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BACKGROUND AND PURPOSE
Evodiamine, a racemic quinazolinocarboline alkaloid isolated from the traditional Chinese medicine Evodiae fructus, has been
reported to act as an agonist of the transient receptor potential vanilloid type-1 (TRPV1) cation channel both in vitro and in
vivo. Evodiamine is structurally different from all known TRPV1 activators, and has significant clinical potential as a
thermogenic agent. Nevertheless, the molecular bases for its actions are still poorly understood.

EXPERIMENTAL APPROACH
To investigate the structure-activity relationships of evodiamine, the natural racemate was resolved, and a series of 23
synthetic analogues was prepared, using as the end point the intracellular Ca2+ elevation in HEK-293 cells stably
overexpressing either the human or the rat recombinant TRPV1.

KEY RESULTS
S-(+) evodiamine was more efficacious and potent than R-(−) evodiamine, and a new potent lead (Evo30) was identified,
more potent than the reference TRPV1 agonist, capsaicin. In general, potency and efficacy correlated with the lipophilicity of
the analogues. Like other TRPV1 agonists, several synthetic analogues could efficiently desensitize TRPV1 to activation by
capsaicin.

CONCLUSIONS AND IMPLICATIONS
Evodiamine qualifies as structurally unique lead structure to develop new potent TRPV1 agonists/desensitizers.

LINKED ARTICLES
This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit
http://dx.doi.org/10.1111/bph.2014.171.issue-10

Abbreviations
DMSO, dimethyl sulfoxide; IRTX, 5-iodo-resiniferatoxin; PI3K, phosphoinositite 3-kinase
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Introduction
Transient receptor potential (TRP) channels are a large family
of non-selective cation channels variously regulated (De
Petrocellis and Di Marzo, 2005). They respond to physical
and chemical stimuli such as temperature, pH, light, osmo-
larity, touch, pheromones, oxidative stress and lipids
(Venkatachalam and Montell, 2007). Mutations in many
of the genes that encode TRP channels cause pathological
conditions known as ‘TRP channelopathies’ (Nilius and
Owsianik, 2010). Members of the TRP vanilloid-(TRPV1-V4),
melastatin-(TRPM2, M3, M5 and M8) and ankiryn-type
(TRPA1) subfamilies are gated by temperature changes (<15 to
>53°C), and are known as ‘thermoTRPs’. ThermoTRPs are
expressed in sensory nerve terminals and initiate sensory
nerve impulses following the detection of chemical and
thermal stimuli (Patapoutian et al., 2009).

TRPV1 (Caterina et al., 1997) is a unique pain-sensing
transducer playing a pivotal role in the maintenance of
inflammatory conditions secondary to tissue injury by
trauma, infection, surgery, burns or diseases with an inflam-
matory component (Jara-Oseguera et al., 2008; Basbaum
et al., 2009). It is also known as the ‘capsaicin receptor’, and
was initially described in dorsal root, trigeminal and nodose
ganglia neurons (Caterina et al., 1997). TRPV1 displays wide
tissue and cellular expression in both peripheral and central
nervous systems (Cristino et al., 2006; Moran et al., 2011),
and in both neuronal and non-neuronal cells, its highest
expression being in sensory neurons (Sanchez et al., 2001). It
is activated by pungent compounds such as capsaicin and
resiniferatoxin, spider and tarantula toxins, noxious tempera-
tures (>42°C) and low pH (<5.9) (Caterina et al., 1997;
Siemens et al., 2006; Bohlen et al., 2010). Endogenous media-
tors, like the endocannabinoid anandamide (Zygmunt et al.,
1999) and some eicosanoids (Hwang et al., 2000; De
Petrocellis et al., 2012; Wen et al., 2012), also activate TRPV1
channels. Molecular-modelling techniques demonstrated
that the preferential conformations of these compounds
in solution substantially overlap with those of capsaicin
(Movahed et al., 2005), although none of these endogenous
compounds is as potent as this natural product. TRPV1
undergoes desensitization in the continuous presence of
an activating stimulus, explaining why TRPV1 agonists
can produce paradoxical analgesic and anti-inflammatory
actions. Receptor desensitization is Ca2+-dependent and
implies dephosphorylation of the receptor (whereas

phosphorylation usually causes its sensitization) and its
endocytosis and degradation in lysosomes (Sanz-Salvador
et al., 2012). The validation of TRPV1 as a therapeutic target
for pain prompted the development of several TRPV1 antago-
nists that have entered clinical trials for the treatment of
acute, chronic and neuropathic pain (Basbaum et al., 2009;
Ferrer-Montiel et al., 2012). Additionally, in the nose, stimu-
lation of TRPV1 in nasal fibres elicits release of proinflamma-
tory mediators, which contribute to rhinitic symptoms, so
that blockade of the channel with SB-705498 counteracts
such symptoms (Changani et al., 2013). The TRPV1 antago-
nists SB-705498 and PF-04065463 also inhibited evoked-
airway hyper-responsiveness to histamine. Indeed, TRPV1 is
present on peripheral terminals of airway sensory nerves and
modulation of its activity represents a potential target for the
pharmacological treatment of airway hyper-responsiveness
(Delescluse et al., 2012). Functional TRPV1 channels are also
expressed in rat peripheral arteries where they appear to
exhibit different pharmacological properties from those
located in sensory neurons (Czikora et al., 2012). Thus, vas-
cular TRPV1 in activation may represent an unwanted effect
of TRPV1 antagonists when used as analgesics in vivo. On the
other hand, vascular TRPV1 may be a new therapeutic target
for the regulation of tissue blood distribution (Czikora et al.,
2012). Finally, TRPV1 and the neuropeptide substance P
located on sensory neurones and non-neuronal cells were
recently suggested to be important targets in sepsis and in
this context TRPV1 seems to play a protective role (Bodkin
and Fernandes, 2013).

The pharmacophore of TRPV1 antagonists fits within the
pore region of a TRPV1 receptor homology model, with criti-
cal hydrogen bond interactions proposed between the
antagonist and Tyr 667 on helix six. The molecular determi-
nants that are required for activation or inhibition of TRPV1
by chemical ligands have been largely identified (Jordt and
Julius, 2002; Gavva et al., 2004; Phillips et al., 2004), with the
pore helix playing an important role in channel functionality
and activation (Myers et al., 2008).

TRPV1 can be activated by evodiamine (Figure 1), a
racemic quinazolinocarboline alkaloid isolated from the
fruits of the traditional Chinese medicine Evodiae fructus
(Pearce et al., 2004). This is a remedy known as Wu-Chu-Yu
and used for the management of a diverse series of conditions
(angina pectoris, hypertension, impotence, postpartum
haemorrhage, pain, vomiting, pyresis, gastrointestinal disor-
ders and headache), some of which are apparently unrelated

N
H

N

N

O

H

N
H

N

N

O

H

N
H

N

N

O

B

C

D

E

A

S(+) Evodiamine                   R(-) Evodiamine                        (±) Evodiamine

Figure 1
Structure of S(+) Evodiamine; R(−) Evodiamine and (±) Evodiamine.
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to TRPV1 activity (Kobayashi, 2003). Evodiamine activates
guinea pig, rat and mouse TRPV1 (Kobayashi et al., 2000;
2001a,b; Kobayashi, 2003; Pearce et al., 2004; Rang et al.,
2004) and shows anti-anxiety (Lu et al., 2012), anti-obesity
(Kobayashi et al., 2001b; Wang et al., 2008; Bak et al., 2010),
antinociceptive (Kobayashi, 2003), anti-inflammatory (Ko
et al., 2007), anti-allergic (Rang et al., 2003) and anticancer
(Kan et al., 2004; 2007; Liao et al., 2005; Yang et al., 2008;
2009; 2013; Jiang and Hu, 2009; Chen et al., 2010; Wang
et al., 2010; Dong et al., 2012) properties, which are often
attenuated by TRPV1 antagonists. Evodiamine inhibits the
proliferation of a wide variety of tumour cells by inducing
their apoptosis (Lee et al., 2006; Zhang et al., 2010; Tu et al.,
2013) and shows anti-angiogenesis effects (Shyu et al., 2006).
In endothelial cells, evodiamine and capsaicin induce nitric
oxide production and endothelial nitric oxide synthase phos-
phorylation, by interacting with intracellular proteins impor-
tant for the regulation of vascular tone, like calmodulin and
PI3K/Akt (Chiou et al., 1996; Domenicali et al., 2005; Wang
and Wang, 2005; Yao and Garland, 2005; Ching et al., 2011).
Administered chronically, evodiamine also produces TRPV1-
dependent protection against atherosclerosis in mice (Wei
et al., 2013). The thermogenic potential of evodiamine has
made it popular in the health food market as a non-pungent
slimming agent, even though this activity has never been
conclusively demonstrated in the clinic, and only relies on
animal and cellular experiments (Wang et al., 2008).

The interaction between evodiamine and TRPV1 is not
fully understood. Previous mutation studies have suggested
that the affinity of agonists with rat TRPV1 is affected by
Tyr511, Ser512, Leu515, Phe543, Met547 and Lys571 (Lee
et al., 2011). With the aim of understanding the molecular
basis for the recognition of evodiamine by TRPV1, a homol-
ogy model has been constructed and the specific interaction
between the two molecules has been studied using compu-
tational approaches. According to this model, ring A of evo-
diamine (Figure 1) establishes a hydrophobic interaction
with Tyr511, while ring E forms π-π interactions with Tyr555
of human TRPV1. In addition, evodiamine makes two
H-bonds between the carbonyl oxygen and the side chains
of Lys571 and between the indole nitrogen and the side
chains of Ile569 (Wang et al., 2012). Capsaicin and evodi-
amine share certain pharmacophoric elements, but their
lipophilic moiety is different, encompassing a saturated
isononenyl group in capsaicin, and two phenyl rings in evo-
diamine. Animal species differences in the capability of acti-
vating TRPV1 have been reported for capsaicin but not
evodiamine.

Apart from any structural difference between capsaicin
and evodiamine, a critical, and surprisingly so far over-
looked, issue is that capsaicin is achiral, while evodiamine is
chiral. The recognition model for evodiamine is chiral, and
a large difference in bioactivity is therefore to be expected
between its enantiomers. In this context, the identification
of the active enantiomeric form should provide the basis for
any future structure-activity study on this interesting lead
compound. To address these issues, we have compared the
activity of the two enantiomers of evodiamine, and a series
of synthetic enantiomerically pure analogues at both
human and rat TRPV1 stably overexpressed in HEK-293
cells.

Methods

Synthesis, purification, resolution and
characterization of evodiamine analogues
The synthesis of racemic evodiamine was carried out
according to the related literature procedure (Danieli and
Palmisano, 1978). Racemic evodiamine was condensed with
(1S)-10-camphorsulfonyl chloride to provide diastereomer
derivatives, the hydrolysis of which by NaOH (10%)
provided the pure enantiomers (S)-evodiamine and (R)-
evodiamine in almost quantitative yields (90%). The synthe-
sis of evodiamine derivatives was accomplished in a
synthetic sequence starting from L-tryptophan methyl ester
hydrochloride, which in a two-step sequence provided Evo
05. Then, two cyclizations furnished its epimer at position 3,
Evo 06, in a diastereomeric ratio of 8:2. Hydrolysis of the
ester with LiOH and treatment of the corresponding acid or
acyl chloride with various amines or hydroxyl derivatives
afforded the desired compounds. The enantiomeric com-
pounds were obtained starting from D-tryptophan methyl
ester hydrochloride (D. Passarella, A. Sacchetti, M. Christo-
doulou, in preparation).

Assays of TRPV1-mediated elevation of
intracellular [Ca2+]
HEK-293 cells stably overexpressing recombinant human
TRPV1 were selected by G-418 (Geneticin, Invitrogen Life
Technologies, Grand Island, NY, USA; 600 μg·mL−1), grown on
100-mm diameter Petri dishes as monolayers in minimum
essential medium supplemented with non-essential amino
acids, 10% FBS, and 2 mM glutamine, and maintained under
5% CO2 at 37°C. On the day of the experiment, the cells were
loaded for 1 h at 25°C with the cytoplasmic calcium indicator
Fluo-4AM (Invitrogen Life Technologies) 4 μM in DMSO con-
taining 0.02% Pluronic F-127 (Invitrogen). After loading, cells
were washed twice in Tyrode’s buffer (145 mM NaCl, 2.5 mM
KCl, 1.5 mM CaCl2, 1.2 mM MgCl2, 10 mM D-glucose and
10 mM HEPES, pH 7.4), resuspended in the same buffer, and
transferred to a quartz cuvette of the spectrofluorimeter
(Perkin-Elmer LS50B; PerkinElmer Life and Analytical Sci-
ences, Waltham, MA, USA) under continuous stirring (about
100 000 cells for assay). [Ca2+]i was determined before and
after the addition of various concentrations of test com-
pounds by measuring cell fluorescence (excitation λ =
488 nm; emission λ = 516 nm). The potency (EC50 values) was
determined as the concentration of test compound required
to produce half-maximal increases in [Ca2+]i. The efficacy of
the agonists was determined at 10 μM by comparing their
effect with the analogous effect observed with 4 μM ionomy-
cin (LKT Laboratories, Inc. St. Paul, MN, USA). Dose-response
curves were fitted by a sigmoidal regression with variable
slope. Curve fitting and parameter estimation were per-
formed with GraphPad Prism® (GraphPad Software Inc., San
Diego, CA, USA). All determinations were conducted at least
in triplicate, and the compounds were tested also on wild-
type HEK293 cells (i.e. not transfected with any TRP con-
struct): when significant, the values of the effect on [Ca2+]i in
wild-type HEK293 cells were taken as baselines and sub-
tracted from the values obtained from transfected cells. Sta-
tistical analysis of the data was performed by analysis of
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variance at each point using ANOVA followed by the Bonferro-
ni’s test. LogP was calculated according to Tetko et al. (2005).

All molecular target nomenclature conformed with the
BJP’s Concise Guide to PHARMACOLOGY (Alexander et al.,
2013).

Results

In agreement with previous literature, natural and racemic
evodiamine produced a dose-dependent increase in intra-
cellular calcium in HEK-293 cells stably transfected with
the human recombinant TRPV1, with an EC50 = 155.20 ±
8.2 nM. When tested on the rat recombinant TRPV1, the
EC50 was about fourfold higher (652.2 ± 26.7). Resolution of
the racemate afforded the two enantiomers, and S-(+) evo-
diamine resulted more efficacious and almost more than
fourfold more potent than R-(−) evodiamine at both human
(EC50 = 113.4 ± 8.9 and 546.0 ± 24.2 nM, respectively) and

rat (391.5 ± 3.3 and 1491 ± 46 nM, respectively) TRPV1
(Table 1, Figure 2). The specificity of the receptor response
was verified by pretreating the cells for 5 min with the selec-
tive TRPV1 antagonist 5-iodo-resiniferatoxin (Wahl et al.,
2001) at a concentration of 10 nM before the addition of
the compounds. The effects of 1 μM (±)-, (+)- and (−)-
evodiamine were all inhibited by 100% (Figure 2 and data
not shown). Likewise, (±)-, (+)- and (−)-evodiamine were all
inactive in untransfected HEK-293 cells (Figure 2 and data
not shown).

In the light of these observations, a series of synthetic
analogues of evodiamine were prepared, resolved and inde-
pendently assayed. In all cases, the analogues of S(+)-
evodiamine were more potent than those of R(−)-evodiamine
(Table 2), with the following rank of potency:

VR002 < Evo 44 < Evo 09 < Evo 23 < Evo 28 < Evo 06 < Evo
46 < Evo 42 < Evo 38 < Evo 34 < Evo 30. The corresponding
EC50 values ranked between ∼5 μM and ∼2 nM for both
human and rat TRPV1, with VR002 being inactive.

Table 1
Effect of racemic and resolved evodiamine enantiomers on elevation of intracellular [Ca2+] in HEK-293 cells overexpressing either the human or
rat (r) TRPV1 channel

Compound
Efficacy (at
10 μM ± SE)

Potency
EC50 ± SE, nM

Desensitization of
0.1 μM capsaicin
response
IC50 ± SE, nM LogP ± SD

S(+) Evodiamine 82.9 ± 1.5 113.4 ± 8.9 176.9 ± 3.7 2.95 ± 0.37

r 66.3 ± 0.1 r 391.5 ± 3.3 r 260.9 ± 17.6

R(−) Evodiamine 76.0 ± 0.8 546.0 ± 24.2 674.9 ± 99.1 2.95 ± 0.37

r 55.4 ± 0.1 r 1491 ± 46 r 1580 ± 40

(+/−) Evodiamine 79.4 ± 0.9 155.2 ± 8.2 215.8 ± 7.3 2.95 ± 0.37

r 71.9 ± 0.4 r 652.2 ± 26.7 r 523.4 ± 17.0

All tests were carried out six times, and the compounds were tested also on HEK-293 cells not transfected with the TRPV1 receptor: none
produced a significant elevation of intracellular [Ca2+] (Figure 2). The specificity of the receptor response was also verified by pretreating the
cells transfected with human or rat TRPV1 for 5 min with the specific antagonist 5-iodo-resiniferatoxin (Wahl et al., 2001) at a concentration
of 10 nM before the addition of the compound at 1 μM: this resulted in a complete inhibition of evodiamine activity at TRPV1 (Figure 2).

Figure 2
Dose-dependent effects of (±) evodiamine; S(+) evodiamine and R(−) evodiamine on TRPV1-mediated elevation of intracellular calcium in HEK-293
cells stably overexpressing the human (A) or the rat (B) recombinant TRPV1 channel. Data are means of n = 6 separate experiments. The specificity
of the receptor response was also verified by pretreating the cells transfected with TRPV1 for 5 min with the specific antagonist 5-iodo-
resiniferatoxin (IRTX) (Wahl et al., 2001) at a concentration of 10 nM before the addition of the compound at the concentration of 1 μM. This
resulted in a complete inhibition of the activity of all three evodiamines at TRPV1 (empty circle).
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Table 2
Effect of synthetic evodiamine analogues and their enantiomers on elevation of intracellular calcium in HEK-293 cells overexpressing either the
human or rat (r) TRPV1 channel

Compound Structure
Efficacy (at
10 μM ± SE)

Potency
EC50 ± SE

Desensitization of
0.1 μM capsaicin
response
IC50 ± SE LogP ± SD

Evo 05

N
H

HN

O

O

O

N
O

<10 NA NA 1.48 ± 0.46

0 NA NA

Evo 15

N
H

HN

O

O

O

N
O

0 NA NA 1.48 ± 0.46

r < 10 (8.5 ± 0.1) NA NA

Evo 06

N
H

N

O

O

N

O

H

70.0 ± 0.9 1.18 ± 0.08 μM 1.13 ± 0.04 μM 2.77 ± 0.50

r 69.0 ± 3.2 r 2.21 ± 0.40 μM r 1.68 ± 0.17 μM

Evo 21

N
H

N

O

O

N

O

H

73.2 ± 1.7 3.06 ± 0.37 μM 4.42 ± 0.09 μM 2.77 ± 0.50

r 62.2 ± 1.0 r 5.42 ± 0.33 μM r 5.26 ± 0.19 μM

Evo 09

N
H

N

OH

O

N

O

H

10.6 ± 0.6 4.56 ± 1.16 μM NA 2.45 ± 0.51

r < 10 (4.9 ± 0.1) NA NA
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Table 2
Continued

Compound Structure
Efficacy (at
10 μM ± SE)

Potency
EC50 ± SE

Desensitization of
0.1 μM capsaicin
response
IC50 ± SE LogP ± SD

Evo 22

N
H

N

OH

O

N

O

H

<10 (4.4 ± 0.6) NA NA 2.45 ± 0.51

r < 10 (6.5 ± 0.1) NA NA

Evo 23

N
H

N

O

N

O

N

N

H

41.7 ± 1.0 4.25 ± 0.50 μM 7.31 ± 0.60 μM 2.10 ± 0.72

r 25.1 ± 0.6 r 3.12 ± 0.37 μM r 12.32 ± 0.74 μM

Evo 29

N
H

N

O

N

O

N

N

H

12.9 ± 1.0 9.76 ± 2.17 μM NA 2.10 ± 0.72

r < 10 (9.5 ± 0.1) NA NA

Evo 28

N
H

N

NH2

O

N

O

H

17.8 ± 0.7 4.00 ± 0.83 μM 34.06 ± 0.06 μM 1.54 ± 0.85

r 16.1 ± 0.5 r 5.74 ± 0.1 μM r 27.24 ± 7.10 μM

VR002

N
H

N

NH

O

N

O

H

<10 (3.9 ± 0.1) NA NA 1.91 ± 0.80

r < 10 (7.4 ± 0.1) NA NA
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Table 2
Continued

Compound Structure
Efficacy (at
10 μM ± SE)

Potency
EC50 ± SE

Desensitization of
0.1 μM capsaicin
response
IC50 ± SE LogP ± SD

VR001

N
H

N

NH

O

N

O

H

<10 (1.0 ± 0.1) NA NA 1.91 ± 0.80

r < 10 (1.2 ± 0.1) NA NA

Evo 30

N
H

N

N

O

H

O

O

67.1 ± 0.9 2.01 ± 0.11 nM 1.65 ± 0.15 nM 3.96 ± 0.57

r 72.1 ± 1.0 r 2.45 ± 0.20 nM r 1.61 ± 0.04 nM

Evo 31

N
H

N

N

O

H

O

O
51.2 ± 1.2 89.6 ± 14.5 nM 0.18 ± 0.01 μM 3.96 ± 0.57

r 38.3 ± 0.8 r 0.20 ± 0.02 μM r 0.28 ± 0.01 μM

Evo 34

N
H

N

N

O

H

O

O

69.4 ± 0.8 25.9 ± 1.2 nM 25.95 ± 0.44 nM 3.79 ± 0.49

r 69.5 ± 2.4 r 89.1 ± 17.7 nM r 31.5 ± 1.4 nM

Evo 35

N
H

N

N

O

H

O

O

41.8 ± 1.0 0.33 ± 0.04 μM 0.36 ± 0.02 μM 3.79 ± 0.49

r 46.2 ± 1.9 r 0.76 ± 0.16 μM r 1.05 ± 0.13 μM
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Table 2
Continued

Compound Structure
Efficacy (at
10 μM ± SE)

Potency
EC50 ± SE

Desensitization of
0.1 μM capsaicin
response
IC50 ± SE LogP ± SD

Evo 38

N
H

N

O

N

O

H

O

C

N 68.4 ± 0.6 59.2 ± 2.4 nM 45.1 ± 2.0 nM 2.59 ± 1.02

r 50.2 ± 0.2 r 76.1 ± 1.5 nM r 80.1 ± 2.4 nM

Evo 39

N
H

N

O

N

O

H

O

C

N 58.3 ± 0.8 96.5 ± 6.1 nM 0.12 ± 0.01 μM 2.59 ± 1.02

r 48.4 ± 1.1 r 0.12 ± 0.02 μM r 0.22 ± 0.03 μM

Evo 42

N
H

N

N

O

H

O

N

58.4 ± 0.6 0.21 ± 0.01 μM 0.38 ± 0.01 μM 3.26 ± 0.48

r 48.9 ± 0.2 r 0.87 ± 0.02 μM r 0.64 ± 0.03 μM

VR007

N
H

N

N

O

H

O

N

60.4 ± 1.1 3.08 ± 0.19 μM 2.67 ± 0.10 μM 3.26 ± 0.48

r 54.3 ± 2.1 r 6.69 ± 0.94 μM r 6.94 ± 0.58 μM

Evo 44

N
H

N

N

O

H

O

N

O 29.1 ± 1.9 5.43 ± 1.23 μM 5.35 ± 0.20 μM 2.01 ± 0.63

r 34.3 ± 0.6 r 5.43 ± 0.85 μM r 6.24 ± 0.40 μM
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The rank of potency of the synthetic R(−)-enantiomers
was considerably different (VR001 = VR003 = Evo 22 < Evo 29
< VR005 < Evo 21 ∼ VR007 < Evo 35 < Evo 31 ∼ Evo 39), and
the corresponding EC50 values ranked between ∼10 and
0.1 μM, with VR001, VR003 and Evo 22 being inactive. The
lipophilicity of these compounds is reported in Table 2, with
LogP values ranking between ∼1.9 and ∼4. The rank, exclud-
ing compound Evo 28, which had a very low logP value (logP
= 1.5), was as follows: VR002 = VR001 < Evo 44 = VR003 < Evo
23 = Evo 29 < Evo 09 = Evo 22 < Evo 38 = Evo 39 < Evo 46 =
VR005 = Evo 06 = Evo 21 < Evo 42 = VR007 < Evo 34 = Evo 35
< Evo 30 = Evo 31. The Spearman’s rank order correlation

index between the EC50 at human and rat TRPV1 and the logP
values of the synthetic S(+)-evodiamine enantiomers com-
pounds was calculated and was r = −0.85 (P < 0.001) and −0.82
(P < 0.001), respectively; for the synthetic R(−)-evodiamine
enantiomers it was r = −0.80 (P = 0.003) and −0.74 (P = 0.01)
respectively. Therefore, a strong positive correlation exists
between lipophilicity and potency of evodiamine analogues
at both human and rat TRPV1.

Finally, the compounds, given to cells with a 5 min pre-
incubation, were also found to desensitize the human recom-
binant TRPV1 to the intracellular Ca2+-elevating effects of
100 nM capsaicin (Tables 1 and 2).

Table 2
Continued

Compound Structure
Efficacy (at
10 μM ± SE)

Potency
EC50 ± SE

Desensitization of
0.1 μM capsaicin
response
IC50 ± SE LogP ± SD

VR003

N
H

N

N

O

H

O

N

O <10 (4.3 ± 0.1) 10 μM 57.76 ± 6.63 μM 2.01 ± 0.63

r < 10 (5.6 ± 0.1) NA NA

Evo 46

N
H

N

N

O

H

O

N

S 55.5 ± 0.8 0.27 ± 0.01 μM 0.47 ± 0.01 μM 2.83 ± 0.64

r 44.5 ± 0.6 r 0.74 ± 0.03 μM r 0.98 ± 0.04 μM

VR005

N
H

N

N

O

H

O

N

S 66.7 ± 0.5 6.99 ± 0.14 μM 5.91 ± 0.09 μM 2.83 ± 0.64

r 51.7 ± 1.0 r 6.85 ± 0.42 μM r 10.33 ± 0.63 μM

All tests were carried out at least in triplicate, and the compounds were tested also on HEK-293 cells not transfected with the TRPV1 receptor:
none produced a significant elevation of intracellular [Ca2+] (not shown). The specificity of the receptor response for the substances that
showed a substantial effect on intracellular [Ca2+], was verified also by pretreating the human or rat TRPV1 transfected cells for 5 min with
the specific antagonist 5-iodo-resiniferatoxin at the concentration of 10 nM before the addition of the compound (1 μM), and full antagonism
was observed in each case (not shown). NA = not active.
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Discussion
The natural indoloquinazolone alkaloid evodiamine has a
pentacyclic U-shaped structure, with a peripheral lipophilic
core, the basic amino group in the concavity of the molecular
structure, and the polar amide group on the central part of
the outer rim. The evodiamine chemotype is unique
within TRPV1 agonists, and, in general, very few heterocyclic
chemotypes of natural activators are known, the best
examples being the acyl amides of salsolinol (N-
arachidonoylsalsolinol), an endogenous tetrahydroisoquino-
line formed by a Pictet–Spengler condensation of dopamine
with acetaldehyde (O’Dell et al., 2007), and a number of
tetrahydro-β-carbolines (Ortar et al., 2013). Among TRPV1
agonists, little chiral discrimination had been observed so far
within vanillamides of ricinoleic acid (Appendino et al., 2006)
and analogues of anandamide (Appendino et al., 2009).
Instead, within TRPV1 antagonists, enantiomeric pairs of
indazole derivatives showed chiral discrimination, with the
(R)-enantiomers being up to 30-fold more potent than their
(S)-counterparts (Gomtsyan et al., 2007). Within antagonists
of another TRP channel, TRPA1, enantiomeric discrimination
was demonstrated in dihydropyrimidones (Gijsen et al., 2012)
and for a N-1-Alkyl-2-oxo-2-chlorophenyl amide (Vallin et al.,
2012) ligand. Within antagonists of TRPM8, arylglycine
derivatives were very recently identified, the two diastereom-
ers of which were separated and the absolute configurations
determined by Vibrational Circular Dichroism: the (S,S)-
isomer [(S)-1-((S)-2-(2-fluorophenyl)pyrrolidin-1-yl)-2-(2-
fluorophenylamino)-2-(4-(trifluoromethyl)phenyl)ethanone]
and the corresponding (R,S)-isomer. The former diastereomer
was more potent at inhibiting icilin-induced canine TRPM8
functional activity in vitro (IC50 = 0.006 μM) than the latter
(IC50 = 0.045 μM) (Zhu et al., 2013).

Chirality is often an important feature of drug efficacy;
remarkably, the chiral discrimination observed with evodi-
amine could also be confirmed in a series of synthetic ana-
logues, with compounds from the S-series being more potent
than those from the R-series (Table 2). A similar level of
enantiodifferentiation was also observed when a selection of
enantiomeric pairs was assayed here on rat TRPV1.

Regarding the structure-activity relationships of evodi-
amine analogues, most chemical modifications were
detrimental for activity. Thus, the opening of the five-
membered ring (Evo 05 vs. Evo 15), the introduction of
an acetamide- (Evo 28), an N-methyl-acetamide- (VR001), a
methoxycarbonyl- (Evo 06 and Evo 21), a carboxyl- (Evo 09
and Evo 22) or a piperazylamido group- (Evo 23) on ring C, all
caused a decrease of potency. The introduction of an oxy-
cyano carbonyl group in the same position resulted in com-
pound Evo 38 with a potency similar to S(+)-evodiamine,
and compound Evo 39 with a potency higher than R(−)-
evodiamine. Particularly interesting appeared to be the
butoxycarbonyl derivatives Evo 30 and Evo 34, which
showed activity in the low nanomolar range. Recent investi-
gations have been devoted to the identification of TRPV1
regions involved in the recognition by some ligands and in
the prediction of their binding modes (Kym et al., 2009;
Lee et al., 2011; Wang et al., 2012). The presence of a tert-
butylphenyl group is frequently found in TRPV1 ligands,
presumably because of the potentiation of π-π stacking and

hydrophobic interactions (Vriens et al., 2009). Finally, amida-
tion with morpholine (Evo 44) (EC50 = 5.43 μM), piperidine
(Evo 42) (EC50 = 210 nM) and thiomorpholine (Evo 46) (EC50

= 270 nM) produced compounds less potent than S(+)-
evodiamine (EC50 = 113 nM).

With the exception of Evo28, exhibiting a very low LogP
value (1.5), the rank of potency of the synthetic (S) enanti-
omers correlated nicely with lipophilicity. Recently, a strong
correlation was reported, within TRPV1 agonists, between the
kinetics of induction of calcium influx, pungency and lipo-
philicity, although the correlation was not linear for the
extreme values of LogP (Ursu et al., 2010). Other recent
studies have shown that the lipophilicity of capsaicinoids can
strongly influence both their efficacy at, and kinetics of acti-
vation of, TRPV1. We previously described the activity at the
human TRPV1 of several capsaicin analogues, and found that
N-arachidonyl-vanillamide (arvanil) (De Petrocellis et al.,
2000) and N-retinoyl-vanillamide (retvanil) (Appendino
et al., 2005), are among the most potent ‘capsaicinoid’ TRPV1
agonists. It was shown that the ligand (capsaicin, resinifera-
toxin and anandamide) binding site of TRPV1 lies on the
inner face of the plasma membrane and that much of TRPV1
itself is localized to internal membranes ( Jung et al., 1999;
2002; Zygmunt et al., 1999; De Petrocellis et al., 2001). Thus,
lipophilicity of the agonist plays an important role in its
ability to penetrate the cell membrane and interact with
TRPV1 binding site, and influences both the kinetics and
potency of vanilloids at the channel (Lazar et al., 2006).
N-palmitoyl-vanillamide (palvanil) (Melck et al., 1999) exhib-
ited a kinetics of activation of human recombinant TRPV1-
mediated intracellular calcium elevation significantly slower
than that of capsaicin (logP = 7.15 ± 0.79 and 3.74 ± 0.52,
respectively) and exhibited no pungency in the eye-wiping
assay in mice, as well as stronger desensitizing effects on
TRPV1 and anti-hyperalgesic activity (De Petrocellis et al.,
2011). Two other capsaicin analogues with decreased pun-
gency, arvanil and N-oleoyl-vanillamide (olvanil), are highly
lipophilic due to the increased length of the fatty acid chain
(logP = 7.20 ± 1.14 and 7.55 ± 0.91, respectively) and exhibit
an EC50 of about 0.5 nM in a calcium assay, much lower than
that of capsaicin (De Petrocellis et al., 2000).

In conclusion, we present evidence that chiral discrimi-
nation exists in the vanilloid activity of evodiamine, and that
lipophilicity is critical for this activity. These results indicate
that evodiamine may represent a useful starting point for the
development of new potent TRPV1 agonists/desensitizers,
and confirm the pharmacological potential of the combina-
tion of natural building blocks to provide new bioactive
compounds.
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