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Abstract

In this paper, anatomical development is modeled as a collection of distinctive image patterns

localized in space and time. A Bayesian posterior probability is defined over a random variable of

subject age, conditioned on data in the form of scale-invariant image features. The model is

automatically learned from a large set of images exhibiting significant variation, used to discover

anatomical structure related to age and development, and fit to new images to predict age. The

model is applied to a set of 230 infant structural MRIs of 92 subjects acquired at multiple sites

over an age range of 8-590 days. Experiments demonstrate that the model can be used to identify

age-related anatomical structure, and to predict the age of new subjects with an average error of 72

days.

1 Introduction

The human brain undergoes dramatic developmental changes in the first years of life.

Structural MR imaging offers the potential to model these changes over time and across the

human population, in order to understand normal growth patterns and assess potential

disorders [1], for example neurodevelopmental disorders relating to pre-term birth [2, 3].

Anatomical development is closely tied to chronological age, and computational tasks of

interest include automatically learning links between anatomical image structure and age,

and predicting the age or developmental stage of new subjects.

A number of methods are used to analyze aging in structural MRI of the adult brain, e.g.

group analysis via voxel-based morphometry (VBM) [4], growth patterns of dilation and

contraction [5], discriminative classifiers [6–8]. These methods generally require accurate

intensity-based segmentation and registration, tasks which remain research challenges in the

context of the infant brain [9, 1] due to pronounced intensity changes over the course of

development, e.g. the contrast inversion of white/grey matter during myelination [10]. Infant

temporal atlases are thus often treated as templates constructed over relatively narrow age

ranges via age-specific registration and segmentation methods [11, 12, 9], and quantitative

analysis has been largely limited to measures of growth, e.g. tissue volume changes [2, 3,

13]. Modeling dynamic image measurements across the infant developmental age range

remains a challenge.

This paper proposes modeling development as a collection of distinctive, conditionally

independent image features, localized in space and time. Anatomical structure is modeled as
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persisting over limited spatial and temporal windows, and as potentially only occurring in

subsets of subjects. This provides a natural means of describing phenomena such as the

disappearance/emergence of structure, spatially varying developmental rates, natural inter-

subject variability and pathology. The model is based on scale-invariant features [14, 15],

distinctive image patterns that can be robustly extracted in the presence of global image

deformations including scale changes, and that can therefore offer an information source

complementary to typical growth measures such as volume change. Our model builds on the

approach of [16], where local image features are used to construct a binary classifier for

Alzheimer’s disease in T1 MRI data. Here, a posterior probability is defined over a

continuous variable of age, conditioned on feature data. Anatomical structure is modeled as

a latent variable conditioned on age, and hypothesis testing is used to identify features most

informative regarding age. The model is trained from combined cross-sectional and

longitudinal data, in order to identify age-informative anatomical structure, and age is

predicted via maximum a-posteriori estimation.

Experiments demonstrate several important advancements on the state-ofthe-art. The model

can be automatically trained from a large set of infant T1-weighted MRI data, acquired at

multiple sites and scanners. Spatially-localized, age-related anatomical patterns are

discovered across the infant age range, including white matter myelination. Cross-validation

trials predict subject age with an average error of 72 days, which to our knowledge is the

first published result for automatic infant age prediction from structural MRI data.

2 Feature-based Developmental Model

The proposed model hypothesizes the existence of anatomical features that can be localized

in time and space, and used to represent development in structural MRI data. Scale-space

theory provides a framework for identifying both the location and spatial extent of such

features [14], and forms the basis for invariant feature detection methods widely adopted in

the computer vision community [17, 15]. So-called scale-invariant features are spherical

image regions characterizing the 3D location x and scale σ of distinctive image patterns.

They can be automatically extracted from images via Gaussian derivative operators, for

instance as extrema in the difference-of-Gaussian (DoG) scale space [15]:

(1)

where I(x) is the image, G(σ) is a Gaussian kernel of variance σ2, and κ is a constant

defining the multiplicative sampling rate in scale. The DoG is a computationally efficient

approximation to the Laplacian-of-Gaussian operator, which is effective in identifying

natural blob-like image structures. Once identified, image content within each region (xi, σi)

is cropped and rescaled to a fixed-size region, then encoded as an appearance descriptor for

computing feature-to-feature correspondence. The gradient orientation histogram (GoH)

descriptor has been shown to be among the most effective for image-to-image matching

[17], here a 3D variant with 8 orientation and 8 spatial bins is computed from 11 × 11 × 11

normalized voxel regions. Due to spatial normalization, the scale-invariant feature

representation is independent of isotropic image scaling, and is thus particularly useful in

characterizing local anatomy independently from global growth or volume change.
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2.1 Probabilistic Model

Let  represent a set of local features extracted in a subject image I, and let A

represent a random variable of age. The posterior probability of A conditioned on data  can

be expressed using Bayes rule as:

(2)

where  is the likelihood of A associated with data , p(A) is the posterior

probability of A, and  is a constant as data  are fixed. Under the assumption of

conditionally independent local feature measurements, the likelihood can be expressed as:

(3)

where p(Ij∣A) is the likelihood associated with an individual observed feature Ij and age A.

An image set is naturally described in terms of distinctive local structure shared across

images, for instance the human brain can be described by corpus callosum, ventricles, etc.

The model here adopts a description based on a code book of distinctive image features. Let

F = {fi} represent discrete random variable, where event fi indicates a distinct mode of

feature appearance and geometry. Applying marginalization and Bayes rule, the likelihood

in Equation (3) is expressed as:

(4)

In equation (4), p(Ij∣fi, A) represents the likelihood of feature fi and age A associated with Ij,

which can generally be taken to be a unimodal Gaussian density over feature parameters of

location, log scale and appearance descriptor elements. Factor p(fi∣A) is the conditional

probability of fi given age A, and is modeled as a multinomial distribution.

2.2 Learning, Analysis, Fitting

The goal of model learning is to generate a code book F = {fi} of model features

characteristic of a training image set, and to estimate associated age-related factors p(Ij∣fi, A)

and p(fi∣A). Prior to learning, training images are normalized to a common reference space

via a global coordinate transformation to an atlas template, e.g. a similarity or affine

transform. Scale-invariant features are then extracted from each image, and a code book F =

{fi} of model features representative of the image data is generated. A number of approaches

could be used for this purpose, here we adopt a robust clustering strategy [16] similar to the

mean-shift algorithm [18], which identifies clusters of features that are similar in terms of

geometry and appearance across subjects. Each cluster fi is characterized by a prototype

feature, and cluster membership is defined by fixed thresholds on geometrical distance

(location, log scale) and learned thresholds on appearance descriptor distance [16]. Note that
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this clustering procedure identifies a large, arbitrary number of clusters, and is capable of

robustly grouping features despite imprecision in approximate inter-subject image

alignment.

With model features defined, factors in Equation (4) are estimated from feature samples in

clusters fi. Age A is defined as a discrete random variable over K age categories. Gaussian

mean and variance parameters of p(Ij∣fi, A) are estimated via maximum likelihood for each

age category, probability mass parameters of p(fi∣A) are determined via maximum a-

posteriori (MAP) estimation from co-occurrence counts of fi, A and a Laplace prior. While fi
generally represents a distinctive anatomical structure, a special model feature f0 is reserved

for spurious features arising from background noise. As such features can vary arbitrarily in

geometry and appearance, p(Ij∣f0, A)p(f0∣A) is taken to be uniform and constant.

Model fitting is used to interpret image data associated with a new subject in terms of the

entire code book F, and to estimate the age or developmental stage. Fitting aims to identify

the MAP age estimate AMAP maximizing the posterior probability:

(5)

As in learning, the image is first spatially normalized via subject-atlas alignment. Image

features are then extracted and matched to model features, where a match occurs between

image and model feature pair (Ij, fi) if the Euclidean distance between their normalized

geometry and appearance descriptors falls within geometry and appearance thresholds

associated with fi. Equation (5) is then evaluated via Equation (4) at each discrete age value

to identify AMAP.

3 Experiments

Experiments validate our model on infant brain development in T1-weighted MRI data from

the data set of [19], consisting of 92 healthy subjects imaged from one to seven times over

an age range of 8-590 days, for a total of 230 images. All subject images are robustly

aligned to a single subject arbitrarily selected as an atlas via a similarity transform (rigid +

isotropic scaling). Alignment correctness is validated by inspection of resampled images and

alignment parameters. Scale-invariant features are extracted in individual aligned images,

after which clustering is used to generate a code book F of model features for analysis.

Finally, age-conditional factors p(Ij∣fi, A) and p(fi∣A) are trained based on F and subject age

labels A, where A is discretized into 10 bins with equal image counts and approximately

equal age ranges. The prior p(A) can be set according to expectations, here it is taken to be

uniform.

3.1 Age-Related Structure

Distributions p(fi∣A) quantify the probabilistic relationship between learned anatomical

features and age. A variety of criteria could be used to quantify the informativeness of this

relationship; we found that information-theoric measures such as entropy tend to

overemphasize the importance of spurious, low entropy distributions generated from small
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numbers of data samples. Here, we consider a Fisher’s exact test computed from a 2x2

contingency table of the presence/absence of feature fi within/without a 2-category (120-

day) age window. The null hypothesis is that feature/age are statistically independent, in

which case their co-occurrence follows a hypergeometric distribution, which effectively

accounts for small sample sizes.

From a total of 6.5K learned model features, 36 are identified with a false discovery rate

[20] of 0.05. Figure 1 illustrates the 20 features bearing the most significant relationship

with age. Note that significant features show a high degree of symmetry, out of 20 features,

eight represent homologous structure identified independently in opposite hemispheres with

similar age distributions, another three represent midbrain structure.

3.2 Age Prediction

Model fitting allows age prediction from individual subject images, which may be

potentially useful assessing developmental stage. A five-fold cross validation paradigm is

adopted, where subjects are randomly divided into 5 mutually exclusive subsets of

approximately the same number of images. For each subset, age is predicted for all images

based on a model trained on the remaining 4 subsets. Note that different images of the same

subject are never present in both testing and training subsets.

The infant brain increases in size, particularly during early weeks, and thus an initial

baseline for predicting age from structural MR would be based on volume or size

measurements [13]. For comparison, a linear predictor of age based on isotropic subject

scale relative to the atlas results in a mean error of 102 days, random guessing results in a

mean error of 200 days. Figure 2 illustrates the result of MAP age prediction, which results

in a mean error of 72 days. Although this is lower than baseline methods, it is non-

negligible, and we hypothesize that error may be related to differences in developmental

rates between different subjects. Curves in Figure 2 plot predicted age trajectories for 5

subjects, while a high degree of inter-subject variability is observed, 90% of sequential age

predictions follow a monotonically increasing trend. Thus, it may be more accurate to

interpret the predicted age as the stage of development with respect to the population, which

may generally either lag or lead the actual chronological age; we intend to investigate this

possibility in future work.

4 Discussion

This paper presents a novel model describing anatomical development as a collection of

features localized over space and time. Validation on infant structural MRI data

demonstrates statistically significant age-related features can be automatically discovered

across the infant age range, and the first results of infant age prediction are presented.

Numerous avenues for future investigation exist, including modeling longitudinal feature-

time trajectories or dependencies between features, linking developmental changes other

factors such as gender or disease, incorporating alternative image features such as affine

invariant features, investigating alternative means of querying age-related model features.

Modeling based on a fixed reference coordinate system here is sufficient for infant brains, an
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evolving coordinate system [21] will allow application of the modeling to prenatal, fetal and

embryonic stages of development.
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Fig. 1.
Top: distribution p(fi, A) for the 20 most significant age-related features over 10 age categories. Below: visual examples of

features (white circles) in subject image slices over age. Pairs (4, 8) and (1,19) represent symmetric white matter patterns

appearing at slightly different onsets. (7) and (9) represent distinct modes cerebellar anatomy linked with vermian development

and occurring exclusively in early life. (13) occurs in the brain stem across the age range, more frequently in early life. Note the

lack of visible white matter under 100 days, e.g. corpus callosum.
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Fig. 2.
MAP predicted age vs. subject age across subjects. Thick colored lines illustrate age trajectories for five subjects with scans at 6

or more time points.
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