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Protocols for password-only authenticated key exchange (PAKE) in the three-party setting allow two clients registeredwith the same
authentication server to derive a common secret key from their individual password shared with the server. Existing three-party
PAKE protocols were proven secure under the assumption of the existence of random oracles or in a model that does not consider
insider attacks.Therefore, these protocols may turn out to be insecure when the random oracle is instantiated with a particular hash
function or an insider attack is mounted against the partner client. The contribution of this paper is to present the first three-party
PAKE protocol whose security is proven without any idealized assumptions in a model that captures insider attacks. The proof
model we use is a variant of the indistinguishability-based model of Bellare, Pointcheval, and Rogaway (2000), which is one of the
most widely accepted models for security analysis of password-based key exchange protocols. We demonstrated that our protocol
achieves not only the typical indistinguishability-based security of session keys but also the password security against undetectable
online dictionary attacks.

1. Introduction

Authenticated key exchange is one of the most fundamental
problems in cryptography and network security. In 1992,
Bellovin and Merritt [1] introduced encrypted key exchange
(or EKE) protocols, which allow

arbitrary two parties, who share only a low-
entropy password, to establish a common high-
entropy secret key (called a session key) over an
insecure public network.

Since the work of Bellovin andMerritt [1], password-only
authenticated key exchange (PAKE) protocols have attracted
much greater attention mainly due to the persistent popu-
larity of passwords as a practical (and cheap) authentication
method [2]. Since the publication of the first EKE protocol
(with only heuristic security arguments), many provably

secure PAKEprotocols have been published. Recent examples
include the protocol of Katz and Vaikuntanathan [3], which
enjoys both round optimality and provable security in the
standard model (i.e., without random oracles and ideal
ciphers).

A major challenge in designing PAKE protocols is to
protect passwords from a dictionary attack, in which an
adversary enumerates all possible passwords while testing
each one against known password verifiers in order to
determine the correct one. The design of two-party PAKE
protocols secure against dictionary attacks has been exten-
sively studied over the past two decades and is now fairly
well understood. However, three-party PAKE protocols have
received far less attention and preventing dictionary attacks
is more challenging in the three-party setting. Unlike the
two-party setting that assumes the same password is shared

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 825072, 11 pages
http://dx.doi.org/10.1155/2014/825072

http://dx.doi.org/10.1155/2014/825072


2 The Scientific World Journal

between the two parties, the three-party setting assumes that
the two parties (commonly known as clients) wishing to
establish a session key do not share the same password but
hold their individual password shared only with a trusted
server.This implies that in the three-party setting, amalicious
client can attempt to mount an insider dictionary attack
against its partner client. Indeed, many published three-party
PAKE protocols were subsequently found to be vulnerable to
an insider online/offline dictionary attack (e.g., [4–10]).

It is widely regarded that the design of key exchange
protocols (including PAKE protocols) is notoriously hard,
and conducting security analysis for such protocols is time-
consuming and error-prone [11–13]. The many flaws dis-
covered in published protocols have promoted the use of
formal models and rigorous security proofs [14–16]. In the
provable security paradigm for protocol analysis, a deductive
reasoning process is adoptedwhereby emphasis is placed on a
proven reduction from the problem of breaking the protocol
to another problem believed to be computationally hard. A
complete mathematical proof with respect to cryptographic
definitions provides a strong assurance that a protocol is
behaving as desired. It is now standard practice for protocol
designers to provide security proofs in a well-defined formal
model in order to assure protocol implementers about the
security properties of protocols.

Over the past decade, we have seen a number of PAKE
protocols proposed in the three-party setting [4–8, 17–29].
Many of these published protocols either did not have a proof
of security [5, 6, 17, 22–25] or were subsequently found to be
flawed [4–10, 12, 23, 24, 27, 30–36]. There are only a handful
of provably secure three-party PAKE protocols [4, 7, 8, 21]
whose claimed security properties have not been invalidated.
However, there are limitations in the security proof of these
protocols. For example, the protocols of [7, 8] are proven
secure in the random oracle model. Although a proof of
security in the random oracle model is definitely better than
having no proof, it may not guarantee security in the real
world (currently an open question). The protocols of [4, 21]
are proven secure in a restricted model where the adversary
is not allowed to corrupt protocol participants. Note that a
protocol proven secure in such a restricted model cannot
guarantee its security against attacks by malicious clients
including insider online/offline dictionary attacks. (Readers
who are unfamiliar with formal security models are referred
to Section 2.1.) Although Yang and Cao [37] proposed a new
three-party key exchange protocol that was proven secure in
the standard model, the protocol is based on the ElGamal
encryption scheme and thus requires a server’s public key
as well as clients’ passwords to be preestablished before the
protocol is ever executed. We refer the readers to [33, 38–44]
for other recently published protocols designed to work in
a “hybrid” setting where a cryptographic key is required in
addition to passwords.

To the best of our knowledge, there is no published three-
party PAKE protocol whose security is proven secure in the
standard model that allows an adversary to corrupt protocol
participants. In this work, we present the first three-party
PAKE protocol that achieves provable security in the stan-
dard model against an active adversary with the corruption

capability. We prove the security of session keys for our
protocol in the widely accepted indistinguishability-based
model of Bellare, Pointcheval, and Rogaway [14]—this model
is, probably, one of the most popular proof models in
the provable security paradigm for key exchange protocols.
However, the indistinguishability-based security of session
keys proven in the Bellare-Pointcheval-Rogaway model (and
several other standard models) does not imply the security of
passwords against undetectable online dictionary attacks, in
which each guess on the password is checked undetectably via
an online transactionwith the server (see Section 2.3 formore
details). We address this problem by providing a separate
proof of security for the protocol against undetectable online
dictionary (UDOD) attacks. This second proof is compact
and elegant and does not rely upon idealized assumptions
about the cryptographic primitives. Table 1 compares our
protocol against other provably secure three-party PAKE
protocols in terms of security proofs.

The remainder of this paper is structured as follows.
Section 2 describes a formal proof model along with the
associated definitions of security. Section 3 presents our
proposed three-party PAKE protocol. In Section 4, we prove
that the proposed protocol achieves not only the typical
indistinguishability-based security of session keys but also
the password security against undetectable online dictionary
attacks. We conclude the paper in Section 5.

2. Formal Setting

In this section, we

(1) first describe a security model adapted from the
Bellare-Pointcheval-Rogaway 2000 model [14],

(2) define a typical indistinguishability-based security of
session keys, which we call the SK security,

(3) provide a simple and intuitive definition of security
against undetectable online dictionary attacks.

2.1. The Security Model

Protocol Participants. LetC be the set of all clients registered
with the trusted authentication server 𝑆. Clients 𝐶, 𝐶

󸀠
∈

C who are both registered with 𝑆 may run a three-party
PAKE protocol 𝑃 at any point in time to establish a session
key. Let U = C ∪ {𝑆}. A party 𝑈 ∈ U may have
several instances involved in distinct, possibly concurrent,
executions of protocol𝑃.WeuseΠ𝑖

𝑈
to denote the 𝑖th instance

of party 𝑈. A client instance Π
𝑖

𝐶
is said to accept when

it successfully computes its session key sk𝑖
𝐶
in a protocol

execution.

Long-Term Keys. Each client 𝐶 ∈ C chooses a password pw
𝐶

from a fixed dictionary PW and shares it with the server 𝑆
via a secure channel. Accordingly, 𝑆 holds all the passwords
{pw
𝐶
| 𝐶 ∈ C}. Each password pw

𝐶
is used as the long-term

secret key of 𝐶 and 𝑆.
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Table 1: Security proof comparison.

Protocol Idealized assumption Adversary capability Resistance to UDOD attacks†

Our protocol None Not restricted Proven
GPAKE [21] None Restricted from corrupting parties No [4]
NGPAKE [4] None Not proven
Lin and Hwang [7] Random oracles Not restricted Not proven
Wu et al. [8] Random oracles Not restricted Not proven
†Resistance to undetectable online dictionary attacks.

Partnership. The notion of partnership is a key element in
defining the security of the protocol. Two instances are
partners if both participate in a protocol execution and
establish a (shared) session key. We define the partnership
relations between instances using the notions of session
identifiers and partner identifiers (see [45] on the role and the
possible construct of session and partner identifiers as a form
of partneringmechanism that enables the right session key to
be identified in concurrent protocol executions.). A session
identifier (sid) is a unique identifier of a protocol session and
is defined as a function of the messages transmitted in the
protocol session. We use sid𝑖

𝑈
to denote the sid of instance

Π
𝑖

𝑈
. A partner identifier (pid) is the set of participants of a

specific protocol session. Instances should receive as input
a pid before they can run the protocol. By pid𝑖

𝑈
, we denote

the pid given to instance Π
𝑖

𝑈
. Notice that pid𝑖

𝐶
consists of

three participants: server 𝑆, client 𝐶, and another client 𝐶󸀠
with whom Π

𝑖

𝐶
believes it runs the protocol. We say that any

two instancesΠ𝑖
𝐶
andΠ𝑗

𝐶
󸀠
are partners if (1) bothΠ𝑖

𝐶
andΠ𝑗

𝐶
󸀠

have accepted, (2) sid𝑖
𝐶
= sid
𝑗

𝐶
󸀠
, and (3) pid𝑖

𝐶
= pid
𝑗

𝐶
󸀠
.

Adversary. In the model, the probabilistic polynomial-time
(ppt) adversary,A, controls all the communications that take
place between parties via a predefined set of oracle queries.
For example, the adversary can ask participants to reveal ses-
sion keys and passwords using Reveal and Corrupt queries
as described below.

(i) Execute(Π𝑖
𝐶
, Π
𝑗

𝐶
󸀠
, Π
𝑘

𝑆
). This query models passive

eavesdropping of a protocol execution. It prompts
an honest execution of the protocol between the
instances Π

𝑖

𝐶
, Π𝑗
𝐶
󸀠
and Π

𝑘

𝑆
. The transcript of the

protocol execution is returned as the output of the
query.

(ii) Send(Π𝑖
𝑈
, 𝑚).This querymodels active attacks against

the protocol. It sends message 𝑚 to instance Π𝑖
𝑈
and

returns the message that Π𝑖
𝑈
sends out in response to

𝑚. A query of the form Send(Π𝑖
𝐶
, start : (𝐶, 𝐶󸀠, 𝑆))

prompts Π
𝑖

𝐶
to initiate the protocol with pid𝑖

𝐶
=

(𝐶, 𝐶
󸀠
, 𝑆).

(iii) Reveal(Π𝑖
𝐶
). This query returns the session key sk𝑖

𝐶
.

This query captures the notion of known key secu-
rity (and it is often reasonable to assume that the
adversary will be able to obtain session keys from
any session different from the one under attack). Any

client, Π𝑖
𝐶
, upon receiving such a query and if it has

accepted and holds some session key, will send this
session key back to A. However, the adversary is not
allowed to ask this query if it has alreadymade a Test

query to the instance Π𝑖
𝐶
or its partner instance (see

below for explanation of the Test oracle).

(iv) Corrupt(𝑈). This query captures not only the notion
of forward secrecy but also unknownkey share attacks
and insider attacks. The query provides the adversary
with 𝑈’s password pw

𝑈
. Notice that a Corrupt query

does not result in the release of the session keys since
the adversary already has the ability to obtain session
keys through Reveal queries. If 𝑈 = 𝑆 (i.e., the
server is corrupted), all clients’ passwords stored by
the server will be returned.

(v) Test(Π𝑖
𝐶
). This query is the only oracle query that

does not correspond to any of the adversary’s abilities.
If Π𝑖
𝐶

has accepted with some session key and is
being asked a Test(Π𝑖

𝐶
) query, then depending on a

randomly chosen bit 𝑏, the adversary is given either
the actual session key (when 𝑏 = 1) or a session key
drawn randomly from the session key distribution
(when 𝑏 = 0). The adversary can access the Test

oracle as many times as necessary. All the queries to
the oracle are answered using the same value of the
hidden bit 𝑏. Namely, the keys returned by the Test

oracle are either all real or all random. But, we require
that for each different set of partners, the adversary
should access the Test oracle only once.

We represent the number of queries used by an adversary
as an ordered sequence of five nonnegative integers, 𝑄 =

(𝑞ex, 𝑞se, 𝑞re, 𝑞co, 𝑞te), where the five elements refer to the
numbers of queries that the adversary made, respectively, to
its Execute, Send, Reveal, Corrupt, and Test oracles.
We call this usage of queries by an adversary the query
complexity of the adversary.

2.2. Session Key (SK) Security. We now define the basic
security, called the SK security, of a 3-party PAKE protocol.
As usual, we define the SK security via the notion of
freshness. Intuitively, a fresh instance is one that holds a
session key which should not be known to the adversary A,
and an unfresh instance is one whose session key (or some
information about the key) can be known by trivial means.
The formal definition of freshness is explained inDefinition 1.



4 The Scientific World Journal

Definition 1. An instance Π𝑖
𝐶
is fresh if none of the following

occurs: (1) A queries Reveal(Π𝑖
𝐶
) or Reveal(Π

𝑗

𝐶
󸀠
), where

Π
𝑗

𝐶
󸀠
is the partner of Π𝑖

𝐶
and (2) A queries Corrupt(𝑈), for

some 𝑈 ∈ pid𝑖
𝐶
, before Π𝑖

𝐶
or its partner Π𝑗

𝐶
󸀠
accepts.

The SK security of a 3-party PAKE protocol 𝑃 is defined
in the context of the following two-stage experiment.

Stage 1. Amakes any oracle queries at will except that:

(i) A is not allowed to ask the Test(Π𝑖
𝐶
) query if the

instance Π𝑖
𝐶
is unfresh.

(ii) A is not allowed to ask the Reveal(Π𝑖
𝐶
) query if it has

already made a Test query to Π
𝑖

𝐶
or Π𝑗
𝐶
󸀠
, where Π𝑗

𝐶
󸀠

is the partner of Π𝑖
𝐶
.

Stage 2. OnceA decides that Phase 1 is over, it outputs a bit
𝑏
󸀠 as a guess on the hidden bit 𝑏 chosen by the Test oracle.
A is said to succeed if 𝑏 = 𝑏

󸀠.
Let Succ be the event that A succeeds in this experi-

ment. Then we define the advantage ofA in breaking the SK
security of protocol 𝑃 as

Adv
sk
𝑃
(A) = 2 ⋅ Pr [Succ] − 1,

Adv
sk
𝑃
(𝑡, 𝑄) = max

A
{Adv

sk
𝑃
(A)} ,

(1)

where the maximum is over all ppt adversariesA with time
complexity at most 𝑡 and query complexity at most 𝑄.

Definition 2. A 3-party PAKE protocol 𝑃 is SK-secure if,
for any ppt adversary A asking at most 𝑞se Send queries,
Advsk
𝑃
(A) is only negligibly larger than 𝑐 ⋅ 𝑞se/|PW|, where 𝑐 is

a very small constant (usually around 2 or 4) when compared
with |PW|.

2.3. Modelling Undetectable Online Dictionary Attacks. The
SK security does not imply security against undetectable
online dictionary attacks. In other words, a 3-party PAKE
protocol that is not secure against an undetectable online
dictionary attack may be rendered SK-secure. To see this,
suppose that a 3-party PAKE protocol 𝑃 is susceptible to
undetectable online dictionary attacks whereby an attacker𝐴
can find out the password of any registered client 𝐵. Then, we
can construct an adversary A who attacks protocol 𝑃 with
advantage 1 as follows.

Corruption. If𝐴 is a registered client,A queries Corrupt(𝐴)

to obtain the password pw
𝐴
. Otherwise,A skips this step.

Undetectable Online Dictionary Attacks. Next, A runs the
protocol 𝑃 in the same way as 𝐴 conducts its undetectable
online dictionary attacks against client 𝐵. Note that A can
perfectly simulate 𝐴’s attack by using the disclosed password
pw
𝐴
and by asking oracle queries appropriately. At the end of

this step, A will obtain the password pw
𝐵
as a result of the

attacks.

Impersonation. A then initiates a new protocol session
by querying Send(Π𝑖

𝐶
, start: (𝐵, 𝐶, 𝑆)), where Π

𝑖

𝐶
is an

unused instance of an uncorrupted client 𝐶. A runs this
session as per the protocol specification, but simulating by
itself all the actions of 𝐵 (by using pw

𝐵
). At the end of the

session, the instance Π𝑖
𝐶
will accept with its session key sk𝑖

𝐶
.

Test.The instanceΠ𝑖
𝐶
is fresh as (1) no Reveal query has been

made on Π
𝑖

𝐶
or its partner (which does not exist) and (2)

no Corrupt query has been made against any of 𝐵, 𝐶, and 𝑆.
Thus,Amay ask the Test(Π𝑖

𝐶
) query. SinceA can compute

the session key sk𝑖
𝐶
by itself, it follows that Pr

𝑃,A[Succ] = 1

and thus Advsk
𝑃
(A) = 1.

Since verifying the correctness of a password guess may
requiremore than one Send queries to be asked,Amayhave
to ask Send queries as many times as 𝑑 ⋅ |PW|, for some
integer 𝑑 ≥ 1, to correctly determine the password pw

𝐴
.

Then, even if Advsk
𝑃
(A) = 1, the following holds for some

𝑐 ≥ 1:

Adv
sk
𝑃
(A) ≤

𝑐𝑑 |PW|

|PW|
, (2)

and the protocol 𝑃 is rendered SK-secure by Definition 2.
This result is not surprising since we call a proto-

col SK-secure if mounting an online dictionary attack by
asking Send queries is the best an adversary can do. How-
ever, we want to be able to distinguish undetectable online
dictionary attacks from detectable online dictionary attacks,
and ensure that the best an adversary can do is to mount
a detectable online dictionary attack. The following new
definitions together provide a simple and intuitive way of
capturing security against undetectable online dictionary
attacks.

Definition 3. The Send(Π𝑘
𝑆
, 𝑚) query models an online dic-

tionary attack if both the following are true at the time of
the termination of instance Π

𝑘

𝑆
: (1) 𝑚 was not output by a

previous Send query asked to an instance of 𝐶 by which,
Π
𝑘

𝑆
believes, 𝑚 was sent and (2) the adversary A queried

neither Corrupt(𝑆) nor Corrupt(𝐶).

In Definition 3, the first condition implies that a straight-
forward delivery of a message between instances is not
considered as an online dictionary attack while the second
condition implies that, when𝐶󸀠 is the (assumed) peer of client
𝐶, the adversary A can corrupt the peer client 𝐶󸀠 to mount
an (insider) online dictionary attack. Note that our definition
of an online dictionary attack does not impose any restriction
on asking Reveal queries.

Consider the two-stage experiment described in the
previous section. Let Undet be the event that in the experi-
ment, a server instance terminates normally when an online
dictionary attack was mounted against the instance. We say
that the adversary A succeeds in mounting an undetectable
online dictionary attack if the event Undet occurs.
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Definition 4. A 3-party PAKE protocol 𝑃 is secure against an
undetectable online dictionary attack if, for any ppt adversary
A asking at most 𝑞se Send queries, Pr

𝑃,A[Undet] is only
negligibly larger than 𝑐⋅𝑞se/|PW|, where 𝑐 is as inDefinition 2.

3. Our Proposed Protocol

As we have earlier claimed, our proposed protocol presented
in this section is the first three-party PAKE protocol proven
secure in the standardmodel against an active adversary who
has the corruption ability.

3.1. Preliminaries. We begin by reviewing some crypto-
graphic primitives which underlie the security of our proto-
col.

Decisional Diffie-Hellman (DDH) Assumption. Let G be a
cyclic (multiplicative) group of prime order 𝑞. Since the
order of G is prime, all the elements of G, except 1, are
generators of G. Let 𝑔 be a random fixed generator of G and
let 𝑥, 𝑦, 𝑧 be randomly chosen elements in Z

𝑞
where 𝑧 ̸= 𝑥𝑦.

Informally stated, the DDH problem for G is to distinguish
between the distributions of (𝑔𝑥, 𝑔𝑦, 𝑔𝑥𝑦) and (𝑔

𝑥
, 𝑔
𝑦
, 𝑔
𝑧
),

and the DDH assumption is said to hold in G if it is compu-
tationally infeasible to solve the DDH problem for G. More
formally, we define the advantage of D in solving the DDH
problem for G as AdvddhG (D) = |Pr[D(G, 𝑔, 𝑔𝑥, 𝑔𝑦, 𝑔𝑥𝑦) =

1] − Pr[D(G, 𝑔, 𝑔𝑥, 𝑔𝑦, 𝑔𝑧) = 1]|. We say that the DDH
assumption holds in G if AdvddhG (D) is negligible for all
ppt algorithms D. We denote by AdvddhG (𝑡) the maximum
value of AdvddhG (D) over all algorithmsD running in time at
most 𝑡.

Message Authentication Codes. Let Σ = (Gen,Mac,Ver)

be a message authentication code (MAC) scheme. The key
generation algorithm Gen takes as input a security param-
eter 1

ℓ and outputs a key 𝑘 chosen uniformly at random
from {0, 1}

ℓ. The MAC generation algorithm Mac takes as
input a key 𝑘 and a message 𝑚 and outputs a MAC (also
known as a tag) 𝜎. The MAC verification algorithm Ver

takes as input a key 𝑘, a message 𝑚, and a MAC 𝜎 and
outputs 1 if 𝜎 is valid for 𝑚 under 𝑘 or outputs 0 if 𝜎 is
invalid. LetAdveuf-cma

Σ
(A) be the probability that an adversary

A succeeds in breaking the existential unforgeability of Σ
under adaptive chosenmessage attacks.We say that theMAC
scheme Σ is secure if Adveuf-cma

Σ
(A) is negligible for every

ppt adversary A. We use Adveuf-cma
Σ

(𝑡, 𝑞mac, 𝑞ver) to denote
themaximum value ofAdveuf-cma

Σ
(A) over all ppt adversaries

A running in time at most 𝑡 and asking at most 𝑞mac and
𝑞ver queries to its MAC generation and verification oracles,
respectively.

Two-Party PAKE Protocols. Let 2PAKE be a two-party PAKE
protocol that outputs session keys distributed in {0, 1}

ℓ.
We assume that 2PAKE is SK-secure against an adversary
who is given access to all the oracles: Send, Execute,
Reveal, Corrupt, and Test. Let Advsk2PAKE(A) be the

advantage of an adversary A in breaking the SK security
of 2PAKE. We require that, for all ppt adversariesAmaking
at most 𝑞se Send queries, Advsk2PAKE(A) is only negligibly
larger than 𝑞se/|PW|. We denote byADVsk

2PAKE(𝑡, 𝑄) the
maximum value ofAdvsk2PAKE(A) over all ppt adversaries
A with time complexity at most 𝑡 and query complexity at
most 𝑄.

3.2. Protocol Description. Let 𝐴 and 𝐵 be two clients who
wish to establish a session key, and let 𝑆 be a trusted server
with which 𝐴 and 𝐵 have secretly shared their respective
passwords pw

𝐴
and pw

𝐵
. Our protocol proceeds as follows.

Step 1. 𝐴 and 𝑆 establish a shared secret key 𝑘
𝐴𝑆

by running
the two-party protocol 2PAKE. Likewise, 𝐵 and 𝑆 establish a
shared secret key 𝑘

𝐵𝑆
.

Step 2. 𝐴 (resp., 𝐵 and 𝑆) selects a nonce 𝑛
𝐴

(resp., 𝑛
𝐵

and 𝑛
𝑆
) at random from Z

𝑞
and sends 𝐴 ‖ 𝑛

𝐴
(resp.,

𝐵 ‖ 𝑛
𝐵

and 𝑆 ‖ 𝑛
𝑆
) to the other two parties. All

the parties (𝐴, 𝐵, and 𝑆) define their session identifiers
as sid

𝐴
= sid
𝐵
= sid
𝑆
= 𝐴 ‖ 𝑛

𝐴
‖ 𝐵 ‖ 𝑛

𝐵
‖ 𝑆 ‖ 𝑛

𝑆
.

Step 3. 𝐴 chooses a random 𝑥 ∈ Z
𝑞
, computes 𝑋 = 𝑔

𝑥

and 𝜎
𝐴𝑆

= Mac
𝑘
𝐴𝑆

(𝐴 ‖ 𝑋 ‖ sid
𝐴
), and sends 𝐴 ‖ 𝑋 ‖ 𝜎

𝐴𝑆
to

𝑆. Meanwhile, 𝐵 chooses a random 𝑦 ∈ Z
𝑞
, computes 𝑌 = 𝑔

𝑦

and 𝜎
𝐵𝑆

= Mac
𝑘
𝐵𝑆

(𝐵 ‖ 𝑌 ‖ sid
𝐵
), and sends 𝐵 ‖ 𝑌 ‖ 𝜎

𝐵𝑆
to 𝑆.

Step 4. 𝑆 checks that Ver
𝑘
𝐴𝑆

(𝐴 ‖ 𝑋 ‖ sid
𝑆
, 𝜎
𝐴𝑆
) = 1

and Ver
𝑘
𝐵𝑆

(𝐵 ‖ 𝑌 ‖ sid
𝑆
, 𝜎
𝐵𝑆
)= 1. If either of these is

untrue, 𝑆 aborts the protocol. Otherwise, 𝑆 computes
𝜎
𝑆𝐴

= Mac
𝑘
𝐴𝑆

(𝑆 ‖ 𝑌 ‖ sid
𝑆
) and 𝜎

𝑆𝐵
= Mac

𝑘
𝐵𝑆

(𝑆 ‖ 𝑋 ‖ sid
𝑆
)

and sends 𝑆 ‖ 𝑌 ‖ 𝜎
𝑆𝐴

and 𝑆 ‖ 𝑋 ‖ 𝜎
𝑆𝐵

to 𝐴 and 𝐵,
respectively.

Step 5. 𝐴 computes the session key sk = 𝑌
𝑥

if Ver
𝑘
𝐴𝑆

(𝑆 ‖ 𝑌 ‖ sid
𝐴
, 𝜎
𝑆𝐴
) = 1, while 𝐵 computes the

session key sk = 𝑋
𝑦 if Ver

𝑘
𝐵𝑆

(𝑆 ‖ 𝑋 ‖ sid
𝐵
, 𝜎
𝑆𝐵
) = 1. 𝐴 and 𝐵

abort the protocol if their verification fails.

The operation of this protocol is illustrated in Figure 1.
Steps 1 and 2 of the protocol are independent and can be
performed in parallel. The session-key computation in the
protocol is the same as in the Diffie-Hellman key exchange
protocol (i.e., sk = 𝑔

𝑥𝑦). Hence, it is straightforward to verify
the correctness of the protocol.

4. Security Proofs

In this section we prove that our three-party PAKE protocol
is SK-secure and is resistant to undetectable online dictionary
attacks.The proofs of both properties rely on neither random
oracles nor ideal ciphers.Therefore, if 2PAKE is instantiated
with a protocol proven secure in the standard model (e.g., [3,
49]), our three-party PAKE protocol would also be provably
secure in the standard model. Hereafter, we denote our
protocol by 3PAKEsm (“sm” for “standard model”).
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A (pwA) S (pwA, pwB) B (pwB)

2PAKE (→ kAS) 2PAKE (→ kBS)

Set sidA = sidB = sidS = A‖nA‖B‖nB‖S‖nS

x ∈ Zq, x = gx

𝜎AS = Mack𝐴𝑆 (A‖X‖sidA)

A‖X‖𝜎AS

y ∈ Zq, y = gy

𝜎BS = Mack𝐵𝑆 (B‖Y‖sidB)

B‖Y‖𝜎BS

Verk𝐴𝑆 (A‖X‖sidS, 𝜎AS) = 1

Verk𝐵𝑆 (B‖Y‖sidS, 𝜎BS) = 1

𝜎SA = Mack𝐴𝑆 (S‖Y‖sidS)

𝜎SB = Mack𝐵𝑆 (S‖X‖sidS)

S‖Y‖𝜎SA S‖X‖𝜎SB

Verk𝐴𝑆 (S‖A‖sidA, 𝜎SA) = 1

sk = Yx

Verk𝐵𝑆 (S‖X‖sidB, 𝜎SB) = 1

sk = Xy

?

?

?

?

Exchange nonces: nA, nB, nS

Figure 1: The proposed three-party PAKE protocol.

4.1. Proof of SK Security. We first claim that, if the under-
lying two-party protocol 2PAKE is SK-secure, then
the 3PAKEsm protocol is SK-secure as well under the DDH
assumption in G and the security of the MAC scheme Σ.

Theorem 5. Let 𝑄 = (𝑞ex, 𝑞se, 𝑞re, 𝑞co, 𝑞te). For any adversary
with query complexity atmost𝑄 and time complexity atmost 𝑡,
its advantage in attacking protocol 3PAKEsm is bounded by

Adv
sk
3PAKEsm (𝑡, 𝑄) ≤ 2 ⋅ Adv

sk
2PAKE (𝑡

󸀠
, 𝑄
󸀠
) +

(𝑞se + 𝑞ex)
2

|G|

+ 2 ⋅ 𝑞se ⋅ Adv
euf-cma
Σ

(𝑡
󸀠
, 4, 4)

+ 4 ⋅ Adv
ddh
G (𝑡
󸀠
) ,

(3)

where𝑄󸀠 = (2𝑞ex, 𝑞se, 0, 𝑞co, 2𝑞ex + 𝑞se) and 𝑡󸀠 is the maximum
time required to perform an entire experiment involving an
adversary who attacks protocol 3PAKEsmwith time complex-
ity 𝑡.

Proof. Assume an adversary A attacking proto-
col 3PAKEsmwith time complexity 𝑡 and query complexity
𝑄 = (𝑞ex, 𝑞se, 𝑞re, 𝑞co, 𝑞te). We prove Theorem 5 by
introducing a sequence of experiments Expr

0
, . . . ,Expr

5

and bounding the difference in A’s advantage between
two consecutive experiments. Expr

0
is the original

experiment (described in Section 2.2) in which A attacks
the actual protocol, and Expr

5
is the experiment in

which the advantage of A is 0. Let Succ
𝑖
be the event

that A correctly guesses the hidden bit 𝑏 (chosen by
the Test oracle) in experiment Expr

𝑖
. By definition, we

get Advsk
3PAKEsm(A) = 2 ⋅ Pr[Succ

0
] − 1.

Before providing details of the proof, we first define the
notion of an uncorrupted instance.

Definition 6. We say an instanceΠ𝑖
𝑈
is clean if no one in pid𝑖

𝑈

has been asked a Corrupt query. Otherwise, we say it is
unclean.

Experiment Expr
1
. We modify the experiment so that each

different MAC key is chosen uniformly at random from
{0, 1}
ℓ for all clean instances. The difference in A’s success

probability between Expr
0
and Expr

1
is bounded by

Claim 1.
󵄨󵄨󵄨󵄨Pr [Succ1] − Pr [Succ

0
]
󵄨󵄨󵄨󵄨 ≤ Adv

sk
2PAKE (𝑡

󸀠
, 𝑄
󸀠
) . (4)

Proof. Assume that the advantage of A in attacking
protocol 3PAKEsm is different between two experiments
Expr
0
and Expr

1
. Then we prove the claim by constructing,

from A, an adversary A2PAKE attacking protocol 2PAKE

with time complexity 𝑡󸀠 and query complexity 𝑄󸀠.
A2PAKE begins by choosing a bit 𝑏 uniformly at

random. A2PAKE then invokes A as a subroutine and
answers the oracle queries ofA on its own as follows.

Execute Queries. A2PAKE answers Execute queries of A
by making Execute and Test queries to its own oracles.
Specifically, A2PAKE handles each Execute(Π𝑖

𝐴
, Π
𝑗

𝐵
, Π
𝑘

𝑆
)

query as follows.

(i) If anyone in {𝐴, 𝐵, 𝑆} has been corrupted,
then A2PAKE answers the Execute query as in
experiment Expr

0
.

(ii) Otherwise, A2PAKE first makes two
queries Execute(Π𝑖

𝐴
, Π
𝑘

𝑆
) and Execute(Π𝑗

𝐵
, Π
𝑘
󸀠

𝑆
).

Let T2PAKE and T󸀠
2PAKE be two transcripts returned

in response to the Execute queries. Next, A2PAKE

makes the queries Test(Π𝑖
𝐴
) and Test(Π𝑗

𝐵
) and

receives in return two keys 𝑘
𝐴𝑆

and 𝑘
𝐵𝑆

(either real
or random). A2PAKE then generates the messages
of Steps 2–4 of protocol 3PAKEsm, using 𝑘

𝐴𝑆
and

𝑘
𝐵𝑆

as the MAC keys. Finally, A2PAKE returns these
messages prepended by T2PAKE and T󸀠

2PAKE.

Send Queries. At a high level, the simulation of
the Send oracle is similar to that of the Execute oracle.
Specifically, A2PAKE handles each Send(Π𝑖

𝑈
, 𝑚) query as

follows.

(i) If the instanceΠ𝑖
𝑈
is clean or themessage𝑚 belongs to

Step 2 or later steps, then A2PAKE answers the query
as in experiment Expr

0
.

(ii) Otherwise, A2PAKE answers it by making the same
query to its own Send oracle. If the query causesΠ𝑖

𝑈

to accept, then A2PAKE alsomakes a Test(Π𝑖
𝑈
) query

(if it had not previously asked a Test query to the
partner of Π𝑖

𝑈
). As in the simulation of the Execute

oracle, A2PAKE uses the output of this Test query as
the MAC key in generating the messages of Steps 2–4
of protocol 3PAKEsm.
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Reveal Queries. These queries are answered in the obvious
way. Namely, A2PAKE responds to the query Reveal(Π𝑖

𝐶
) by

returning the session key sk𝑖
𝐶
.

Corrupt Queries. When A queries Corrupt(𝑈), A2PAKE

makes the same query to its own Corrupt oracle and simply
forwards the output toA.

Test Queries. A2PAKE answers these queries according to
the bit 𝑏 chosen at the beginning of the simulation. That
is, A2PAKE returns real session keys, which it has computed on
its own, if 𝑏 = 1, and otherwise returns random keys chosen
uniformly at random from G.

Now at some point in time, when A terminates and
outputs its guess 𝑏󸀠, A2PAKE outputs 1 if 𝑏 = 𝑏

󸀠 and outputs
0 otherwise.

From the simulation above, it is easy to see that A2PAKE

has at most time complexity 𝑡
󸀠 and query complexity 𝑄

󸀠.
The advantage of A2PAKE in attacking protocol 2PAKE is
immediate if we notice the following.

(i) The probability that A2PAKE outputs 1when its Test

oracle returns real session keys is equal to Pr[Succ
0
],

the probability that A correctly guesses the bit 𝑏 in
experiment Expr

0
.

(ii) The probability that A2PAKE outputs 1when its Test

oracle returns random keys is equal to Pr[Succ
1
],

the probability that A correctly guesses the bit 𝑏 in
experiment Expr

1
.

Thismeans that Advsk
2PAKE(A2PAKE)=|Pr[Succ1] − Pr[Succ

0
]|.

Claim 1 then follows.

Experiment Expr2. Let Repeat be the event that a nonce
selected by an instance of a party is selected again by another
instance of the same party. The experiment Expr

2
is aborted,

and the adversary does not succeed, if the event Repeat

occurs. This is the only difference between Expr
1
and Expr

2
.

By a straightforward calculation, we get the following.

Claim 2.

󵄨󵄨󵄨󵄨Pr [Succ2] − Pr [Succ
1
]
󵄨󵄨󵄨󵄨 ≤

(𝑞se + 𝑞ex)
2

2 |G|
. (5)

Experiment Expr3. Let Forge be the event that the adversary
A makes a Send query of the form Send(Π𝑖

𝑈
, 𝑉 ‖ ∗ ‖

𝜎) before querying Corrupt(𝑊), for some 𝑊 ∈ pid𝑖
𝑈
, such

that (1) 𝜎 is a valid tag on𝑉 ‖ ∗ ‖ sid𝑖
𝑈
and (2) no oracle

had not previously generated a tag on𝑉 ‖ ∗ ‖ sid𝑖
𝑈
. If Forge

occurs, this experiment is aborted and the adversary does not
succeed. Then we have the following.

Claim 3.
󵄨󵄨󵄨󵄨Pr [Succ3] − Pr [Succ

2
]
󵄨󵄨󵄨󵄨 ≤ 𝑞se ⋅ Adv

euf-cma
Σ

(𝑡
󸀠
, 4, 4) . (6)

Proof. Assuming that the event Forge occurs, we construct,
from A, an algorithm F who outputs, with a nonnegligible

probability, a forgery against the MAC scheme Σ. The algo-
rithm F is given oracle access to Mac

𝑘
(⋅) and Ver

𝑘
(⋅). The

goal of F is to produce a message/tag pair (𝑚, 𝜎) such that
(1) 𝜎 is a valid tag on themessage𝑚 (i.e., Ver

𝑘
(𝑚, 𝜎) = 1) and

(2) F had not previously queried its oracle Mac
𝑘
(⋅) on the

message𝑚.
Let 𝑛 be the number of all active sessions that A

initiates by asking a Send query. First,F chooses a random
𝛼 ∈ {1, . . . , 𝑛}. F then simulates the oracle calls of A
as in experiment Expr

2
; except that in the 𝛼th session, it

answers Send queries by accessing its MAC generation and
verification oracles. If Forge occurs in the 𝛼th session, F
halts and outputs the message/tag pair generated by A as its
forgery. Otherwise, F halts and outputs a failure indication.
This simulation is perfect unless the adversary A makes
a Corrupt query against a participant of the 𝛼th session.
But note that the event of A making such a Corrupt query
should not happen if Forge occurs in the 𝛼th session.

From the simulation, it is immediate
that Adveuf-cma

Σ
(F) = Pr[Forge]/𝑛. Since 𝑛 ≤ 𝑞se, we

get Pr[Forge] ≤ 𝑞se ⋅ Adv
euf-cma
Σ

(F). Then, Claim 3 follows
by noticing thatF has at most time complexity 𝑡󸀠 and makes
at most 4 queries to Mac

𝑘
(⋅) and Ver

𝑘
(⋅).

Experiment Expr4. This experiment is different from Expr
3

in that the session key sk of each pair of instances partnered
via an Execute query is chosen uniformly at random from
G instead of being computed as sk = 𝑔

𝑥𝑦
= 𝑋

𝑦
=

𝑌
𝑥. As the following claim states, the difference in A’s

advantage between Expr
3
and Expr

4
is negligible if the DDH

assumption holds in G.

Claim 4.
󵄨󵄨󵄨󵄨Pr [Succ4] − Pr [Succ

3
]
󵄨󵄨󵄨󵄨 ≤ Adv

ddh
G (𝑡
󸀠
) . (7)

Proof. Assume that the advantage of A is nonnegligibly
different between Expr

3
and Expr

4
. We prove the claim by

constructing, fromA, a distinguisherD that solves the DDH
problem in G. Let (𝑔

1
, 𝑔
2
, 𝑔
3
) ∈ G3 be an instance of the

DDH problem given as input to D. D begins by choosing a
bit 𝑏 uniformly at random.D then invokesA as a subroutine
and proceeds to simulate the oracles.D answers all the oracle
queries of A as in experiment Expr

3
, except that it handles

each Execute(Π𝑖
𝐴
, Π
𝑗

𝐵
, Π𝑘
𝑆
) query by

(1) selecting two random 𝑎
𝑖
, 𝑏
𝑖
∈ Z
𝑞
,

(2) computing𝑋󸀠 = 𝑔
𝑎
𝑖

1
and 𝑌

󸀠
= 𝑔
𝑏
𝑖

2
,

(3) returning a transcript generated with 𝑋
󸀠 and 𝑌

󸀠 in
place of𝑋 and 𝑌,

(4) then setting sk𝑖
𝐴
= sk𝑗
𝐵
= 𝑔
𝑎
𝑖
𝑏
𝑖

3
.

Let 𝑏󸀠 be the output ofA.D outputs 1 if 𝑏 = 𝑏
󸀠 and outputs 0,

otherwise.
Then, the following is clear:
(i) The probability that D outputs 1 on a true Diffie-

Hellman triple is exactly the probability that A
correctly guesses the bit 𝑏 in experiment Expr

3
.
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(ii) The probability that D outputs 1 on a random triple
is exactly the probability thatA correctly guesses the
bit 𝑏 in experiment Expr

4
.

This completes the proof of Claim 4.

Experiment Expr5. In this experiment, the session key sk𝑖
𝐶

of each instance Π
𝑖

𝐶
activated by a Send query is chosen

uniformly at random from G if no one in pid𝑖
𝐶
has been

corrupted before Π
𝑖

𝐶
determines its session identifier sid𝑖

𝐶
.

The difference inA’s advantage between Expr
4
and Expr

5
is

bounded by the following.

Claim 5.
󵄨󵄨󵄨󵄨Pr [Succ5] − Pr [Succ

4
]
󵄨󵄨󵄨󵄨 ≤ Adv

ddh
G (𝑡
󸀠
) . (8)

Proof. The proof of this claim is essentially similar to that
of Claim 4. From the adversary A whose advantage is non-
negligibly different between Expr

4
and Expr

5
, we construct

a distinguisher D that solves the DDH problem in G. Let
(𝑔
1
, 𝑔
2
, 𝑔
3
) ∈ G3 be an instance of the DDH problem given

as input to D. D begins by selecting a bit 𝑏 uniformly at
random and generating a list DDHList which is used to link
an instance of the DDH problem to a session identifier, D
then runs A as a subroutine and simulates the oracles. It
handles all the queries of A as in experiment Expr

4
except

for Send queries.
Consider a query of the form Send(Π𝑖

𝐶
, 𝑈 ‖ 𝑛

𝑈
) which

delivers a random nonce 𝑛
𝑈
to instance Π𝑖

𝐶
. Whenever such

a query is made,D answers it as follows.

(i) If 𝑛
𝑈
is not the last nonce that Π𝑖

𝐶
is expected to

receive,D simply waits for the next nonce.
(ii) Otherwise, D defines sid𝑖

𝐶
and checks that anyone

in pid𝑖
𝐶
was corrupted.

(a) If so,D responds to the query as in experiment
Expr
4
.

(b) If not, D checks if the list DDHList contains
an entry of the form (sid𝑖

𝐶
, 𝑋
󸀠
, 𝑌
󸀠
, 𝑍
󸀠
), where

𝑋
󸀠
, 𝑌
󸀠
, 𝑍
󸀠
∈ G.

(1) If it does, D computes 𝜎CS = Mac
𝑘CS

(𝐶 ‖

𝑌
󸀠
‖ sid𝑖
𝐶
) and returns 𝐶 ‖ 𝑌

󸀠
‖ 𝜎CS in

response to the query.
(2) Otherwise, D selects two random 𝑎

𝑖
, 𝑏
𝑖
∈

Z
𝑞
, computes𝑋󸀠 = 𝑔

𝑎
𝑖

1
, 𝑌󸀠 = 𝑔

𝑏
𝑖

2
, 𝑍󸀠 = 𝑔

𝑎
𝑖
𝑏
𝑖

3
,

and 𝜎CS = Mac
𝑘CS

(𝐶 ‖ 𝑋
󸀠
‖ sid𝑖
𝐶
), returns

𝐶 ‖ 𝑋
󸀠
‖ 𝜎CS to A, and finally adds the

tuple (sid𝑖
𝐶
, 𝑋
󸀠
, 𝑌
󸀠
, 𝑍
󸀠
) to DDHList.

When A makes a Send query that causes an instance
Π
𝑖

𝐶
to accept,D checks if DDHList contains an entry of the

form (sid𝑖
𝐶
, 𝑋
󸀠
, 𝑌
󸀠
, 𝑍
󸀠
). If so, D sets sk𝑖

𝐶
= 𝑍
󸀠. Otherwise,

D computes sk𝑖
𝐶
as in experiment Expr

4
. For all other Send

queries ofA,D answers them as in experiment Expr
4
. Now

when A terminates and outputs its guess 𝑏󸀠, D outputs 1 if
𝑏 = 𝑏
󸀠 and outputs 0 otherwise.

One can easily see the following.

(i) The probability that D outputs 1 on a true Diffie-
Hellman triple is exactly the probability that A

correctly guesses the bit 𝑏 in experiment Expr
4
.

(ii) The probability that D outputs 1 on a random triple
is exactly the probability thatA correctly guesses the
bit 𝑏 in experiment Expr

5
.

This implies Claim 5.

In experiment Expr
5
, the session keys of all fresh

instances are chosen uniformly at random from G and thus
the adversary A obtains no information on the bit 𝑏 chosen
by the Test oracle. Therefore, it follows that Pr[Succ

5
] =

1/2. This result combined with the previous claims yields the
statement of Theorem 5.

4.2. Proof of Resistance to Undetectable Online Dictionary
Attacks. We now claim that 3PAKEsm is secure against
undetectable online dictionary attacks as long as the 2PAKE

protocol is SK-secure.

Theorem 7. Let Undet be as defined in Section 2.3 and
assume that for any ppt adversary A󸀠 asking at most
𝑞se Send queries, Advsk

2PAKE(A
󸀠
) is only negligibly larger

than 𝑞se/|PW|. Then, for any ppt adversaryA asking at most
𝑞se Send queries, Pr3PAKEsm,A[Undet] is only negligibly larger
than 2 ⋅ 𝑞se/|PW|.

Proof. Let A be a ppt adversary who asks 𝑞se Send

queries in mounting an undetectable online dictionary
attack against 3PAKEsm. Consider the experiment Expr

1

described in the proof of Theorem 5 (see Section 4.1).
By Undet

1
(resp., Undet

0
), we denote the event Undet

defined in experiment Expr
1

(resp., Expr
0
). We prove

Theorem 7 by first proving Claim 6 and then Claim 7.

Claim 6. |Pr3PAKEsm,A[Undet1] − Pr3PAKEsm,A[Undet0]| is only
negligibly larger than 𝑞se/|PW|.

Claim 7. Pr3PAKEsm,A[Undet1] is only negligibly larger
than 𝑞se|PW|.

Proof of Claim 6. We prove the claim by constructing an
adversaryA󸀠 who attacks the SK security of 2PAKEwith ad-
vantage equal to |Pr3PAKEsm,A[Undet1]−Pr3PAKEsm,A[Undet0]|.

A󸀠 chooses a random bit 𝑏 ∈ {0, 1} and invokes the
adversaryA as a subroutine.A󸀠 then simulates the oracles for
A in the exactly same way as in the simulation for the proof
of Claim 1. A󸀠 outputs 1 if Undet occurs and 0 otherwise.
From the way the oracles are simulated, it is easy to see the
following.

(i) The probability thatA󸀠 outputs 1when its Test ora-
cle returns real session keys is equal to the probability
that the event Undet occurs in experiment Expr

0
.
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(ii) The probability that A󸀠 outputs 1 when its Test

oracle returns random keys is equal to the probability
that the event Undet occurs in experiment Expr

1
.

Since A󸀠 makes at most 𝑞se Send queries, we obtain the
statement of Claim 6.

Proof of Claim 7. Assume that Pr3PAKEsm,A[Undet1] is non-
negligibly larger than 𝑞se/|PW|. Given the adversary A, we
construct an adversaryA󸀠 against 2PAKE who asks at most
𝑞se Send queries but has an advantage nonnegligibly larger
than 𝑞se/|PW|.

A󸀠 runs A as a subroutine while simulating the oracles
on its own. A󸀠 handles all the oracle queries of A as in
the experiment Expr

1
except for Send queries. When A

makes a Send(Π𝑖
𝑈
,𝑚) query,A󸀠 checks if𝑚 is a message for

initiating a new session (of 3PAKEsm) or the Send query
belongs to an execution of 2PAKE.

(1) If both are untrue, A󸀠 responds to the query as in
experiment Expr

1
.

(2) Otherwise, A󸀠 answers it by making the same query
to its own Send oracle. If the query prompts Π𝑖

𝑈
to

accept, thenA󸀠 checks if Π𝑖
𝑈
is clean.

(a) If so,A󸀠 sets theMAC key ofΠ𝑖
𝑈
to be a random

key drawn uniformly from {0, 1}
ℓ.

(b) Otherwise,A󸀠 makes a Reveal(Π𝑖
𝑈
) query and

sets the MAC key of Π𝑖
𝑈
to be the output of

this Reveal query.

Let Π
𝑡

𝑆
be any server instance against which A has

mounted an online dictionary attack. Let 𝑘𝑡
𝑆
be the session

key (i.e., the MAC key) that the instance Π𝑡
𝑆
has computed

in its execution of 2PAKE. In order for the instance Π𝑡
𝑆
to

terminate normally, the adversary A has to make a query of
the form Send(Π𝑡

𝑆
, 𝐶 ‖ ∗ ‖ 𝜎CS) such that Ver

𝑘
𝑡

𝑆

(𝐶 ‖ ∗ ‖

sid𝑡
𝑆
, 𝜎CS) = 1.WhenAmakes such a Send query (i.e., when

the eventUndet
1
occurs),A󸀠makes a Test query against the

instance Π
𝑡

𝑆
. Note that the instance Π

𝑡

𝑆
is fresh as (1) it is

partnered with no instance and (2) 𝑆 and 𝐶 must have not
been corrupted. Let 𝑘

𝑡

𝑆
be the key returned in response to

the Test query. A󸀠 outputs 1 if Ver
𝑘

𝑡

𝑆

(𝐶 ‖ ∗ ‖ sid𝑡
𝑆
, 𝜎CS) =

1 and outputs 0, otherwise. If Undet
1
does not occur, A󸀠

outputs a random bit. Then, it is not hard to see that

Adv
sk
2PAKE (A

󸀠
) = 2 ⋅ Pr2PAKE,A󸀠 [Succ] − 1

= 2 ⋅ (Pr3PAKEsm,A [Undet
1
]

+
1

2
(1 − Pr3PAKEsm,A [Undet

1
])) − 1

= Pr3PAKEsm,A [Undet
1
] .

(9)

This completes the proof of Claim 7.

Theorem 7 immediately follows from Claims 6 and 7.

5. Conclusion

In this work, we have presented a three-party PAKE protocol
whose security does not rely on the existence of random
oracles. The model that we used to prove the security of
our protocol allows the adversary to ask Corrupt queries
and thus captures insider attacks as well as forward secrecy.
It is a known fact that proving the security of protocols
in such a model is of particular importance in the three-
party setting as insider dictionary attacks are most seri-
ous threats to three-party PAKE protocols. To the best of
our knowledge, our protocol is the first three-party PAKE
protocol proven secure against insider, active adversaries
in the standard model (i.e., without random oracles and
ideal ciphers). Another advantage our protocol has over
previously published protocols is that it also achieves provable
security against undetectable online dictionary attacks. The
latter property is also significant as designing three-party
PAKE protocol secure against undetectable online dictionary
attacks is an ongoing challenge (as evidenced by the number
of three-party PAKE protocols found to be vulnerable to an
undetectable online dictionary attack). We leave it as a future
work to design a three-party PAKE protocol that achieves
not only provable security in the standard model but is more
efficient than our protocol.
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