Nilius, 2013), as well as in
metabolic disorders including obesity and diabetes (Suri and
Szallasi, 2008; Zhu et al., 2011).

The direct link between TRP channels and human dis-
eases have been revealed by human genetic studies demon-
strating that mutations in TRP genes are causally associated
with hereditary diseases, the so-called ‘TRP channelopathies’
(Nilius and Owsianik, 2010). Representative examples of
these channelopathies include focal segmental glomerular
sclerosis (FSGS), ADPKD and scapuloperoneal spinal
muscular atrophy, which are linked to TRPC6 (Winn
et al., 2005), TRPP2 (Igarashi and Somlo, 2002) and TRPV4
(Auer-Grumbach et al., 2010) respectively. Knockout and
transgenic animal studies also revealed a pathogenic role for
both the absence and hyperactivity of TRP channels. For
example, TRPC3 (−/−) mice show defects in motor coordina-
tion and walking behaviour (Hartmann et al., 2008) whereas
transgenic mice overexpressing TRPC6 in their heart develop
massive cardiac hypertrophy (Kuwahara et al., 2006).

In summary, there is strong experimental and clinical
evidence to substantiate TRP channels as appealing drug
targets and a number of molecules targeting TRP channels
have already advanced to clinical trials (Moran et al., 2011;
Brederson et al., 2013; Table 2). Later, we provide an overview
of TRP channels and diseases and discuss potential
approaches for therapeutic intervention.

Pain and TRP channels

A number of TRP channels (including TRPV1, V3 and V4,
TRPA1, TRPM3 and M8, TRPC1, C3 and C6) are expressed in
nociceptive sensory neurons. Extensive research with geneti-
cally modified animals and pharmacological agents has con-
firmed that these TRP channels are involved in the

generation and transduction of pain and thus represent
promising targets for the development of novel analgesic
agents (see Patapoutian et al., 2009; Moran et al., 2011;
Brederson et al., 2013).

TRPV1
A subset of nociceptive neurons with somata in sensory
(dorsal root and trigeminal) ganglia is distinguished by its
unique sensitivity to capsaicin (Szallasi and Blumberg, 1999).
The initial excitation by capsaicin of these neurons is fol-
lowed by a lasting refractory state (traditionally referred to as
desensitization) in which the cells are unresponsive not only
to a repeated capsaicin challenge, but also to various unre-
lated stimuli like noxious heat and acids (see Szallasi and
Blumberg, 1999). Thus, desensitization by capsaicin has a
clear therapeutic potential. The receptor for capsaicin was
identified as TRPV1 (Caterina et al., 1997) and accumulating
evidence suggests a crucial role for TRPV1 in pain sensation
(see Szallasi et al., 2007; Gomtsyan and Faltynek, 2010). First,
TRPV1 is activated by multiple painful stimuli including
noxious heat, pungent chemicals (capsaicin and jelly fish
venom), and protons (Szallasi et al., 2007). In addition,
TRPV1 can be activated by voltage, lipids and phosphoryla-
tion (Pingle et al., 2007). Second, TRPV1-deficient mice show
reduced thermal hyperalgesia in response to inflammatory
mediators such as bradykinin and/or NGF (Caterina et al.,
2000; Davis et al., 2000; Chuang et al., 2001). In addition,
oleoylethanolamide, an endogenous TRPV1 agonist (Ahern,
2003), induces visceral pain-related behaviour in mice that is
inhibited by the TRPV1 antagonist capsazepine and is absent
in TRPV1-null animals (Wang et al., 2005). Third, pharmaco-
logical blockade or knockdown of TRPV1 displays analgesic
activity in various preclinical pain models, including arthritic
(Szabó et al., 2005; Joshi and Honore, 2010) and cancer pain
(Jimenez-Andrade and Mantyh, 2010).

Somewhat unexpectedly, genotyping studies have so far
failed to identify any TRPV1 polymorphism associated with
neuropathic pain, although TRPV1 variants were correlated
with altered somatosensory function in patients with neuro-
pathic pain (Binder et al., 2010). Parenthetically, the TRPV1
585 Ile-Ile genotype appears to lower the risk for developing
painful knee osteoarthritis (Valdes et al., 2011). But not all
TRPV1 variants are harmless. For example, in a large Euro-
pean study, six TRPV1 gene SNPs appeared to confer higher
risk for chronic cough [Smit et al., 2012; although, in a
different study, the loss-of-function TRPV1 variant I585V
was associated with a lower risk for childhood asthma
(Cantero-Recasens et al., 2010).

Capsaicin-containing creams (e.g. Zostrix, 0.075%) have
been used for decades for the treatment of chronic painful
conditions such as diabetic neuropathy (Knotkova et al.,
2008). Despite their popularity, controlled clinical studies
found no evidence that these creams had greater analgesic
potency than placebo (see Szallasi and Sheta, 2012).

To increase the exposure of cutaneous nerve endings to
capsaicin, occlusive patches (NGX-4010, Qutenza) and liquid
formulations (NGX-1998, 20% capsaicin) were developed by
Neuroges-X (San Mateo, CA, USA; Bley, 2012). Although in
2010, Qutenza was approved to treat post-herpetic neuralgia
in the USA, the sales of this $700 pain patch never matched
the company’s expectations. In 2012, after the US Food and
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Drug Administration rejected Neuroges-X’s request to extend
the use of Qutenza to HIV-associated peripheral neuropathy,
the company ceased operations and reached a tentative deal
to sell Qutenza and the investigational liquid formulation
NGX-1998 to Acorda (Ardsley, NY, USA; http://www
.researchviews.com/healthcare/pharma/DealReports.aspx
?sector=Pharma&DealID=191932).

Resiniferatoxin is currently undergoing clinical trials at
the National Cancer Institute in patients with intractable
cancer pain as a ‘molecular scalpel’ to achieve permanent
analgesia (NCT00804154). In preclinical models of chronic
pain, intrathecal resiniferatoxin induces a lasting analgesic
effect by selectively ablating TRPV1-expressing sensory
neurons in the dorsal root and trigeminal ganglia (Iadarola
and Gonnella, 2013). In client-owned dogs with severe oste-
osarcoma pain, intrathecal resiniferatoxin was well-tolerated
and effective: it provided significant pain relief and restored
ambulation for several months after a single administration
(Brown et al., 2005; Iadarola and Gonnella, 2013). It is hoped
that intrathecal resiniferatoxin will be a good alternative to
narcotic analgesics in some cancer patients with localized
pain, such as pain caused by bone metastasis.

After the cloning of TRPV1, there was a great deal of
enthusiasm in the pharmaceutical industry to develop
small-molecule TRPV1 antagonists as analgesic agents.
Indeed, a number of TRPV1 antagonists including SB-
705498 (GlaxoSmithKline), AMG517 (Amgen), AZD1386
(AstraZeneca), GRC-6211 (Lilly/Glenmark), MK-2295 (Merck/
Neurogen), ABT-102 (Abbott) and PHE377 (PharmEste) have
been advanced to Phase I and II clinical studies for indica-
tions related to pain (representative structures are shown in
Figure 4; Moran et al., 2011; Brederson et al., 2013). The
enthusiasm, however, was soon tempered by unforeseen
adverse effects. Some TRPV1 antagonists (AMG517) caused
marked hyperthermia, prompting their withdrawal from the
clinical trials, whereas others (MK-2295) blunted noxious
heat perception, putting patients at risk for scalding injuries
(Moran et al., 2011; Brederson et al., 2013).

The magnitude of hyperthermia seems to vary depending
on the chemical structure. While AZD1386 modestly
increased body temperature (∼0.4 °C on average) in patients
with gastroesophageal reflux disease (GERD; Krarup et al.,
2011), AMG517 caused a lasting (1–4 days) and marked
hyperthermia response (up to 40.2°C) in human volunteers
(compare AZD1386 and AMG517 structures in Figure 4;
Gavva et al., 2008). In preclinical studies (in rodents and
dogs), PHE377 (structure undisclosed) was devoid of any
effect on body temperature at doses at which it inhibited
both thermal and mechanical hyperalgesia (http://
www.pharmeste.com/repository/contenuti/paragrafi/file/
PharmEste_Leaflet_2012.PDF).

The site that mediates the hyperthermic action of TRPV1
antagonists is still hotly debated. In rodents, capsaicin evokes
transient hypothermia (presumably by activating cooling
mechanisms after tricking the animals into believing that
they are hot), followed by a loss of the animals’ ability to
regulate their body temperature (rats desensitized to capsai-
cin develop hyperthermia when placed in a hot chamber;
Szallasi and Blumberg, 1999). The effects of capsaicin on
thermoregulation were linked to the CNS (Hajós et al., 1985).
However, TRPV1 antagonists that do or do not enter the CNS

are comparable in their ability to elevate body temperature,
making a CNS target extremely unlikely (Cui et al., 2006).
Consequently, it was postulated that TRPV1 in the periphery
has an endogenous tone that is essential for maintaining
normal body temperature (Gavva, 2008). However, rodents
whose TRPV1 has been eliminated by genetic recombination
(TRPV1 kncok out mice) or chemical ablation (neonatal cap-
saicin treatment) do not develop hyperthermia.

Similar to the hyperthermic response, the magnitude of
blunted heat perception also seems to depend on the TRPV1
antagonist pharmacophore. The increase in heat pain thresh-
old was first noted after the administration of 400 mg of
SB-705498 to healthy human volunteers (Chizh et al., 2007).
Importantly, unlike the febrile reaction that disappeared upon
repeated dosing, the impaired thermal sensitivity persisted
during the whole course of the study (Chizh et al., 2007).
Impaired heat perception was also observed with MK-2295
(Eid, 2011), ABT-102 (Rowbotham et al., 2011) and AZD1386
(Krarup et al., 2011). Some volunteers receiving MK-2295 per-
ceived potentially harmful temperature as innocuous (Eid,
2011). Indeed, minor (1st and 2nd degree) burns were
reported in some clinical study subjects. Interestingly, another
clinical study (XEN-D0501) found no evidence of scalding
injuries in the study participants (Round et al., 2011).

The heat sensor in TRPV1 is clearly distinct from the
capsaicin and proton recognition sites (Szolcsányi and
Sándor, 2012) and a new generation of modality-selective
TRPV1 antagonists that cause neither hyperthermia nor
impaired pain heat perception have been proposed
(Szolcsányi and Sándor, 2012; Brederson et al., 2013).

An attractive alternative approach to circumvent the side
effects of TRPV1 antagonists is to target TRPV1 in diseased,
but not in healthy, tissues (Szallasi and Blumberg, 2006).
Phosphorylation of the TRPV1 protein by PKA and PKC is
believed to play a crucial role in inflammatory sensitization
(reviewed in Szallasi et al., 2007). The interaction between
both kinases and TRPV1 depends on the scaffolding protein
AKAP79 (Zhang et al., 2008). Recently, specific residues in
TRPV1 and AKAP79 were discovered by site-directed mutage-
nesis experiments where these proteins interact (Btesh et al.,
2013; Fischer et al., 2013). This information allowed the
design and synthesis of peptides that can block the interac-
tion between TRPV1 and AKAP79. In mice, these blocking
peptides prevented the development of inflammatory
thermal hyperalgesia but it remains to be seen if a similar
strategy can be successful in chronic pain patients.

Neither AMG-9810 (a TRPV1 antagonist) nor HC-030031
(a TRPA1 blocker, see later) relieved ongoing pain in a mouse
model of osteoarthritis, although both ameliorated thermal
hyperalgesia (Okun et al., 2012). Consisitent with these find-
ings, in a randomized, double-blinded, prospective clinical
trial with client-owned dogs suffering from severe hip osteo-
arthritic pain, the TRPV1 antagonist ABT-116 showed only
marginal analgesic activity over placebo (Malek et al., 2012).
ABT-116 did not attenuate lameness in dogs with experimen-
tally induced urate synovitis either at doses at which it caused
seriously high rectal temperatures (Cathcart et al., 2012). The
striking difference in the analgesic activity of TRPV1 antago-
nists between rodent (where it potently reduces experimental
osteoarthritic pain; Honore et al., 2005; Puttfarcken et al.,
2010) and canine (without clinical benefits, see earlier)
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models of human osteoarthritic pain is puzzling and concern-
ing. Indeed, osteoarthritic pain is a major clinical indication
for TRPV1 antagonists and a number of TRPV1 antagonists
have entered clinical trials for this indication (Table 2), but as
yet, the results have not been disclosed.

TRPA1
Unlike TRPV1 (which shows distinct structure-activity rela-
tions in its ligand-binding properties, hence the original
name ‘vanilloid receptor’), TRPA1 is activated by a wide range
of irritant natural products, including allyl isothiocyanate
(Jordt et al., 2004; Capasso et al., 2012), cinnamaldehyde
(Bandell et al., 2004) and allicin (Bautista et al., 2005) found
in mustard oil, cinnamon and garlic respectively. TRPA1 is
also targeted by environmental irritants found in tear gas,
exhaust fumes, household cleaning agents and cigarette
smoke; examples include acrolein (Bautista et al., 2006), for-
malin (McNamara et al., 2007) and α,β-unsaturated aldehydes
(Andrè et al., 2008). Of note, TRPA1 binds umbellulone, an
active ingredient in the Californian ‘headache tree’ Umbellu-
laria californica (Nassini et al., 2012a). Indeed, activation of
TRPA1 expressed on meningeal afferents was implicated in
the pathomechanism of migraine (Edelmayer et al., 2012).
Somewhat surprisingly for an ‘irritant receptor,’ TRPA1 is also
activated by the non-pungent capsaicin analogue, capsiate
(Shintaku et al., 2012), as well as the non-psychotropic can-
nabinoid, cannabichromene (see Figure 6 for structure; De
Petrocellis et al., 2008; 2011). This is interesting because can-
nabichromene is thought to play a pivotal role in the anti-
inflammatory and analgesic activity of medical marijuana
and cannabichromene did ameliorate experimental murine
colitis (Romano et al., 2013). TRPA1 also acts as a receptor for
reactive oxygen species (ROS; Bessac et al., 2008), but it is
debated if TRPA1 can be activated by noxious cold. In
general, reactive chemicals activate TRPA1 by inducing cova-
lent modification of cysteines in the N-terminus (Nilius et al.,
2011).

TRPA1 is well established as a pain sensor. A gain-of-
function point mutation in TRPA1 (N855S) was identified as
the cause of familial episodic pain syndrome, a rare human
pain disorder characterized by severe upper body pain trig-
gered by fasting and physical stress (Kremeyer et al., 2010).
TRPA1 is primarily expressed in sensory neurons (where it is
highly coexpressed with TRPV1), but growing evidence sug-
gests that functional TRPA1 is also present in non-neuronal
tissues such as heart, small intestine, lung and pancreas
(Stokes et al., 2006). As discussed later under respiratory dis-
orders, TRPA1 expressed by lung fibroblasts (Mukhopadhyay
et al., 2011) might play a role in the pathogenesis of asthma
and COPD (Nassini et al., 2012b).

TRPA1 expression in sensory neurons appears to be plastic
and neuropathic injury increased neuronal expression of
TRPA1 in humans (Anand et al., 2008). Cyclopentenone PGs,
metabolites of PGs enhancing pain sensation, cause a robust
calcium response in dorsal root ganglion neurons and induce
pain behaviour in wild-type mice, but not in TRPA1-deficient
mice (Materazzi et al., 2008). Interestingly, the pain pheno-
type of TRPA1 knockout and knock-down animals are differ-
ent: inflammation-induced mechanical hyperalgesia is
reduced in the knock-down mice, but not in the knockouts
(see Garrison and Stucky, 2011; Nilius et al., 2011). This

implies the existence of a compensatory mechanism that
takes over the function of the missing TRPA1 in the knockout
animals and restores mechanical hyperalgesia during
inflammation.

Pharmacological inhibition of TRPA1 with HC-030031, a
highly selective TRPA1 antagonist, attenuated formalin-
induced pain (McNamara et al., 2007) and reversed mechani-
cal hypersensitivity following complete Freund’s adjuvant
(CFA) treatment. HC-030031 also displayed analgesic activity
in the spinal nerve ligation model of neuropathic pain (Eid
et al., 2008). CHEM-5861528, a derivative of HC-030031, alle-
viated mechanical hyperalgesia in a rat model of diabetic
neuropathic pain (Wei et al., 2009; Koivisto et al., 2012). Of
note, methylglyoxal (an endogenous carbonyl compound
that is produced in large amounts during hyperglycemic con-
ditions) activates human TRPA1 (Ohkawara et al., 2012). Fur-
thermore, TRPA1 has been implicated in migraine (Edelmayer
et al., 2012), dental pain (Haas et al., 2011), chemotherapy-
induced neuropathic pain (Nassini et al., 2013) and colicky
pain of GI origin (Blackshaw et al., 2013).

The Abbott TRPA1 antagonist A-967079 attenuated both
evoked and spontaneous firing recorded from wide dynamic
range (WDR) spinal cord neurons during CFA-induced
inflammation (McGaraughty et al., 2010) without having any

HO

HO

CH3

H2C

CH3

Cannabidiol

O

OH

H3C

Cannabichromene

Figure 6
Selected plant cannabinoids that target TRP channels: cannabi-
chromene (TRPA1 agonist) and cannabidiol (TRPM8 antagonist).
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effect on body temperature (Chen et al., 2011). However, in
rats with osteoarthritic pain, A-967079 had no effect on spon-
taneous WDR firing (though it blocked evoked mechanical
hyperalgesia), suggesting (somewhat disappointingly) that
TRPA1 blockade may not alleviate the on-going, spontaneous
‘nagging’ pain in patients with osteoarthritis (McGaraughty
et al., 2010).

There is good evidence linking TRPA1 to the cold allo-
dynia that develops during ciguatera (Vetter et al., 2012) or
following chemotherapy (Nassini et al., 2013). In some
studies, TRPA1 was directly activated by noxious cold (Story
et al., 2003). Paradoxically, TRPA1 expressed on polymodal
C-fibres appears to be activated by hot temperatures
(Hoffmann et al., 2013). It is tempting to speculate that this
mechanism is responsible for the development of inflamma-
tory thermal hyperalgesia which is absent in the TRPA1
knockout mice (P. Reeh, pers. comm.).

To date, two TRPA1 antagonists have reached clinical
stage of development, GRC1753 (Glenmark) for chronic pain
and CB-625 for acute surgical pain (Cubist Pharmaceuticals
Inc., Lexington, MA, USA; Hydra Biosciences, Inc.,
Cambridge, MA, USA).

TRPV3
TRPV3 is abundantly expressed in keratinocytes where it is
thought to serve various functions (Nilius and Bíró, 2013).
Keratinocytes release IL-1, a pro-inflammatory cytokine, in
response to eugenol, a non-selective TRPV3 agonist (Xu et al.,
2006a). TRPV3 expression is significantly increased in kerati-
nocytes in patients with breast pain (Gopinath et al., 2005);
by contrast, TRPV3 is decreased in keratinocytes in patients
with diabetic neuropathy (Facer et al., 2007). In addition,
TRPV3 was significantly increased in brachial plexus nerves
collected from patients with traumatic nerve injury (Facer
et al., 2007). Interestingly, Olmsted syndrome patients (a
genetic disorder caused by a gain-of-function TRPV3 muta-
tion; Lin et al., 2012) suffer from intense itching but not pain.

TRPV3 is activated by warm temperatures in the range of
31–39°C and its activity is enhanced during repetitive heat
stimulations (Xu et al., 2002; Peier et al., 2002b). TRPV3-null
mice showed marked deficits in responses to innocuous and
noxious heat (Moqrich et al., 2005). GRC15300, a potent,
selective, orally available TRPV3 antagonist demonstrated
efficacy in inflammatory and neuropathic pain models, and
this compound is being investigated in clinical trials
(Khairatkar-Joshi et al., 2010).

TRPM8, TRPV4, TRPM3 and TRPCs
TRPM8 is expressed in nociceptive Aδ and C fibres that are
cold sensitive (McKemy et al., 2002; Kobayashi et al., 2005).
TRPM8 is activated by cold temperatures in the range of
8–28°C, as well as by cooling compounds such as menthol
and icilin (McKemy et al., 2002; Peier et al., 2002a). Topical
menthol has been tried clinically as an analgesic in patients
with carpal tunnel syndrome (NCT01716767) and neck pain
(NCT01542827). Naturally occurring TRPM8 antagonists
include the plant cannabinoids cannabidiol (see Figure 6 for
structure), cannabinol and cannabiogerol (De Petrocellis
et al., 2008; 2011). Studies with TRPM8-null mice showed
decreased sensitivity to cold temperature, as well as attenu-

ated hypersensitivity to cold after nerve injury or inflamma-
tion (Bautista et al., 2007; Colburn et al., 2007). Synthetic
TRPM8 antagonists were analgesic in a chronic constriction
injury-induced model of neuropathic pain in rats (Parks et al.,
2011; Calvo et al., 2012) but, as yet, no TRPM8 antagonist has
advanced to clinical trials.

TRPV4 as a pain target is highly controversial. Intraplan-
tar injection of the endogenous TRPV4 activator dimethylal-
lyl pyrophosphate elicits nociceptive flinches (Bang et al.,
2012). Furthermore, TRPV4-deficient mice demonstrated
decreased pain behaviour in inflammatory pain models
(Todaka et al., 2004; Alessandri-Haber et al., 2006), as well as
models of painful peripheral neuropathy (Alessandri-Haber
et al., 2008). Basal visceral nociception and TRPV4 agonist-
induced visceral hypersensitivity were reduced by interverte-
bral injection of TRPV4-targeted siRNA (Cenac et al., 2008).
That said, none of the numerous gain-of-function TRPV4
channelopathies has a painful phenotype.

TRPM3-deficient mice showed impaired behavioural
response to noxious heat and failed to develop inflammatory
heat hyperalgesia (Vriens et al., 2011). Naturally occurring
TRPM3 blockers include the citrus fruit flavanones, narin-
genin and hesperetin (Straub et al., 2013). Of TRPC channels
expressed by sensory neurons, TRPC5 appears to be the most
interesting given its postulated role in cold-sensation
(Zimmermann et al., 2011).

Respiratory disorders and
TRP channels

The mammalian respiratory tract is densely innervated by
sensory afferent fibres whose activation by irritant and/or
inflammatory stimuli evokes a myriad of central and periph-
eral protective reflex responses, including cough, mucus
secretion and bronchospasm (Canning, 2006). The pulmo-
nary chemoreflex is a triad of bradycardia, bradypnea and
hypotension. Of TRP channels expressed in these afferents,
TRPA1 and TRPV1 have attracted the most attention as
sensors of environmental irritants and reactive chemicals
that threaten airway function and integrity.

TRPA1
Hypochlorite (the oxidizing mediator of chlorine) and hydro-
gen peroxide (a ROS) activate TRPA1 in chemosensory
neurons in mice to cause respiratory depression, as well as
pain behaviour, both of which were attenuated in TRPA1-
deficient mice (Bessac et al., 2008). Ozone, one of the major
air pollutants, stimulated a subset of nociceptive sensory
neurons isolated from vagal ganglia of wild-type mice, but
not those from TRPA1 knockout mice (Taylor-Clark and
Undem, 2010).

TRPA1 is also targeted by endogenously generated pro-
inflammatory ligands as exemplified by nitro-oleic acid,
a nitrated phospholipid produced during inflammation
(Taylor-Clark et al., 2009). Cigarette smoke is the major cause
of COPD and is among the most prevalent triggers of asthma.
Crotonaldehyde and acrolein, two main components of ciga-
rette smoke, evoked Ca2+ influx in cultured guinea pig jugular
ganglia neurons and promoted contraction of isolated guinea
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pig bronchi (Andrè et al., 2008). These responses were abol-
ished by the selective TRPA1 antagonist HC-030031 (Andrè
et al., 2008). Moreover, inhalation of acrolein and other irri-
tant TRPA1 agonists causes cough both in guinea pigs and
human volunteers (Andrè et al., 2009; Birrell et al., 2009).
Genetic deletion and/or pharmacological blockade of TRPA1
inhibited leukocyte infiltration in the airways, reduced
cytokine and mucus production, and almost completely abol-
ished airway hyperreactivity to contractile stimuli in a
murine ovalbumin model of asthma (Caceres et al., 2009).

In the lung, TRPA1 is also expressed by fibroblasts
(Mukhopadhyay et al., 2011). Most recently, this non-
neuronal TRPA1 has been linked to non-neurogenic airway
inflammation (Nassini et al., 2012b). This is important
because neurogenic inflammation, although predominant in
preclinical models of asthma, plays lesser, if any, role in the
human disease. Indeed, tachykinin receptor (NK1, 2 and 3)
antagonists were without any clear benefit in clinical trials for
asthma. Taken together, these findings suggest that selective
TRPA1 antagonist may provide therapeutic benefits in res-
piratory diseases characterized by airway inflammation, such
as asthma and COPD (Belvisi et al., 2011; Preti et al., 2012).

TRPV1
TRPV1 is another key player in the control of airway sensitiv-
ity. Indeed, inhaled capsaicin evokes multiple protective
reflex responses in humans, including cough, sneezing and
fluid secretion (Szallasi and Blumberg, 1999). In rodents, cap-
saicin also evokes the pulmonary chemoreflex, which is
believed to represent the major dose-limiting factor for acute
capsaicin administration (in desensitization studies, capsaicin
needs to be given in increasing doses in consecutive days to
avoid potentially fatal respiratory depression; Szallasi and
Blumberg, 1999). The capsaicin inhalation test is broadly used
to identify a subset of chronic cough patients with airway
sensory hyperreactivity (Ternesten-Hasséus et al., 2008). It is
believed that these patients have overactive sensory nerves
responsible for the airway symptoms and may benefit from
inhaled TRPV1 (and/or TRPA1) antagonists (Millqvist, 2011).
It is worth mentioning here that fatal asthma attacks were
reported in asthma patients following incidental capsaicin
inhalation (see Szallasi and Blumberg, 1999).

Hydrogen sulfide evokes neuropeptide release from iso-
lated guinea pig airway tissue; it also contracts the guinea pig
bronchus (Trevisani et al., 2005). These effects are reduced by
capsaicin desensitization or by the TRPV1 antagonist, capsaz-
epine (Trevisani et al., 2005). In anaesthetized guinea pigs,
intratracheal instillation of hydrogen sulfide increases the
total lung resistance and evokes neurogenic inflammation
(airway plasma protein extravasation): these effects are
reduced by capsazepine (Trevisani et al., 2005). TRPV1 activa-
tors induce action potential discharge in murine vagal C-fibre
terminals and this response was absent in TRPV1-deficient
C-fibres (Kollarik and Undem, 2004). Pharmacological inhi-
bition of TRPV1 significantly inhibited airway hyperrespon-
siveness to histamine in non-anaesthetized, ovalbumin-
sensitized guinea pigs (Delescluse et al., 2012). In addition, a
recent study demonstrated that PGE2 and bradykinin, two
well-described endogenous inflammatory mediators, acti-
vated isolated guinea pig sensory ganglia and evoked cough
in guinea pigs. Interestingly, effective blockade of this cough

response required the simultaneous antagonism of both
TRPV1 and TRPA1 receptors (Grace et al., 2012).

Several lines of evidence implicate TRPV1 in the patho-
mechanism of chronic cough (see Spina and Page, 2013). The
concentration at which inhaled capsaicin evokes coughing is
markedly reduced in a subpopulation of chronic cough
patients. These patients show increased TRPV1 expression in
their airway nerves (Groneberg et al., 2004). Furthermore,
TRPV1 gene polymorphism was associated with cough sensi-
tivity among subjects without asthma (Smit et al., 2012). Nev-
ertheless, TRPV1 as a target for anti-tussive drugs remains
controversial because inhaled SB-705498, a selective TRPV1
antagonist, failed to ameliorate spontaneous coughing in
chronic cough patients (C. Page, pers. comm.).

TRPM8
TRPM8, a cold-sensing TRP channel, is expressed in a subset
of autonomic afferent nerves innervating the bronchopulmo-
nary system and activation of these nerves may increase
airway resistance (Xing et al., 2008). If so, TRPM8 activation
may be associated with cold-induced exacerbation of asthma
and other pulmonary disorders (Xing et al., 2008). On the
other hand, respiratory irritant responses evoked by vapours
containing cigarette smoke constituents (acrolein, acetic acid
or cyclohexanone) were alleviated by menthol, and the effect
of menthol was reversed by the TRPM8 antagonist AMTB (see
Figure 5 for structure; Willis et al., 2011). Indeed, menthol is
added to some cigarette brands to minimize airway irritation.
Furthermore, nasal application of TRPM8 agonists signifi-
cantly increased the threshold of capsaicin-induced cough
responses in human volunteers (Buday et al., 2012). Clearly,
TRPM8 activation can be both beneficial (for example, it may
reduce airway irritancy) and harmful (it may exacerbate
asthma), depending on the patient.

The role of TRPM8 in airways extends beyond the sensory
nerves. In bronchial epithelium of patients with COPD,
TRPM8 expression is markedly increased and stimulation
with cold or menthol causes MUC5AC expression. MUC5AC
expression is reduced by TRPM8 shRNA in normal human
bronchial epithelial cells (Li et al., 2011a). Considering that
cold is one of the key triggers of COPD exacerbation and the
enhanced mucus secretion contributes to morbidity of COPD
by plugging airways and causing recurrent infection, TRPM8
may play an important role in the development of COPD and
maybe also asthma.

TRPV4
The link between TRPV4 and human pulmonary disease was
initially established by the discovery of TRPV4 gene poly-
morphism in COPD patients (Zhu et al., 2009). Interestingly,
one of these COPD-predisposing TRPV4 variants has a gain-
of-function phenotype with enhanced Ca2+ influx and
MMP-1 release evoked by diesel exhaust particles, indicating
that altered activity of TRPV4 could drive the pathogenesis
of COPD in some patients (Li et al., 2011b). Normal TRPV4
activity may maintain ciliary movements and cilia on bron-
chial epithelial cells are essential for airway clearance. The
Ca2+ overload secondary to this gain-of-function mutation
is thought to impair ciliary function, leading to accumula-
tion of harmful airborne particles in the lungs. Indeed,
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impaired ciliary movement (‘ciliopathy’) is an early sign of
COPD (http://weill.cornell.edu/news/releases/wcmc_2012/
07_12_12b.shtml).

TRPV4 is also implicated in the pathogenesis of pulmo-
nary oedema caused by high pulmonary venous pressure
secondary to heart failure. TRPV4 activation evoked by
elevated vascular pressure induces a marked increase in pul-
monary endothelial cell permeability (Jian et al., 2008). This
observation is in line with the finding that systemic admin-
istration of a TRPV4 agonist elicited increased pulmonary
vascular permeability, vascular haemorrhage, and circulatory
collapse as a result of profound disruption of the endothelial
permeability barrier (Willette et al., 2008). Conversely, TRPV4
inhibition prevented the increased vascular permeability and
resultant pulmonary oedema induced by elevated pulmonary
venous pressure in isolated rodent and canine lungs
(Thorneloe et al., 2012). Of note, the expression of TRPV4 in
the pulmonary vasculature is enhanced in lung sections
obtained from heart failure patients (Thorneloe et al., 2012).
Collectively, these observations imply a therapeutic benefit
for TRPV4 blockade in heart failure patients with pulmonary
oedema.

TRPC6
Lung ischaemia–reperfusion is another cause of pulmonary
oedema. The involvement of TRPC6 in this condition is
implied by the finding that TRPC6-deficient mice fail to
develop oedema following lung ischaemia–reperfusion
(Weissmann et al., 2012). It was suggested that TRPC6 is acti-
vated by DAG generated in a sequence of biochemical events
starting from superoxide production by NADPH oxidase 2
(NOX2) and leading to elevated vascular permeability.

The role of TRPC6 in pulmonary system extends beyond
oedema. For example, TRPC6 is implicated in the pathogen-
esis of idiopathic pulmonary hypertension. Three key studies
showed that (i) TRPC6 expression was increased in pulmo-
nary artery smooth muscle cells taken from idiopathic pul-
monary hypertension patients (Yu et al., 2004); (ii) TRPC6-
deficient mice failed to develop pulmonary hypertension in
response to chronic hypoxia (Weissmann et al., 2006); and
(iii) SNPs in the TRPC6 gene promoter region, which cause
elevated expression of the channel, are associated with idi-
opathic pulmonary arterial hypertension (Yu et al., 2009a).

Skin disorders and TRP channels

TRP channels are present in both neuronal and non-neuronal
cells in the skin where they are thought to play a key role in
itch, regulation of barrier function, keratinocyte differentia-
tion, hair growth, inflammation and wound healing (see
Moran et al., 2011). TRPV1 is expressed in sensory nerves
innervating the skin and genetic deletion or pharmacological
inhibition of TRPV1 decreased histamine-induced scratching
behaviour in mice (Shim et al., 2007; Imamachi et al., 2009).
In keeping with this observation, scratching behaviour
induced by LTB4 was decreased by TRPV1 blockade through a
mechanism involving attenuated migration of neutrophils to
the skin (Fernandes et al., 2013). Moreover, capsaicin injec-
tion into the mouse skin pretreated with CFA (but not into

healthy skin) induced scratching behaviour, which was
attenuated by capsazepine (Liang et al., 2011). There is anec-
dotal evidence that desensitization to capsaicin creams may
reduce itch associated with various aetiologies (Breneman
et al., 1992; Ellis et al., 1993; Lysy et al., 2003).

TRPA1 is highly co-expressed with TRPV1 in cutaneous
sensory nerves. TRPA1 antagonism and/or genetic deletion,
but not TRPV1 blockade, reduced scratching behaviour
evoked by intradermal injection of hydrogen peroxide (Liu
and Ji, 2012). Chloroquine and BAM8-22 induced itch
through a TRPV1-independent mechanism by activating two
other receptors, mas-related GPCR A3 (MrgprA3) and
MrgprC11. Sensory neurons isolated from TRPA1-deficient
mice exhibited markedly decreased responses to chloroquine
and BAM8–22 and, accordingly, TRPA1-deficient mice exhib-
ited reduced scratching in response to these pruritogens
(Wilson et al., 2011). Moreover, while LTB4 induced scratch-
ing by activating both TRPV1 and TRPA1, the downstream
mechanisms leading to itch differ between these channels,
i.e. neutrophil migration and superoxide release respectively
(Fernandes et al., 2013). These findings suggest that (i) TRPA1
antagonists may be useful for the treatment of itch; and
(ii) the spectrum of itch responsive to TRPA1 blockade may be
different from that of TRPV1 antagonists.

TRPV3 is abundantly expressed in keratinocytes (Peier
et al., 2002b) and is thought to play a key role in barrier
formation and hair morphogenesis. Activation of TRPV3
induces release of pro-inflammatory cytokines from murine
keratinocytes (Xu et al., 2006a). In human keratinocytes,
TRPV3 activation decreased proliferation and induced apop-
tosis (Borbíró et al., 2011). The same study demonstrated that
TRPV3 activation resulted in hair shaft elongation, suppres-
sion of proliferation and induction of apoptosis in human
organ-cultured hair follicles. Spontaneous mutant rodent
strains (DS-Nh mice and WBN/Kob-Ht rats) that carry muta-
tions for Gly573Ser and Gly573Cys in the TRPV3 gene,
respectively, display a hairless or a pruritic dermatitis pheno-
type (Asakawa et al., 2006; Yoshioka et al., 2009). Interest-
ingly, the same mutations together with another for
Try692Gly in the TRPV3 gene were identified in patients with
Olmsted syndrome, a rare disorder characterized by the com-
bination of peri-orificial keratotic plaques, bilateral palmo-
plantar keratoderma, alopecia and intense itch. When
expressed in heterologous systems, these TRPV3 mutants
exhibited gain-of-function phenotypes (Lai-Cheong et al.,
2012; Lin et al., 2012). Collectively, these observations
suggest that TRPV3 plays a crucial role in skin keratinization,
hair growth and itch. Therapeutic intervention by TRPV3
antagonists may reduce keratinization and itch in the skin,
and potentially also alleviate alopecia. Of note, we already
have a potential tool to test these predictions in GRC15300,
a potent and selective TRPV3 antagonist, which is being
evaluated in the clinics for pain (Khairatkar-Joshi et al., 2010).

In human keratinocytes, TRPV1 agonist treatment sup-
pressed proliferation and induced apoptosis (Tóth et al.,
2011). In human skin, TRPV1 expression was elevated
in response to ultraviolet (UV) irradiation (Lee et al., 2009).
In the skin of hairless mice, UV irradiation up-regulated
the expression of MMPs, pro-inflammatory cytokines, COX
and p53; this was reduced by TRPV1 blockade (Lee et al.,
2011). Taken together, these findings suggest that TRPV1
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antagonists may protect the skin from inflammation induced
by UV light such as sunburn. In addition, topical TRPV1
antagonists may ameliorate thermal hyperalgesia after
sunburn. TRPV1 has also been implicated in the pathogenesis
of atopic dermatitis. Indeed, the TRPV1 antagonist PAC-
14028 (AmorePacific Corp., Seoul, South Korea) is being
investigated in patients with atopic dermatitis.

Bladder disorders and TRP channels

A number of TRP channels (including TRPV1, V2 and V4,
TRPM4 and M8, TRPA1) are expressed in the bladder where
they show distinct cellular distribution pattern and play dif-
ferent roles (see Skryma et al., 2011; Avelino et al., 2013).

TRPV1, the target for intravesical
vanilloid therapy
TRPV1 is expressed in sensory neurons and urothelium.
While TRPV1 in sensory C-fibre afferents is involved in the
micturition reflex (Birder et al., 2002) and thought to serve as
sensor of painful bladder stimuli (Charrua et al., 2007), the
functional role (and the very existence) of TRPV1 in urothe-
lium remains controversial (Everaerts et al., 2010b).

TRPV1-deficient mice fail to develop bladder hyperre-
flexia during cystitis (Charrua et al., 2007; Wang et al., 2008)
and the TRPV1 antagonist GRC6211 attenuates bladder over-
activity in a rat model of bladder inflammation induced by
LPS (Charrua et al., 2009). GRC6211 also blocked the neuro-
genic detrusor overactivity (‘neurogenic bladder’) induced by
chronic spinalization in the rat (Santos-Silva et al., 2012).

The involvement of capsaicin-sensitive nerves in the
human micturition reflex is well-established (Maggi et al.,
1989). When the descending neuronal control of the mictu-
rition reflex is lost (e.g. after spinal cord injury or due to
multiple sclerosis, MS), the bladder becomes autonomic and
the capsaicin-sensitive afferents take control of micturition
(‘neurogenic bladder’). This forms the foundation for the use
of intravesical capsaicin administration in patients with neu-
rogenic bladder: in these patients, capsaicin reduces the first
desire to void by increasing bladder capacity and pressure
threshold for micturition (Maggi et al., 1989).

Although clinically effective in the long term, intravesical
capsaicin is unacceptable for many patients because of the
initial burning pain that it causes. Resiniferatoxin is a better-
tolerated (much less painful) alternative for intravesical vanil-
loid therapy. Intravesical resiniferatoxin reduced the number
of incontinent episodes (and even restored continence in
some) in patients with neurogenic detrusor overactivity of
spinal origin (Cruz et al., 1997; Cruz and Dinis, 2007). The
beneficial effects of intravesical resiniferatoxin were long-
lasting (several months) and reversible. Repeat administra-
tion replicated the therapeutic value of the initial treatment.
Importantly, biopsies taken from the bladder of patients
undergoing intravesical vanilloid therapy did not show any
significant histopathological and/or ultrastructural (electron
microscopic) alterations.

TRPV4
In the bladder, TRPV4 is abundantly expressed in urothelial
cells (Yu et al., 2011). Stimulation of urothelial TRPV4 by

stretch and/or hypo-osmolality induces ATP release which, in
turn, activates purinergic P2X3 receptors in bladder afferents
and evokes the micturition reflex (Birder et al., 2007;
Mochizuki et al., 2009; Aizawa et al., 2012). TRPV4 is also
expressed in the detrusor muscle. Indeed, GSK1016790A, a
potent and selective TRPV4 agonist (Figure 5), induces detru-
sor muscle contractions even in the absence of urothelium
(Thorneloe et al., 2008). Consistent with these findings, intra-
vesical administration of GSK1016790A causes bladder over-
activity in wild type, but not in TRPV4-deficient, mice
(Thorneloe et al., 2008). Moreover, TRPV4-null mice dis-
played reduced frequency of voiding, increased urine volume
per episode, and spatially altered urine spot pattern (Gevaert
et al., 2007). TRPV4-null mice also showed reduced detrusor
overactivity in a cyclophosphamide-induced cystitis model.
HC-067047, a potent and selective TRPV4 antagonist,
reduced micturition frequency in a rat model of cystitis
(Everaerts et al., 2010a). Of note, a subpopulation of patients
with Charcot–Marie–Tooth disease type 2C, a genetic disease
caused by gain-of-function mutation in TRPV4, display
bladder urgency and incontinence (Landourè et al., 2010).
Collectively, these observations suggest that TRPV4 may rep-
resent a useful therapeutic target for the treatment of bladder
dysfunction.

TRPM8
A subset of sensory bladder afferents expresses TRPM8
(Shibata et al., 2011) and expression of this channel is
elevated after bladder outlet obstruction in rats (Hayashi
et al., 2011). In patients with overactive and painful bladder
syndromes, TRPM8 is similarly up-regulated in nerve fibres
and its expression level significantly correlates with clinical
scores (Mukerji et al., 2006a). Intravesical cold saline instilla-
tion causes uninhibited detrusor contractions in patients
with either idiopathic or neurogenic detrusor overactivity,
but not in healthy volunteers (Mukerji et al., 2006b). In rats,
intravesical infusion of menthol evokes the micturition reflex
(Nomoto et al., 2008). Volume-induced bladder contraction
and nociceptive reflex responses to noxious bladder disten-
sion are reduced by AMTB, a TRPM8 antagonist (Figure 5;
Lashinger et al., 2008). Additionally, in a cystometric
study using rats, N-(4-t-butylphenyl)-4-(3-chloropyridin-2-
yl)tetrahydropyrazine-1(2H)-carboxamide (BCTC), another
TRPM8 antagonist that also blocks TRPV1 and V4 channels,
inhibited detrusor overactivity induced by menthol or cold
stress (Lei et al., 2013). Taken together, these observations
imply that TRPM8 is involved in bladder pain and detrusor
overactivity.

TRPA1
TRPA1 is highly expressed in sensory neurons innervating
bladder where it is co-expressed with TRPV1 (Streng et al.,
2008). As with TRPM8, TRPA1 is up-regulated in bladder
mucosa in patients with bladder outlet obstruction (Du et al.,
2008). Exposure of rat bladder strips to TRPA1 agonists
induced contraction (Andrade et al., 2006). In vivo, TRPA1
agonists increased the micturition frequency in rats, and
desensitization of TRPV1-expressing C-fibres by capsaicin
attenuated the effect of TRPA1 agonist (Du et al., 2007;
Streng et al., 2008). Conversely, the TRPA1 antagonist
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HC-030031 attenuated bladder overactivity in models of
cyclophosphamide-induced cystitis and spinal cord injury
(Andrade et al., 2011; Meotti et al., 2013). These findings
identify TRPA1 as a potential drug target for bladder
disorders.

TRPM4
TRPM4 is functionally expressed in the detrusor muscle of the
rat and guinea pig. 9-Phenanthrol, a selective TRPM4 antago-
nist, reduced contraction of detrusor-isolated strips induced
by various stimuli including electrical field stimulation
(Smith et al., 2013a,b). Further studies will be needed to elu-
cidate the pathophysiological roles of TRPM4 in human
bladder.

Inflammatory bowel disease (IBD) and
TRP channels

TRP channels are widely expressed in the digestive tract, with
important roles in taste, visceral sensation, GI motility, as
well as absorptive and secretory functions (see Boesmans
et al., 2011; Holzer, 2011; Blackshaw et al., 2013). Changes in
TRP channel expression have been detected in a variety of GI
ailments as exemplified by increased TRPV1 expression in
both GERD (Matthews et al., 2004; Bhat and Bielefeldt, 2006)
and irritable bowel syndrome (Akbar et al., 2008; Keszthelyi
et al., 2013). Indeed, TRPV1-null mice develop less oesophagi-
tis after acid exposure compared with their wild-type litter-
mates (Fujino et al., 2006).

There is good evidence to suggest an important role for
TRP channels (in particular, TRPV1 and TRPA1) in the devel-
opment and maintenance of IBD. Increased TRPV1-like
immunoreactivity was reported in colonic biopsies taken
from patients with IBD, both Crohn’s disease and ulcerative
colitis (Yiangou et al., 2001). In a rat model of IBD, desensi-
tization to topical capsaicin of intestinal afferents was shown
to reduce ulceration (Goso et al., 1993). Furthermore, the
TRPV1 antagonist JYL1421 suppressed colorectal distension
and improved colitis in rats (Miranda et al., 2007). TRPA1
expression is elevated in the inflamed mouse gut (Yang et al.,
2008; Izzo et al., 2012). Experimental colitis induced by
dinitrobenzene sulphonic acid (DNBS) was attenuated after
both pharmacological blockade (by the TRPA1 antagonist
HC-030031) and genetic inactivation of TRPA1 (Engel et al.,
2011). DNBS was shown to bind to cysteine residues in the
intracytoplasmic N-terminus of the TRPA1 protein, identify-
ing TRPA1 as a direct molecular target in DNBS-induced
colitis (Engel et al., 2011). The involvement of TRPA1 in IBD
is, however, more complex as TRPA1 activation by cannabi-
chromene (Figure 6) was reported to ameliorate murine
colitis (Romano et al., 2013).

In the GI tract, TRPV4 is expressed both in epithelial cells
and sensory afferents (Brierley et al., 2008). In IBD patients,
increased TRPV4 mRNA levels were reported. In experimental
animals, TRPV4 activation contributes to intestinal inflam-
mation via chemokine release and TRPV4 blockade alleviates
colitis symptoms (D’Aldebert et al., 2011; Fichna et al., 2012).
Finally, TRPM8 is up-regulated both in mouse and human

colon during colitis and TRPM8 activation by icilin attenu-
ates inflammatory responses in a mouse model of IBD
(Ramachandran et al., 2013).

Diabetes and TRP channels

A growing number of TRP channels (TRPM2, M4 and M5,
TRPA1) have been implicated in insulin release from pancre-
atic beta-cells (see Colsoul et al., 2013). TRPM5 plays an
important role in glucose-induced high-frequency oscilla-
tions. Indeed, membrane potential and cytosolic calcium
level were reduced in islets derived from TRPM5-deficient
mice, resulting in decreased glucose-induced insulin secre-
tion (Colsoul et al., 2010). Consequently, TRPM5-deficient
mice showed impaired glucose tolerance (Brixel et al., 2010;
Colsoul et al., 2010). In addition, TRPM5 mediates fructose-
induced insulin release (downstream of sweet taste receptors)
in murine islets (Kyriazis et al., 2012). These observations
indicate that TRPM5 may serve as a potential convergence
point between sweet taste receptors and glucose-induced
insulin secretion in pancreatic beta-cells (Kyriazis et al.,
2012). In accord with this hypothesis, SNPs in TRPM5
are associated with pre-diabetic phenotypes in subjects at
increased risk for type 2 diabetes in a German population
(Ketterer et al., 2011). Collectively, these findings suggest that
TRPM5 agonists may provide therapeutic benefits in patients
with type 2 diabetes.

TRPM2 is another TRP channel implicated in insulin
release from pancreatic beta-cells. Pharmacological inhibition
or genetic deletion of TRPM2 reduced insulin secretion from
islets induced by heat, glucose or glucagon-like peptide 1
(GLP-1) receptor agonists (Togashi et al., 2008; Uchida et al.,
2011). TRPM2 is a non-selective Ca2+ permeable cation
channel and TRPM2-mediated insulin secretion occurs partly
by intracellular influx of Ca2+. Interestingly, insulin secretion
via TRPM2 can be induced by Ca2+ influx-independent
mechanisms as glucose-induced insulin secretion was lost in
islets from TRPM2-deficient mice in a condition that is sup-
posed to completely inactivate the insulin release pathway
mediated by KATP channel and voltage dependent Ca2+

channel (Uchida et al., 2011). Importantly, TRPM2 knockout
mice showed higher basal glucose levels and impaired glucose
tolerance, indicating TRPM2 agonists may be useful as anti-
diabetic agents (Uchida et al., 2011). On the other hand,
other studies indicate activation of TRPM2 by ROS leads to
apoptosis in beta-cell lines (Hara et al., 2002; Ishii et al., 2006;
Lange et al., 2009). In addition, genotyping studies did not
find any correlation between SNPs in the TRPM2 gene and
type 2 diabetes (Romero et al., 2010). Clearly, further investi-
gation is required in order to establish the validity of TRPM2
as a therapeutic target in diabetes.

The roles of TRP channels in diabetes extend beyond
insulin secretion from beta-cells. For example, there is good
evidence that TRPV1 in sensory afferents (presumably follow-
ing the release of sensory neuropeptides) plays a role in physi-
ological glucose control (see Suri and Szallasi, 2008).
Furthermore, dysregulated TRPV1 activity was implicated in
the pathomechanisms of diabetes, both type 1 (Tsui et al.,
2007) and type 2 (Tsui et al., 2011). Capsaicin evokes GLP-1
release from a murine entero-endocrine cell line in vitro and
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when given intragastrically, capsaicin increases GLP-1 and
insulin secretion in wild type, but not in TRPV1-deficient
mice (Wang et al., 2012). TRPV1-deficient mice also show
improved glycemic control in a diet-induced obesity model
(Marshall et al., 2013). Desensitization to capsaicin was
reported to increase glucose tolerance in Zucker diabetic fatty
rats, a model of type-2 diabetes (Gram et al., 2007). BCTC
(a non-selective TRPV1 antagonist that also blocks TRPV4
and TRPM8 channels) improved glucose tolerance in rodent
models of type-2 diabetes (Tanaka et al., 2011). Finally,
genetic deletion of TRPV1 protected mice from the develop-
ment of autoimmune (type 1) experimental diabetes (Razavi
et al., 2006). Thus, the range of the experimental evidence
implies a therapeutic potential for TRPV1 blockade in dia-
betic patients.

Obesity is an important cause of insulin resistance and
type 2 diabetes. The exact role of TRPV1 in the control of
appetite and body weight remains controversial. There is
anecdotal evidence that dietary capsaicin suppresses appetite
and keeps both experimental animals and human volunteers
lean. Genetic deletion of TRPV1 appears to protect young
mice from high-fat diet-induced obesity (Motter and Ahern,
2008) but when these mice grow older, they become ‘lazy’
(hypoactive) and fat (Garami et al., 2011; Marshall et al.,
2013).

The involvement of TRPV4 in body weight control is
likewise controversial. While two studies demonstrated that
TRPV4-deficient mice were protected from diet-induced
obesity (Kusudo et al., 2012; Ye et al., 2012), another study
showed the opposite effect (O’Conor et al., 2013). Even
worse, in the latter study the TRPV4 (−/−) animals not
only became obese but also showed severe, debilitating
osteoarthritis.

The potential involvement of TRPM8 in obesity was
recently suggested by the finding that chronic dietary
menthol treatment prevented diet-induced obesity in wild-
type, but not in TRPM8-deficient mice, through thermogen-
esis in brown adipose tissue, mediated by uncoupling protein
1 (UCP-1), (Ma et al., 2012b).

For the sake of completeness, it should be mentioned
here that TRP channels are also potential targets for manag-
ing the complications of diabetes, such as peripheral neu-
ropathy, nephropathy, retinopathy, as well as cardiovascular
disease. As mentioned earlier, TRPA1 and TRPV1 have been
investigated as analgesic targets in diabetic neuropathic pain
(Koivisto et al., 2012). Of note, methylglyoxal, a metabolite
of glucose, is capable of directly activating TRPA1, providing
a potential link between elevated glucose levels and pain
(Ohkawara et al., 2012). With regard to diabetic nephropa-
thy, podocyte foot processes and slit diaphragms contribute
to the formation of the glomerular filter in the kidney and
dysfunction of podocytes leads to proteinuria (Faul et al.,
2007). TRPC6 expression is elevated in podocytes by high
glucose levels. Moreover, TRPC6 mediates high glucose-
induced podocyte apoptosis where TRPC6 is activated by
ROS generated from glucose (Liu et al., 2013; Yang et al.,
2013). These observations suggest a role for TRPC6 in the
development of diabetic nephropathy. Last, TRPV4 in ocular
endothelial cells has been implicated in the pathogenesis of
diabetic retinopathy (and other ocular neovascularization
disorders).

Cancer and TRP channels

The link between TRP channels and cancer is a speculative,
potentially rewarding, but highly controversial area of
research. Clearly, the expression of several TRP channels
(including TRPV1, V2, V6, TRPC3, C5, C6, TRPM1, M2, M3,
M4, M7 and TRPM8, TRPA1) is altered in various cancers (see
Santoni and Farfariello, 2011; Liberati et al., 2013). Some
authors argue that TRP channels are involved in the prolif-
eration and migration of cancer cells, as well as in their
resistance to chemotherapeutic agents (see Liberati et al.,
2013; Lehen’kyi and Prevarskaya, 2011). Sceptics point out
that altered TRP channel expression may be simply an epi-
phenomenon to cancer progression and not a contributor to
disease.

Of note, prostatic adenocarcinoma shows increased
TRPM8 expression that appears to correlate with the aggres-
siveness of the disease. Recently, D-3263, a TRPM8 agonist,
has entered Phase 1 clinical trials (NCT00839631) with the
hope that it will kill TRM8-expressing cancer cells by calcium
and sodium overload through TRPM8 activation (see Santoni
and Farfariello, 2011). If this trial is successfully completed, a
similar approach may be tried for other cancers that overex-
press TRP channels such as TRPC6 in glioblastoma and TRPV2
in ovarian carcinoma.

Kidney disorders and TRP channels

TRPP2, TRPC6 and TRPM6 are causative genes of some
genetic kidney disorders (Nilius and Owsianik, 2010). Muta-
tions in PKD2, a gene coding TRPP2, are responsible for
ADPKD, the most common inherited renal disease character-
ized by the growth of numerous cysts in both kidneys, and in
many cases, hypertension, leading to renal failure (Peters
et al., 1993; Mochizuki et al., 1996). TRPP2 forms a complex
with polycystin-1 (Yu et al., 2009b), a gene product of
another causative gene of ADPKD, in primary cilia of renal
epithelial cells and vascular endothelial cells and this
complex is proposed to transduce extracellular shear stress
induced by blood flow or urine flow into intracellular Ca2+

signals (Nauli et al., 2003; AbouAlaiwi et al., 2009). Cystic
renal epithelial cells have lowered intracellular Ca2+ level
(Yamaguchi et al., 2006) and triptolide, a compound derived
from traditional Chinese medicine, suppressed cyst forma-
tion by restoring Ca2+ signalling in a TRPP2-dependent
mechanism in a murine model of ADPKD (Leuenroth et al.,
2007).

Interestingly, TRPV4 is reported to form a complex with
TRPP2 to serve as a mechano- and thermosensitive molecular
sensor in the cilium (Köttgen et al., 2008). Chronic treatment
with a low-dose TRPV4 agonist attenuated the renal cyst
enlargement in an animal disease model of autosomal reces-
sive polycystic kidney disease, which was also associated with
reduced intracellular Ca2+ level (Siroky et al., 2006).

Mutations in TRPC6 are responsible for FSGS, a disease
characterized by glomerular scarring, resulting in proteinuria,
oedema and kidney failure. Some of the TRPC6 mutants
cloned from FSGS patients show a gain-of-function pheno-
type (Reiser et al., 2005; Winn et al., 2005). TRPC6-deficient

BJPClinical perspective on TRPs

British Journal of Pharmacology (2014) 171 2474–2507 2491



mice fail to develop angiotensin II (Ang-II)-induced albumi-
nuria (Eckel et al., 2011) while podocyte-specific overexpres-
sion of TRPC6 induces kidney dysfunction analogous to
human FSGS (Krall et al., 2010). In addition, expression of
TRPC6 is elevated both in patients with acquired forms of
proteinuric kidney disease and in a model of podocyte injury
in rats (Möller et al., 2007). Although the mechanism of
TRPC6-mediated podocyte dysfunction has not been clari-
fied, NFAT-dependent gene transcription may be involved in
the pathway (Wang et al., 2010). On the other hand, down-
regulation of TRPC6 leads to loss of stress fibres upon Ang-II
treatment in podocytes (Tian et al., 2010). TRPC6-deficient
mice were originally reported to be hypertensive, although
compensatory up-regulation of TRPC3 and TRPC7 may have
contributed to the observed phenotype (Dietrich et al., 2005).

TRPM6 is permeable to Mg2+ and Ca2+. TRPM6 is unique
among TRP channels in that it has a large carboxyl terminal
PK domain, analogous to TRPM7. TRPM6 is primarily
expressed in the kidney and intestine and is considered to be
responsible for absorption of Mg2+. Loss-of-function mutation
in TRPM6 is responsible for a rare hereditary disease charac-
terized by profound hypomagnesaemia associated with
hypocalcaemia (see Nilius and Owsianik, 2010). Accordingly,
TRPM6 agonists may be useful in the management of disor-
ders characterized by hypomagnesaemia.

CNS disorders and TRP channels

A number of TRP channels are expressed in the brain where
they are believed to play key roles in the development of
neurological and psychiatric disorders (see Vennekens et al.,
2012). TRPC3 is a non-selective cation channel that is acti-
vated through PLC and activation of inositol trisphosphate
receptors. TRPC3 is abundantly expressed in cerebellum,
cortex and hippocampus where it plays a pivotal role in
brain-derived neurotrophic factor (BDNF)-mediated survival
and growth-cone guidance in cerebellar granule neurons (Li
et al., 2005; Jia et al., 2007). In addition, TRPC3 can be acti-
vated downstream of mGlu1 receptors and induces slow
excitatory postsynaptic potentials in cerebellar Purkinje cells
(Hartmann et al., 2008). Interestingly, both TRPC3 knockout
mice and ‘moonwalker mice’ (that possess a gain-of-function
mutation in TRPC3) exhibit similarly impaired walking
behaviours (Hartmann et al., 2008; Becker et al., 2009). Con-
sidering this obvious discrepancy, further investigation will
be needed to assess whether or not TRPC3 provides a drug
discovery opportunity for ataxia.

TRPC6 is a close homologue of TRPC3, and similarly to
TRPC3, TRPC6 promotes BDNF-mediated survival and
growth-cone turning in cerebellar granular cells (Li et al.,
2005; Jia et al., 2007). Overexpression of TRPC6 in cultured
hippocampal neurons increases the density of dendritic
spine, while down-regulation of TRPC6 with siRNA reduces
the spine density (Tai et al., 2008; Zhou et al., 2008). TRPC6
transgenic mice exhibited improved spatial learning and
memory in the Morris water maze test, suggesting a crucial
role of TRPC6 in learning and memory formation through
regulation of synaptic plasticity (Zhou et al., 2008).

TRPC5 is highly expressed in hippocampus and amyg-
dala (Riccio et al., 2009). TRPC5-deficient mice displayed

anxiolytic-like phenotype in elevated plus-maze, open field
and social interaction tests, but not in novelty-suppressed
feeding tests, suggesting that TRPC5 is involved in innate
fear (Riccio et al., 2009). In addition, synaptic responses
mediated by activation of mGlu receptors and cholecysto-
kinin CCK2 receptors, both of which are implicated in
anxiety, are diminished in lateral nucleus of the amygdala
derived from TRPC5-null mice (Riccio et al., 2009). Collec-
tively, these data suggest that TRPC5 may serve as a
therapeutic target for anxiety. Parenthetically, TRPV1 (−/−)
mice were also reported to show reduced fear and anxiety
behaviour (Marsch et al., 2007). This finding, however,
has recently been questioned by another study in which
only minimal brain TRPV1 expression was found using
a sensitive reporter mouse model (Cavanaugh et al.,
2011).

Growth cone collapse induced by semaphorin 3A is
reduced in hippocampal neurons from TRPC5-deficient
mice (Kaczmarek et al., 2012). If this observation is repli-
cated by pharmacological inhibition of TRPC5, it may imply
a beneficial effect for TRPC5 antagonists in neurodegenera-
tive disorders.

TRPM2 and TRPM7 are potential therapeutic targets for
stroke. TRPM2 is expressed in microglia and neurons in the
brain and may serve as a redox sensor. Activation of TRPM2
by oxidative stress could lead to cell death. Indeed, TRPM2-
deficient mice showed resistance against neuronal death in a
focal ischaemia model of stroke (Miller and Zhang, 2011).
Likewise, TRPM7-induced Ca2+ overload leads to cell death. In
a murine model of brain ischaemia, down-regulation of
TRPM7 by shRNA protected rats from ischaemia-induced
deficits (Sun et al., 2009). Interestingly, FTY720, an immuno-
suppressive drug approved for the treatment of MS, inhibits
TRPM7 (Qin et al., 2013). It is tempting to speculate that
FTY720 suppressed axonal and neuronal loss, one of the main
characteristics of MS, partly through its inhibitory effect on
TRPM7.

Genetic studies found that SNPs in TRPM2 and TRPM7
genes were associated with two related neurodegenerative
disorders, ALS-G and Parkinsonism dementia respectively
(Plato et al., 2002). Of note, a different study in a Japanese
population did not find significant correlation between SNP
in TRPM7 and the ALS-Parkinsonism dementia complex
(Hara et al., 2010).

TRPM4 may be involved in axonal and neuronal degen-
eration in MS. In experimental autoimmune encephalomy-
elitis, a murine model of MS, TRPM4-deficient mice were
protected from axonal and neuronal injury (Schattling et al.,
2012). The same study demonstrated that TRPM4-deficient
neurons were resistant to excitotoxic stress and energy defi-
ciency in vitro.

TRPML1 is a Ca2+- and Fe2+-permeable non-selective cation
channel expressed predominantly in late endosomes and lys-
osomes (Nilius and Owsianik, 2010). Loss-of-function muta-
tions in TRPML1 (Dong et al., 2008) are responsible for
mucolipidosis type IV, a hereditary lysosomal storage disorder
characterized by severe psychomotor retardation, ophthal-
mologic abnormalities, blood iron deficiency and achlorhy-
dria (Sun et al., 2000; Raychowdhury et al., 2004). The
pathological mechanisms arising from mutations in TRPML1
have not been clarified.
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Blockade of TRPML1-mediated Ca2+ release from late
endosome/lysosome vesicles may reduce fusion and traffick-
ing of these organelles (LaPlante et al., 2004). The observed
deficiency in lysosome functions could allow accumulation
of lipids, followed by impaired autophagosome degradation
that normally clears toxic proteins and damaged cell orga-
nelles (Vergarajauregui and Puertollano, 2008). Indeed, lyso-
somal lipid accumulation, defects in membrane trafficking
and altered Ca2+ homeostasis are common characteristics
observed in various lysosomal storage disorders including
Nieman-Pick (NP) syndrome. A recent study demonstrated
that increasing TRPML1 expression or using ML-SA1, a small-
molecule TRPML1 agonist, restored trafficking defects and
reduced lysosome storage and cholesterol accumulation in
NP type C macrophages, suggesting that TRPML1 agonist
may be useful for the treatment of the NP syndrome and
potentially, other lysosomal storage disorders (Shen et al.,
2012).

Cardiovascular disorders and
TRP channels

Cardiac hypertrophy is associated with arrythmias, decom-
pensation and sudden death. Signal transduction pathways
that link pathogenic signals to cardiomyocyte hypertrophy
may be exploited for therapeutic intervention. There is
emerging evidence that the calcineurin/NFAT complex (prob-
ably in concert with the MAPK pathway) is one of the key
mechanisms that switch on the genes that cause cardiac
hypertrophy (see Eder and Molkentin, 2011). Calcineurin is a
serine/threonine phosphatase controlled by intracellular Ca2+

levels and increases in intracellular Ca2+ through TRPC chan-
nels (in particular TRPC1, C3 and C6) may activate the
calcineurin/NFAT pathway (see Watanabe et al., 2013).
Indeed, TRPC1 knock-down by siRNA diminished the hyper-
trophy phenotype of cultured cardiac myocytes in response
to endothelin-1 (ET-1), Ang-II and phenylephrine (Ohba
et al., 2007). Consistently, siRNA targeting TRPC1 reduced
NFAT activation and hypertrophic response mediated by
5-HT2A receptors in cardiomyoblasts (Vindis et al., 2010).
Importantly, TRPC1-deficient mice failed to develop mala-
daptive cardiac hypertrophy induced by hemodynamic stress
and neuro-hormonal excess (Seth et al., 2009). Taken
together, these findings imply an important role for TRPC1
channels in the pathogenesis of cardiac hypertrophy.

TRPC3 is another promising target for cardiac hypertro-
phy. TRPC3 transgenic mice exhibit increased activation of
the calcineurin/NFAT pathway, leading to cardiomyopathy
and cardiac hypertrophy when challenged by neuroendo-
crine agonists and/or pressure overload (Nakayama et al.,
2006). In keeping with this finding, Pyr3, a selective TRPC3
antagonist (Figure 5), protected mice from pressure overload-
induced cardiac hypertrophy (Kiyonaka et al., 2009).

TRPC6 may be also involved in cardiac hypertrophy as
knock-down of this gene by siRNAs diminished Ang–II-
induced NFAT activation and hypertrophic responses in rat
cardiomyocytes (Onohara et al., 2006). Conversely, cardiac-
specific overexpression of TRPC6 in transgenic mice led to
massive cardiac hypertrophy (Kuwahara et al., 2006).

There is good evidence that TRP channels also contribute
to the pathogenesis of hypertension. Expression of TRPC3 is
elevated in patients with malignant hypertension in the vas-
cular endothelium of pre-glomerular arterioles (Thilo et al.,
2009). ET-1 induces activation of the inositol trisphosphate
receptor IP3R1 in arterial myocytes and causes physical cou-
pling of the IP3R1 N-terminus to the TRPC3 channel
C-terminus, leading to TRPC3 activation and vasoconstric-
tion (Adebiyi et al., 2010). In addition, the kinase WNK4,
which is a causative gene of hereditary hypertension, controls
blood pressure by restricting TRPC3-mediated Ca2+ influx in
the vasculature (Park et al., 2011b). Collectively, these obser-
vations suggest that TRPC3 blockade may be a novel
approach to mitigate hypertension. TRPM4 may be also
involved in the control of blood pressure as TRPM4-deficient
mice showed a hypertensive phenotype, because of elevated
catecholamine secretion from adrenal chromaffin cells
(Mathar et al., 2010).

Mutations in TRPM4 are reported to be associated with
multiple cardiac conduction disorders, including progressive
familial heart block type I (Kruse et al., 2009), isolated cardiac
conduction diseases (Liu et al., 2010) and atrioventricular
block and right bundle branch block (Stallmeyer et al., 2012).
The first two reports demonstrated that mutant TRPM4
underwent reduced deSUMOylation, resulting in constitutive
SUMOylation and impaired endocytosis, leading to elevated
levsl of TRPM4 channels on the cell surface. Such enhanced
surface expression of mutant TRPM4 channel may disturb
cardiac conduction by prolonging membrane depolarization
and increasing inactivation of Na+ channels. On the other
hand, heart rates were not altered in TRPM4-null mice while
these animals showed hypertension due to enhanced release
of catecholamines (Mathar et al., 2010). Lastly, TRPA1 (highly
expressed in endothelial cells) has been implicated in the
regulation of heart rate and blood pressure (see Earley, 2012).

Conclusions and perspectives

The TRP channel story began in 1969 with the description of
a spontaneous Drosophila mutant in which, during prolonged
illumination, photoreceptors showed an abnormal, transient
response (Cosens and Manning, 1969). Exactly 20 years later,
the mutant gene responsible for this abnormal light response
was identified and termed ‘trp’ (for transient receptor poten-
tial; Montell and Rubin, 1989). 1995 witnessed the discovery
of the first mammalian TRP channel, TRPC1 (Wes et al., 1995;
Zhu et al., 1995). Within a few years after this seminal dis-
covery, the family of TRP channels exploded to include such
long sought-after drug targets as the vanilloid (capsaicin)
receptor TRPV1 (Caterina et al., 1997), the camphor receptor
TRPV3 (Peier et al., 2002b) and the menthol receptor TRPM8
(McKemy et al., 2002). The initial emphasis of drug discovery
efforts was on TRP channels expressed on nociceptive
neurons (Patapoutian et al., 2009). Indeed, it took less than a
decade to develop the first TRPV1 antagonists to be tried in
the clinics as novel analgesic drugs (Szallasi et al., 2007).
Antagonists targeting TRPA1 and TRPV3 were quick to follow
(Brederson et al, 2013). At the same time, exciting new dis-
coveries have expanded the therapeutic potential of drugs
targeting TRP channels into new disease areas, ranging from

BJPClinical perspective on TRPs

British Journal of Pharmacology (2014) 171 2474–2507 2493



respiratory diseases (cough, COPD and asthma) through car-
diovascular, bladder, metabolic (including obesity and diabe-
tes) and neurological disorders to stroke and cancer.

The rapid progress in TRP channel research has brought
the understanding of the roles these channels play in health
and disease within reach. However, of the 28 mammalian TRP
channels, only 4 (TRPV1 and V3, TRPA1, and TRPM8) have
been exploited so far to reach clinical stage of drug develop-
ment despite accumulating evidence to implicate other TRP
channels in diseases. Clearly, several key questions remain to
be answered in order to facilitate the translation of the find-
ings in basic research to clinical applications.

First, TRP channels have polymodal gating mechanisms
and most also show a broad range of tissue distribution. Even
TRPV1 (traditionally considered as a ‘signature of polymodal
sensory neurons’) seems to be expressed at unexpected loca-
tions such as the skin, urothelium and mast cells (see Szallasi
and Blumberg, 1999; Szallasi et al., 2007). Consequently,
pharmacological modulation of TRP channels may cause
unacceptable, on-target, adverse effects. It was a sobering
experience when many TRPV1 antagonists had to be with-
drawn from the clinical trials due to either hyperthermia
and/or impaired noxious heat sensation (see Moran et al.,
2011; Brederson et al., 2013). Of note, TRPV1 antagonists
vary significantly in the magnitude of these side effects,
raising the possibility that such second-generation antago-
nists may be synthesized that show an improved clinical
benefit to adverse effect ratio.

For other TRP channels, on-target side effects may repre-
sent an even bigger problem. For example, blockade of
TRPM4 may be beneficial for the treatment of MS (Schattling
et al., 2012) and anaphylaxis (Smith and Nilius, 2013), but it
may cause dangerous cardiac arrhythmias and hypertension
(Abriel et al., 2012). Although both gain- and loss-of-function
TRPV4 mutations have been linked to human disease, this
channel is another problematic drug target especially when
activated by agonists (Nilius and Voets, 2013). Indeed, sys-
temic activation of TRPV4 by GSK1016790A led to endothe-
lial failure and cardiovascular collapse (Willette et al., 2008).
To a certain degree, this issue may be circumvented by organ-
specific drug delivery: for example, when applied topically to
the skin, GSK1016790A promoted intercellular junction
development and thus augmented barrier function with no
apparent adverse effects (Kida et al., 2012). Selective modula-
tion of TRP channels in diseased, but not in healthy, tissues
(e.g. targeting TRPV1-AKAP79 interaction during inflamma-
tion) is another attractive approach to circumvent side
effects.

Second, most of our understanding regarding the contri-
bution of TRP channels to diseases is derived from studies
with in vitro systems or preclinical rodent models, which do
not always mirror human diseases. In this context, hereditary
diseases caused by mutations in TRP channels (so-called ‘TRP
channelopathies’) provide less uncertainty. Unfortunately,
gain- and loss-of-function mutations often produce similar
phenotypes. In terms of drug discovery, diseases caused by
gain-of-function mutations in TRP channels could be more
approachable as over-activation of channels could be inhib-
ited by small molecules, while those caused by loss-of-
function mutations, particularly truncation types, are
difficult to target with small molecules and a less-validated

approach such as gene therapy may be required to restore the
normal TRP channel function. Besides the direct reversal of
dysfunctional TRP channels, modulating the function of the
intact TRP channels by therapeutic intervention might
provide benefit when diseases related to those channelopa-
thies are caused by mutations in other genes or environmen-
tal factors. One such example, although largely speculative,
may be the use of a TRPP2 agonist for ADPKD, caused by
mutations in PKD1.

Third, for many diseases we already have symptomatic
therapeutic modalities and what we really need is a disease-
modifying drug. For example, β-agonists improve lung func-
tions in COPD patients, but they do not reverse (or at least
halt) disease progression. Likewise, many drugs improve
insulin-sensitivity in patients with type 2 diabetes, but these
drugs do not fully prevent diabetic complications and neither
do they prevent the exhaustion of islet cells.

The advantages and disadvantages of TRP channel ago-
nists and antagonists over currently available therapeutic
options need to be carefully weighed. For example, what
would be the advantage of TRPA1 and/or TRPM8 antagonists
over inhaled glucocorticoids and bronchodilators in patients
with asthma? Or how about inhaled TRPV4 antagonists in
patients with COPD? One may speculate, but the answers to
these questions must come from clinical trials.

These obstacles are real, but probably not insurmount-
able, and the potential benefits are considerable. Drug discov-
ery companies that can find creative ways to capitalize on
targeting TRP channels in disease (and to spare those medi-
ating important physiological functions) may develop novel,
first-in-class drugs.
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