
Research Article
A Tensor-Product-Kernel Framework for
Multiscale Neural Activity Decoding and Control

Lin Li,1 Austin J. Brockmeier,2 John S. Choi,3 Joseph T. Francis,4

Justin C. Sanchez,5 and José C. Príncipe2

1 Philips Research North America, Briarcliff Manor, NY 10510, USA
2Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
3 Joint Program in Biomedical Engineering, NYU Polytechnic School of Engineering and SUNY Downstate, Brooklyn, NY 11203, USA
4Department of Physiology and Pharmacology, State University of New York Downstate Medical Center,
Joint Program in Biomedical Engineering, NYU Polytechnic School of Engineering and SUNY Downstate,
Robert F. Furchgott Center for Neural & Behavioral Science, Brooklyn, NY 11203, USA

5Department of Biomedical Engineering, Department of Neuroscience, Miami Project to Cure Paralysis, University of Miami,
Coral Gables, FL 33146, USA

Correspondence should be addressed to Lin Li; lin-li@philips.com

Received 22 August 2013; Revised 28 January 2014; Accepted 11 February 2014; Published 14 April 2014

Academic Editor: Zhe (Sage) Chen

Copyright © 2014 Lin Li et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Brain machine interfaces (BMIs) have attracted intense attention as a promising technology for directly interfacing computers or
prostheses with the brain’s motor and sensory areas, thereby bypassing the body. The availability of multiscale neural recordings
including spike trains and local field potentials (LFPs) brings potential opportunities to enhance computational modeling by
enriching the characterization of the neural system state. However, heterogeneity on data type (spike timing versus continuous
amplitude signals) and spatiotemporal scale complicates the model integration of multiscale neural activity. In this paper, we
propose a tensor-product-kernel-based framework to integrate the multiscale activity and exploit the complementary information
available in multiscale neural activity. This provides a common mathematical framework for incorporating signals from different
domains. The approach is applied to the problem of neural decoding and control. For neural decoding, the framework is able to
identify the nonlinear functional relationship between themultiscale neural responses and the stimuli using general purpose kernel
adaptive filtering. In a sensory stimulation experiment, the tensor-product-kernel decoder outperforms decoders that use only a
single neural data type. In addition, an adaptive inverse controller for delivering electrical microstimulation patterns that utilizes
the tensor-product kernel achieves promising results in emulating the responses to natural stimulation.

1. Introduction

Brain machine interfaces (BMIs) provide new means to
communicate with the brain by directly accessing, interpret-
ing, and even controlling neural states. They have attracted
attention as a promising technology to aid the disabled (i.e.,
spinal cord injury, movement disability, stroke, hearing loss,
and blindness) [1–6]. When designing neural prosthetics
and brain machine interfaces (BMIs), the fundamental steps
involve quantifying the information contained in neural

activity, modeling the neural system, decoding the intention
of movement or stimulation, and controlling the spatiotem-
poral neural activity pattern to emulate natural stimulation.
Furthermore, the complexity and distributed dynamic nature
of the neural system pose challenges for the modeling tasks.

The development of recording technology enables access
to brain activity from multiple functional levels, including
the activity of individual neurons (spike trains), local field
potentials (LFPs), electrocorticogram (ECoG), and elec-
troencephalogram (EEG), collectively forming a multiscale

Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2014, Article ID 870160, 16 pages
http://dx.doi.org/10.1155/2014/870160

http://dx.doi.org/10.1155/2014/870160


2 Computational Intelligence and Neuroscience

characterization of brain state. Simultaneous recording of
multiple types of signals could facilitate enhanced neural sys-
tem modeling. Although there are underlying relationships
among these brain activities, it is unknown how to leverage
the heterogeneous set of signals to improve the identification
of the neural-response-stimulus mappings. The challenge is
in defining a framework that can incorporate these heteroge-
nous signal formats coming from multiple spatiotemporal
scales. In ourwork, wemainly address integrating spike trains
and LFPs for multiscale neural decoding.

Spike trains and LFPs encode complementary informa-
tion of stimuli and behaviors [7, 8]. In most recordings, spike
trains are obtained by detecting transient events on a signal
that is conditioned using a high-pass filter with the cutoff
frequency set at about 300–500Hz, while LFPs are obtained
by using a low-pass filter with 300Hz cutoff frequency [9].
Spike trains represent single- or multiunit neural activity
with a fine temporal resolution. However, their stochastic
properties induce considerable variability, especially when
the stimulation amplitude is small; that is, the same stimuli
rarely elicit the same firing patterns in repeated trials. In
addition, a functional unit of the brain contains thousands
of neurons. Only the activity of a small subset of neurons can
be recorded and, of these, only a subset may modulate with
respect to the stimuli or condition of interest.

In contrast, LFPs reflect the average synaptic input to a
region near the electrode [10], which limits specificity but
provides robustness for characterizing the modulation
induced by stimuli. Furthermore, LFPs naturally provide
population-level measure of neural activity. Therefore, an
appropriate aggregation of LFPs and spike trains enables
enhanced accuracy and robustness of neural decoding mod-
els. For example, the decoder can coordinate LFPs or spike
patterns to tag particularly salient events or extract different
stimulus features characterized by multisource signals. How-
ever, heterogeneity between LFPs and spike trains compli-
cates their integration into the same model. The information
in a spike train is coded in a set of ordered spike timings
[11, 12], while an LFP is a continuous amplitude time series.
Moreover, the time scale of LFPs is significantly longer than
spike trains. Whereas recent work has compared the decod-
ing accuracy of LFPs and spikes [13], only a small number of
simple models have been developed to relate both activities
[14]. However, the complete relationship between LFPs and
spike trains is still a subject of controversy [15–17], which
hinders principled modeling approaches.

To address these modeling issues, this paper proposes a
signal processing framework based on tensor-product kernels
to enable decoding and even controlling multiscale neural
activities. The tensor-product kernel uses multiple heteroge-
nous signals and implicitly defines a kernel space constructed
by the tensor product of individual kernels designed for
each signal type [18]. The tensor-product kernel uses the
joint features of spike trains and LFPs. This enables kernel-
basedmachine learningmethodologies to leveragemultiscale
neural activity to uncover the mapping from the neural
system states and the corresponding stimuli.

The kernel least mean square (KLMS) algorithm is used
to estimate the dynamic nonlinear mapping from the two

types of neural responses to the stimuli. The KLMS algo-
rithm exploits the fact that the linear signal processing in
reproducing kernel Hilbert spaces (RKHS) corresponds to
nonlinear processing in the input space and is used in the
adaptive inverse control scheme [19] designed for control-
ling neural systems. Utilizing the tensor-product kernel, we
naturally extend this scheme to multiscale neural activity.
Since the nonlinear control is achieved via linear processing
in the RKHS, it bypasses the local minimum issues normally
encountered in nonlinear control.

The validation of the effectiveness of the proposed tensor-
product-kernel framework is done in a somatosensory stim-
ulation study. Somatosensory feedback remains underdevel-
oped in BMI, which is important for motor and sensory
integration during movement execution, such as propriocep-
tive and tactile feedback about limb state during interaction
with external objects [20, 21]. A number of early experi-
ments have shown that spatiotemporally patterned micros-
timulation delivered to somatosensory cortex can be used to
guide the direction of reaching movements [22–24]. In
order to effectively apply the artificial sensory feedback in
BMI, it is essential to find out how to use microstimula-
tion to replicate the target spatiotemporal patterns in the
somatosensory cortex, where neural decoding and control
are the critical technologies to achieve this goal. In this
paper, our framework is applied to leverage multiscale neural
activities to decode both natural sensory stimulation and
microstimulation. Its decoding accuracy is compared with
decoders that use a single type of neural activity (LFPs or
spike trains).

In the neural system control scenario, this tensor-
product-kernel methodology can also improve the controller
performance. Controlling the neural activity via stimulation
has raised the prospect of generating specific neural activity
patterns in downstream areas, evenmimicking natural neural
responses, which is central both for our basic understanding
of neural information processing and for engineering “neural
prosthetic” devices that can interact with the brain directly
[25]. From a control theory perspective, the neural circuit is
treated as the “plant,” where the applied microstimulation
is the control signal and the plant output is the elicited
neural response represented by spike trains and LFPs. Most
conventional control schema cannot be directly applied to
spike trains because there is no algebraic structure in the
space of spike trains. Therefore, most existing neural control
approaches have been applied to binned spike trains or
LFPs [25–31]. Here, we will utilize the kernel-based adaptive
inverse controller for spike trains proposed in our previous
work [19] as an input-output (system identification) based
control scheme. This methodology can directly be extended
to the tensor-product kernel to leverage the availability of
multiscale neural signals (e.g., spike trains and LFPs) and
improves the robustness and accuracy of the stimulation op-
timization by exploiting the complementary information of
the heterogenous neural signals recorded frommultiple sour-
ces.

The adaptive inverse control framework controls pat-
terned electrical microstimulation in order to drive neural



Computational Intelligence and Neuroscience 3

responses to mimic the spatiotemporal neural activity pat-
terns induced by tactile stimulation. This framework creates
new opportunities to improve the ability to control neural
states to emulate the natural stimuli by leveraging the com-
plementary information from multiscale neural activities.
This better interprets the neural system internal states and
thus enhances the robustness and accuracy of the optimal
microstimulation pattern estimation.

The rest of the paper is organized as follows. Sec-
tion 2 introduces kernels for spike trains and LFPs and
the tensor-product kernel that combines them. The kernel-
based decoding model and the adaptive inverse control
scheme that exploit kernel-based neural decoding technology
to enable control in RKHS are introduced in Sections 3
and 4, respectively. Section 5 discusses the somatosensory
stimulation emulation scenario and illustrates the test results
by applying tensor-product kernel to leverage multiscale
neural activity for decoding and controlling tasks. Section 6
concludes this paper.

2. Tensor-Product Kernel for Multiscale
Heterogeneous Neural Activity

The mathematics of many signal processing and pattern
recognition algorithms is based on evaluating the similarity
of pairs of exemplars. For vectors or functions, the inner
product defined on Hilbert spaces is a linear operator and
a measure of similarity. However, not all data types exist
in Hilbert spaces. Kernel functions are bivariate, symmetric
functions that implicitly embed samples in a Hilbert space.
Consequently, if a kernel on a data type can be defined, then
algorithms defined in terms of inner products can be used.
This has enabled various kernel algorithms [18, 32–34].

To begin, we define the general framework for the various
kernel functions used here, keeping in mind that the input
corresponds to assorted neural data types. Let the domain
of a single neural response dimension, that is, a single LFP
channel or one spiking unit, be denoted by X and consider
a kernel 𝜅 : X × X → R. If 𝜅 is positive definite, then
there is an implicit mapping 𝜙 : X → H that maps any
two sample points, say 𝑥, 𝑥󸀠 ∈ X, to corresponding elements
in the Hilbert space 𝜙(𝑥), 𝜙(𝑥󸀠) ∈ H such that 𝜅(𝑥, 𝑥󸀠) =
⟨𝜙(𝑥), 𝜙(𝑥

󸀠
)⟩ is the inner product of these elements in the

Hilbert space. As an inner product, the kernel evaluation
𝜅(𝑥, 𝑥

󸀠
) quantifies the similarity between 𝑥 and 𝑥󸀠.

A useful property is that this inner product induces a
distance metric,

𝑑 (𝑥, 𝑥
󸀠
) =

󵄩
󵄩
󵄩
󵄩
󵄩
𝜙 (𝑥) − 𝜙 (𝑥

󸀠
)

󵄩
󵄩
󵄩
󵄩
󵄩H

= √⟨𝜙 (𝑥) − 𝜙 (𝑥
󸀠
) , 𝜙 (𝑥) − 𝜙 (𝑥

󸀠
)⟩

= √𝜅 (𝑥, 𝑥) + 𝜅 (𝑥
󸀠
, 𝑥
󸀠
) − 2𝜅 (𝑥, 𝑥

󸀠
).

(1)

For normalized and shift-invariant kernels where, for all
𝑥, 𝜅(𝑥, 𝑥) = 1, the distance is inversely proportional to the
kernel evaluation 𝑑(𝑥, 𝑥󸀠) = √2 − 2𝜅(𝑥, 𝑥󸀠).

To utilize two ormore dimensions of the neural response,
a kernel that operates on the joint space is required.There are
two basic approaches to construct multidimensional kernels
from kernels defined on the individual variables: direct sum
and tensor-product kernels. In terms of kernel evaluations,
they consist of taking either the sum or the product of the
individual kernel evaluations. In both cases, the resulting
kernel is positive definite as long as the individual kernels are
positive definite [18, 35].

Let X
𝑖
denote the neural response domain of the 𝑖th

dimension and consider a positive-definite kernel 𝜅
𝑖
: X
𝑖
×

X
𝑖
→ R and corresponding mapping 𝜙

𝑖
: X
𝑖
→ H

𝑖
for

this dimension. Again, the similarity between a pair of sam-
ples 𝑥 and 𝑥󸀠 on the 𝑖th dimension is 𝜅

𝑖
(𝑥
(𝑖)
, 𝑥
󸀠

(𝑖)
) = ⟨𝜙

𝑖
(𝑥
(𝑖)
),

𝜙
𝑖
(𝑥
󸀠

(𝑖)
)⟩.

For the sum kernel, the joint similarity over a set of di-
mensionsI is

𝜅
Σ
(x, x󸀠) = ∑

𝑖∈I

𝜅
𝑖
(𝑥
(𝑖)
, 𝑥
󸀠

(𝑖)
) . (2)

This measure of similarity is an average similarity across all
dimensions. When the sum is over a large number of dimen-
sions, the contributions of individual dimensions are diluted.
This is useful for multiunit spike trains or multichannel
LFPs when the individual dimensions are highly variable,
which if used individually would result in a poor decoding
performance on a single trial basis.

For the tensor-product kernel, the joint similarity over
two dimensions 𝑖 and 𝑗 is computed by taking the product
between the kernel evaluations 𝜅

[𝑖,𝑗]
([𝑥
(𝑖)
, 𝑥
(𝑗)
], [𝑥
󸀠

(𝑖)
, 𝑥
󸀠

(𝑗)
]) =

𝜅
𝑖
(𝑥
(𝑖)
, 𝑥
󸀠

(𝑖)
) ⋅ 𝜅
𝑗
(𝑥
(𝑗)
, 𝑥
󸀠

(𝑗)
). The new kernel 𝜅

[𝑖,𝑗]
corresponds

to a mapping function that is the tensor product between
the individual mapping functions 𝜙

[𝑖,𝑗]
= 𝜙
𝑖
⊗ 𝜙
𝑗
where 𝜙

[𝑖𝑗]

(𝑥
(𝑖,𝑗)
) ∈ H

[𝑖𝑗]
. This is the tensor-product Hilbert space. The

product can be taken over a set of dimensions I and the
result is a positive-definite kernel over the joint space: 𝜅

Π

(x, x󸀠) = ∏
𝑖∈I𝜅𝑖(𝑥(𝑖), 𝑥

󸀠

(𝑖)
).

The tensor-product kernel corresponds to a stricter mea-
sure of similarity than the sum kernel. Due to the product, if
for one dimension 𝜅

𝑖
(𝑥
(𝑖)
, 𝑥
󸀠

(𝑖)
) ≈ 0 then 𝜅

Π
(x, x󸀠) ≈ 0. The

tensor-product kernel requires the joint similarity; that is, for
samples to be considered similar in the joint space they must
be close in all the individual spaces. If even one dimension
is dissimilar the product will appear dissimilar. If some of
the dimensions are highly variable, then they will have a del-
eterious effect on the joint similarity measure. On the other
hand, the tensor product is a more precise measure of sim-
ilarity that will be used later to combine multiscale neural
activity.

More generally, an explicit weight can be used to adjust
the influence of the individual dimensions on the joint kernel.
Any convex combinations of kernels are positive definite,
and learning the weights of this combination is known as
multiple kernel learning [36–38]. In certain cases of the
constituent kernels, namely, that they are infinitely divisible
[39], a weighted product kernel can also be applied [40].
However, the optimization of theseweightings is not explored
in the current work.



4 Computational Intelligence and Neuroscience

Injective mapping

Injective mapping

Injective mapping

Injective mapping

Injective mapping

Injective mapping

Spike trains 

LFPs

si

sj

xm

xn
𝜑(xn)

𝜑(xm)

𝜙(si)

𝜙(sj)

(si, sj) ⟨

⟨

𝜙(si), 𝜙(sj)⟩

⟩(xm, xn) = 𝜑(xm), 𝜑(xn )

𝜙(si) ⊗ 𝜑(xn)

𝜙(sj) ⊗ 𝜑(xn)

𝜅(si, sj, xm, xn) = 𝜅s(si, sj)𝜅x(xm, xn)
= ⟨𝜙(si), 𝜙(sj)⟩⟨𝜑(xm), 𝜑(xm)⟩

= ⟨𝜙(si) ⊗ 𝜑(xm), 𝜙(si) ⊗ 𝜑(xn)⟩

𝜅s =

𝜅x

Figure 1: Schematic representation of the construction of the RKHS defined by the tensor-product kernel from the individual spike and
LFP kernel spaces, along with the mapping from the original data. Specifically, s

𝑖
denotes a window of multiunit spike trains; x

𝑛
denotes a

window of multichannel LFPs; 𝜅
𝑠
(⋅, ⋅) denotes the spike train kernel with implicit mapping function 𝜙(⋅); and 𝜅

𝑥
(⋅, ⋅) denotes the LFP kernel

with implicit mapping function 𝜑(⋅).

In general, a joint kernel space, constructed via either
direct sum or tensor product, allows the homogeneous pro-
cessing of heterogenous signal types all within the framework
of RKHSs.We use direct sum kernels to combine the different
dimensions of multiunit spike trains or multichannel LFPs.
For the spike trains, using the sum kernel across the different
units enables an “average” population similarity over the
space of spike trains where averages cannot be computed.
Then a tensor-product kernel combines the two kernels: one
for the multiunit spike trains and one for the multichannel
LPFs; see Figure 1 for an illustration. The kernels for spike
trains and LFPs can be selected and specified individually
according to their specific properties.

In conclusion, composite kernels are very different from
those commonly used in kernel-based machine learning, for
example, for the support vector machine. In fact, here a pair
of windowed spike trains and windowed LFPs is mapped
into a feature function in the joint RKHS. Different spike
train and LFP pairs are mapped to different locations in this
RKHS, as shown in Figure 1. Due to its versatility, Schoenberg
kernels defined for both the spike timing space and LFPs are
employed in this paper and discussed below.

2.1. Kernel for Spike Trains. Unlike conventional amplitude
data, there is no natural algebraic structure in the space of
spike trains. The binning process, which easily transforms
the point processes into discrete amplitude time series, is
widely used in spike train analysis and allows the application
of conventional amplitude-based kernels to spike trains [41]
at the expense of losing the temporal resolution of the
neural responses. This means that any temporal information
in spikes within and between bins is disregarded, which is
especially alarming when spike timing precision can be in
the millisecond range. Although the bin size can be set small
enough to preserve the fine time resolution, it will sparsify

the signal representation, increase the artifact variability,
and cause high-dimensionality in the model, which requires
voluminous data for proper training.

According to the literature, it is appropriate to consider
a spike train to be a realization of a point process, which
describes the temporal distribution of the spikes. Generally
speaking, a point process 𝑝

𝑖
can be completely characterized

by its conditional intensity function 𝜆(𝑡 | 𝐻𝑖
𝑡
), where 𝑡 ∈ 𝜏 =

[0, 𝑇] denotes the time coordinate and𝐻𝑖
𝑡
is the history of the

process up to 𝑡. A recent research area [42, 43] is to define
an injective mapping from spike trains to RKHS based on
the kernel between the conditional intensity functions of two
point processes [42]. Among the cross-intensity (CI) kernels,
the Schoenberg kernel is defined as

𝜅 (𝜆 (𝑡 | 𝐻
𝑖

𝑡
) , 𝜆 (𝑡 | 𝐻

𝑗

𝑡
))

= exp(−
󵄩
󵄩
󵄩
󵄩
󵄩
𝜆 (𝑡 | 𝐻

𝑖

𝑡
) − 𝜆 (𝑡 | 𝐻

𝑗

𝑡
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝜎
2

)

= exp(−
∫
𝜏
(𝜆 (𝑡 | 𝐻

𝑖

𝑡
) − 𝜆 (𝑡 | 𝐻

𝑗

𝑡
))

2

d𝑡
𝜎
2

) ,

(3)

where 𝜎 is the kernel size. The Schoenberg kernel is selected
in this work because of its modeling accuracy and robustness
to free parameter settings [44]. The Schoenberg kernel is
a Gaussian-like kernel defined on intensity functions that
is strictly positive definite and sensitive to the nonlinear
coupling of two intensity functions [42]. Different spike
trains will then be mapped to different locations in the
RKHS. Compared to kernels designed on binned spike trains
(e.g., spikernel [41]), the main advantage of the Schoenberg
kernel is that the precision in the spike event location is
better preserved and the limitations of the sparseness and



Computational Intelligence and Neuroscience 5

high-dimensionality for model building are also avoided, re-
sulting in enhanced robustness and reduced computational
complexity, especially when the application requires fine time
resolution [44].

In order to be applicable, the methodology must lead to
a simple estimation of the quantities of interest (e.g., the
kernel) from experimental data. A practical choice used in
our work estimates the conditional intensity function using a
kernel smoothing approach [42, 45], which allows estimating
the intensity function from a single realization and nonpara-
metrically and injectively maps a windowed spike train into
a continuous function. The estimated intensity function is
obtained by simply convolving 𝑠(𝑡)with the smoothing kernel
𝑔(𝑡), yielding

̂
𝜆 (𝑡) =

𝑀

∑

𝑚=1

𝑔 (𝑡 − 𝑡
𝑚
) , {𝑡

𝑚
∈ T : 𝑚 = 1, . . . ,𝑀} , (4)

where the smoothing function 𝑔(𝑡) integrates to 1. Here ̂𝜆(𝑡)
can be interpreted as an estimation of the intensity function.
The rectangular and exponential functions [42, 46] are both
popular smoothing kernels, which guarantee injective map-
pings from the spike train to the estimated intensity function.
In order to decrease the kernel computation complexity, the
rectangular function 𝑔(𝑡) = (1/T)(𝑈(𝑡) − 𝑈(𝑡 −T)) (T ≫

the interspike interval) is used in our work, where 𝑈(𝑡) is a
Heaviside function. This rectangular function approximates
the cumulative density function of spikes counts in the win-
dow 𝑇 and compromises the locality of the spike trains; that
is, the mapping places more emphasis on the early spikes
than the later ones. However, our experiments show that this
compromise only causes a minimal impact on the kernel-
based regression performance.

Let 𝑠𝑛
𝑖
(𝑡) denote the spike train for the 𝑖th sample of the

𝑛th spiking unit. The multiunit spike kernel is taken as the
unweighted sum over the kernels on the individual units

𝜅
𝑠
(s
𝑖
(𝑡) , s
𝑗
(𝑡)) = ∑

𝑛

𝜅
𝑠
(𝑠
𝑛

𝑖
(𝑡) , 𝑠
𝑛

𝑗
(𝑡)) . (5)

2.2. Kernels for LFPs. In contrast with spike trains, LFPs
exhibit less spatial and temporal selectivity [15]. In the time
domain, LFP features can be obtained by sliding a window
on the signal, which describes the temporal LFP structure.
The length of the window is selected based on the duration
of neural responses to certain stimuli; the extent of the
duration can be assessed by its autocorrelation function, as
we will discuss in Section 5.3.1. In the frequency domain, the
spectral power and phase in different frequency bands are
also known to be informative features for decoding, but here
we concentrate only on the time-domain decompositions. In
the time domain, we can simply treat single channel LFPs
as a time series and apply the standard Schoenberg kernel
to the sequence of signal samples in time. The Schoenberg

kernel, defined in continuous spaces, maps the correlation
time structure of the LFP 𝑥(𝑡) into a function in RKHS,

𝜅
𝑥
(𝑥
𝑖
(𝑡) , 𝑥
𝑗
(𝑡))

= exp(−
󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝜎
2

𝑥

)

= exp(−

∫
T
𝑥

(𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡))

2

d𝑡

𝜎
2

𝑥

)

= exp(−(∫
T
𝑥

𝑥
𝑖
(𝑡) 𝑥
𝑖
(𝑡)

+𝑥
𝑗
(𝑡) 𝑥
𝑗
(𝑡) − 2𝑥

𝑖
(𝑡) 𝑥
𝑗
(𝑡) d𝑡)

× (𝜎
2

𝑥
)

−1

) ,

(6)

whereT
𝑥
= [0 𝑇

𝑥
].

Let 𝑥𝑛
𝑖
(𝑡) denote the LFP waveform for the 𝑖th sample of

the 𝑛th channel. Similar to the multiunit spike kernel, the
multichannel LFP kernel is defined by the direct sum kernel

𝜅
𝑥
(x
𝑖
(𝑡) , x
𝑗
(𝑡)) = ∑

𝑛

𝜅
𝑥
(𝑥
𝑛

𝑖
(𝑡) , 𝑥
𝑛

𝑗
(𝑡)) . (7)

2.3. Discrete Time Sampling. Assuming a sampling rate with
period 𝜏, let x

𝑖
= [𝑥
1

𝑖
, 𝑥
1

𝑖+1
, . . . , 𝑥

1

𝑖−1+𝑇/𝜏
, 𝑥
2

𝑖
, . . . , 𝑥

𝑁

𝑖−1+𝑇/𝜏
] de-

note the 𝑖th multichannel LFP vector obtained by sliding the
𝑇-length window with step 𝜏. Let s

𝑖
= {𝑡
𝑚
−(𝑖−1)𝜏, 𝑡

𝑚
∈ [(𝑖−

1)𝜏, (𝑖 − 1)𝜏 + 𝑇] : 𝑚 = 1, . . . ,𝑀} denote the corresponding
𝑖th window of the multiunit spike timing sequence. The time
scale, both in terms of the window length and sampling rate,
of the analysis for LFPs and spikes is very important and
needs to be defined by the characteristics of each signal. The
tensor-product kernel allows the time scales of the analysis for
LFPs and spike trains to be specified individually; that is, the
window length 𝑇 and sampling rate for spike trains and LFPs
could be different. The suitable time scale can be estimated
through autocorrelation coefficients of the signal as will be
explained below.

3. Adaptive Neural Decoding Model

For neural decoding applications, a regression model with
multiscale neural activities as the input is built to reconstruct
a stimulus. The appeal of kernel-based filters is the usage of
the linear structure of RKHS to implement well-established
linear adaptive algorithms and to obtain a nonlinear filter
in the input space that leads to universal approximation
capability without the problem of local minima. There are
several candidate kernel-based regressionmethods [32], such
as support vector regression (SVR) [33], kernel recursive least
squares (KRLS), and kernel least mean square (KLMS) [34].
The KLMS algorithm is preferred here because it is an online
methodology of low computation complexity.



6 Computational Intelligence and Neuroscience

Input: {𝑥
𝑛
, 𝑑
𝑛
}, 𝑛 = 1, 2, . . . , 𝑁

Initialization: initialize the weight vector Ω(1): codebook (set of centers)C(0) = {} and coefficient vector 𝑎(0) = []
Computation:
For 𝑛 = 1, 2, . . . , 𝑁
(1) compute the output

𝑦
𝑛
= ⟨Ω(𝑛), 𝜙(𝑥

𝑛
)⟩ =

size(C(𝑛−1))

∑

𝑗=1

𝑎
𝑗
(𝑛 − 1)𝜅(𝑥

𝑛
,C
𝑗
(𝑛 − 1))

(2) compute the error, 𝑒
𝑛
= 𝑑
𝑛
− 𝑦
𝑛

(3) compute the minimum distance in RKHS between 𝑥
𝑛
and each 𝑥

𝑖
∈ C(𝑛 − 1),

𝑑(𝑥
𝑛
) = min

𝑗

(2 − 2𝜅(𝑥
𝑛
,C
𝑗
(𝑛 − 1)))

(4) if 𝑑(𝑥
𝑛
) ≤ 𝜀, then keep the codebook unchanged:C(𝑛) = C(𝑛 − 1), and update the coefficient of the center closest to 𝑥

𝑛
:

𝑎
𝑘
(𝑛) = 𝑎

𝑘
(𝑛 − 1) + 𝜂𝑒(𝑛), where 𝑘 = argmin

𝑗

√2 − 2𝜅(𝑥
𝑛
,C
𝑗
(𝑛 − 1))

(5) otherwise, store the new center:C(𝑛) = {C(𝑛 − 1), 𝑥
𝑛
}, 𝑎(𝑛) = [𝑎(𝑛 − 1), 𝜂𝑒

𝑛
]

(6) Ω(𝑛 + 1) =
size(C(𝑛))

∑

𝑗=1

𝑎
𝑗
(𝑛)𝜙(C

𝑗
(𝑛))

end

Algorithm 1: Quantized kernel least mean square (QKLMS) algorithm.

The quantized kernel least mean square (Q-KLMS) is
selected in our work to decrease the filter growth. Algo-
rithm 1 shows the pseudocode for the Q-KLMS algorithm
with a simple online vector quantization (VQ)method, where
the quantization is performed based on the distance between
the new input and each existing center. In this work, this
distance between a center and the input is defined by their
distance in RKHS, which for a shift-invariant normalized
kernel for all 𝑥𝜅(𝑥, 𝑥) = 1 is ‖𝜙(𝑥

𝑛
) − 𝜙(𝑥

𝑖
)‖
2

2
= 2−2𝜅(𝑥

𝑛
, 𝑥
𝑖
).

If the smallest distance is less than a prespecified quantization
size 𝜀, the new coefficient 𝜂𝑒

𝑛
adjusts the weight of the closest

center; otherwise a new center is added. Compared to other
techniques [47–50] that have been proposed to curb the
growth of the networks, the simple online VQ method is
not optimal but is very efficient. Since, in our work, the
algorithm must be applied several times to the same data for
convergence after the first iteration over the data, we choose
𝜀 = 0, whichmerges the repeated centers and enjoys the same
performance as KLMS.

We use the Q-KLMS framework with the multiunit
spike kernels, the multichannel LFP kernels, and the tensor-
product kernel using the joint samples of LFPs and spike
trains. This is quite unlike previous work in adaptive filtering
that almost exclusively uses the Gaussian kernel with real-
valued time series.

4. Adaptive Inverse Control of the
Spatiotemporal Patterns of Neural Activity

As the name indicates, the basic idea of adaptive inverse con-
trol is to learn an inverse model of the plant as the controller
in Figure 2(a), such that the cascade of the controller and the
plant will perform like a unitary transfer function, that is, a
perfect wire with some delay. The target plant output is used
as the controller’s command input.The controller parameters
are updated to minimize the dissimilarity between the target

output and the plant’s output during the control process,
which enables the controller to track the plant variation and
cancel system noises. The filtered-𝜖 LMS adaptive inverse
control diagram [51] shown in Figure 2(a) represents the
filtered-𝜖 approach to find𝐶(𝑧). If the ideal inverse controller
𝐶(𝑧) is the actual inverse controller, the mean square of the
overall system error 𝜖

𝑘
would be minimized. The objective

is to make 𝐶(𝑧) as close as possible to the ideal 𝐶(𝑧). The
difference between the outputs of 𝐶(𝑧) and 𝐶(𝑧), both driven
by the command input, is therefore an error signal 𝜖󸀠. Since
the target stimulation is unknown, instead of 𝜖󸀠, a filtered
error 𝜖, obtained by filtering the overall system error 𝜖

𝑘

through the inverse plantmodel 𝑃̂−1(𝑧), is used for adaptation
in place of 𝜖󸀠.

If the plant has a long response time, a modeling delay
is advantageous to capture the early stages of the response,
which is determined by the sliding window length that is
used to obtain the inverse controller input. There is no
performance penalty from the delay Δ as long as the input to
𝐶(𝑧) undergoes the same delay.The parameters of the inverse
model 𝑃̂−1(𝑧) are initially modeled offline and updated dur-
ing the whole system operation, which allows 𝑃̂−1(𝑧) to in-
crementally identify the inverse system and thus make 𝜖
approach 𝜖󸀠. Moreover, the adaptation enables 𝑃̂−1(𝑧) to track
changes in the plant. Thus, minimizing the filter error ob-
tained from 𝑃̂

−1
(𝑧) makes the controller follow the system

variation.

4.1. Relation toNeuralDecoding. In this control scheme, there
are only two models, 𝐶(𝑧) and 𝑃̂−1(𝑧), adjusted during the
control process, which share the same input (neural activ-
ity) and output types (continuous stimulation waveforms).
Therefore, bothmodels perform like neural decoders and can
be implemented using the Q-KLMS method we introduced
in the previous section. Since all the mathematical models



Computational Intelligence and Neuroscience 7

Ideal inverse

Command 

Overall 
system 
error

Plant 
disturbance 
and noise

Control system 
output

+

+

+

+

C(z)

Ĉ(z)

Ĉ(z)Delay Δ

Delay Δ

−

−

Filtered error 𝜖

𝜖󳰀

∑

∑

∑

P(z)

P̂
−1
(z)

𝜖k

input

(a) A filtered-𝜖 LMS adaptive inverse control diagram

Plant 
disturbance 
and noise

Control system 
output

+

+
+Command 

input 

Delay Δ

Delay Δ

Δ

Δ

−

∑

∑

P(z)𝜙(x)
y = × 𝜙(x)

𝜙(z)

𝜖 = × 𝜙(xΔ) − × 𝜙(z)

𝜙(x )

𝜖k = 𝜙(x ) − 𝜙(z)

WĈ

WĈ

WC

W
P̂
−1

W
P̂
−1

W
P̂
−1

(b) An adaptive inverse control diagram in RKHS

Figure 2: Adaptive inverse control diagram.

in this control scheme are kernel-based models, the whole
control scheme can be mapped into an RKHS space, which
holds several advantages as follows. (1) No restriction is
imposed on the signal type. As long as a kernel can map the
plant activity to RKHS, the plant can be controlled with this
scheme. (2) Both the plant inverse, 𝑃̂−1(𝑧), and the controller
𝐶(𝑧) have linear structure in RKHS, which avoids the danger
of converging to local minima.

Specifically, the controller 𝐶(𝑧) and the plant inverse
𝑃̂
−1
(𝑧) are separatelymodeled with the tensor-product kernel

that we described in Section 2, and the model coefficients
are updated with Q-KLMS. This structure is shown in Fig-
ure 2(b). The model coefficients W

𝐶̂
and W

𝑃̂
−1 represent

the weight matrix of 𝐶(𝑧) and 𝑃̂
−1
(𝑧) obtained by Q-

KLMS, respectively. As this is a multiple-input multiple-
output model, W

𝐶̂
and W

𝑃̂
−1 are the concatenation of the

filter weights for each stimulation channel.
The variables x, y, and z denote the concatenation of

the windowed target spike trains and LFPs as the command
input of the controller, the estimated stimulation, and the

plant output, respectively. x
Δ
is delayed target signal, which is

aligned with the plant output z. 𝜙(⋅) represents the mapping
function from input space to the RKHS associated with the
tensor-product kernel.

The overall system error is defined as 𝜖
𝑘
= 𝜙(x

Δ
) − 𝜙(z),

which means that the controller’s parameter adaptation seeks
to minimize the distance in the RKHS between the target
spike train/LFP and the output of the plant inverse 𝑃̂−1(𝑧).
In this way, since the inverse model 𝑃̂−1(𝑧) has a linear
structure in RKHS, the filtered error for stimulation channel
𝑗 ∈ 1, . . . ,𝑀 is

𝜖 (𝑗) =W𝑃̂
−1

𝑗
𝜙 (x
Δ
) −W𝑃̂

−1

𝑗
𝜙 (z) . (8)

The controller model 𝐶(𝑧) has a single input x, cor-
responding to the concatenation of the spike trains and
LFPs, and has an𝑀-channel output y, corresponding to the
microstimulation. Q-KLMS is used to model 𝐶(𝑧) with 𝑁
input samples. The target spike trains are repeated among
different trials, which means that the repeated samples will



8 Computational Intelligence and Neuroscience

Touch sites

Electrodes

Tactile 

Neural responses:

Electrical

VPL

VPL

S1

S1

stimulation microstimulation

spike trains and 
local field potentials

2mm

250𝜇m

500𝜇m

Figure 3: Neural elements in tactile stimulation experiments. To the left is the rat’s hand with representative cutaneous receptive fields.When
the tactor touches a particular “receptive field” on the hand, VPL thalamus receives this information and relays it to S1 cortex. To emulate
“natural touch” with microstimulation, the optimized spatiotemporal microstimulus patterns are injected into the same receptive field on
VPL thalamus through a microarray so that the target neural activity pattern can be replicated in somatosensory regions (S1) to convey the
natural touch sensation to the animal.

be merged on the same kernel center of the first pass through
the data by the quantization and thus the network size of the
inverse controller is fixed (𝑁 centers). Only the coefficient
matrix a is updated with the filtered error 𝜖 during the whole
control operation. The output of 𝐶(𝑧) can be calculated by

[

[

[

[

[

𝑦
1

𝑦
2

...
𝑦
𝑀

]

]

]

]

]

=

[

[

[

[

[

𝑎
11

𝑎
12

⋅ ⋅ ⋅ 𝑎
1𝑁

𝑎
12

𝑎
22

⋅ ⋅ ⋅ 𝑎
2𝑁

...
...

𝑎
𝑀1

𝑎
𝑀2

⋅ ⋅ ⋅ 𝑎
𝑀𝑁

]

]

]

]

]

[

[

[

[

[

[

[

[

[

𝜙(c𝑐
1
)

󸀠

𝜙(c𝑐
2
)

󸀠

...

𝜙(c𝑐
𝑁
)

󸀠

]

]

]

]

]

]

]

]

]

𝜙 (x)

=

[

[

[

[

[

𝑎
11

𝑎
12

⋅ ⋅ ⋅ 𝑎
1𝑁

𝑎
12

𝑎
22

⋅ ⋅ ⋅ 𝑎
2𝑁

...
...

𝑎
𝑀1

𝑎
𝑀2

⋅ ⋅ ⋅ 𝑎
𝑀𝑁

]

]

]

]

]

[

[

[

[

[

[

[

[

𝜅 (c𝑐
1
, x)

𝜅 (c𝑐
2
, x)
...

𝜅 (c𝑐
𝑁
, x)

]

]

]

]

]

]

]

]

,

(9)

where c𝑐
𝑛
is the 𝑛th center and 𝑎

𝑚𝑛
is the coefficient assigned

to the 𝑛th kernel center for the𝑚 channel of the output.

5. Sensory Stimulation Experiment

5.1. Experimental Motivation and Framework. We applied
these methods to the problem of converting touch in-
formation to electrical stimulation in neural prostheses. So-
matosensory information originating in the peripheral ner-
vous system ascends through the ventral posterior lateral
(VPL) nucleus of the thalamus on its way to the primary

somatosensory cortex (S1). Since most cutaneous and pro-
prioceptive information is relayed through this nucleus, we
expect that a suitably designed electrode array could be used
to selectively stimulate a local group of VPL neurons so as
to convey similar information to cortex. Electrophysiological
experiments [52] suggest that the rostral portion of the rat
VPL nucleus carries a large amount of proprioceptive infor-
mation, while themedial and caudal portions codemostly for
cutaneous stimuli. Since the body maps for both VPL thal-
amus and S1 are known and fairly consistent, it is possible to
implant electrode arrays in somatotopically overlapping areas
of both regions.

We applied the proposed control method to generate
multichannel electrical stimulation in VPL so as to evoke
a naturalistic neural trajectory in S1. Figure 3 shows a
schematic depiction of our experiment, whichwas conducted
in rats. After implanting arrays in both VPL and S1, the
responses to natural stimulation, delivered by a motorized
tactor, were recorded in S1. Then, we applied randomly
patterned microstimulation in the VPL while recording the
responses in S1. Using these responses, we then trained our
controller to output themicrostimulation patterns that would
most accurately reproduce the neural responses to natural
touch in S1. To solve this control problem,we first investigated
how reliably the two types of stimulation, natural touch and
electrical microstimulation, can be decoded.

5.2. Data Collection. All animal procedures were approved
by the SUNY Downstate Medical Center IACUC and con-
formed to National Institutes of Health guidelines. A sin-
gle female Long-Evans rat (Hilltop, Scottsdale, PA) was
implanted with two microarrays while under anesthesia.



Computational Intelligence and Neuroscience 9

−20

−10

−30

0

10

20

30

2 4 6 8 10 12 14 16

St
im

ul
at

io
n 

am
pl

itu
de

 (𝜇
A
)

Stimulation channels (16 channels)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

St
im

ul
at

io
n 

pa
tte

rn
s (

24
 cl

as
se

s)

Figure 4: Bipolar microstimulation patterns applied in sensory
stimulation experiment.

After induction using isoflurane, urethane was used to
maintain anesthetic depth. The array in VPL was a 2 × 8

grid of 70% platinum 30% iridium 75𝜇m diameter micro-
electrodes (MicroProbes Inc.), with 500𝜇mbetween the rows
and 250𝜇m interelectrode spacing within the rows. The
microelectrodes had a 25 : 1 taper on the distal 5mm with a
tip diameter of 3 𝜇m.The approximate geometric surface area
of the conducting tips was 1250 𝜇m2. The shank lengths were
custom designed to fit the contour of the rat VPL [52]. Both
rows were identical and the shaft lengths for each row, from
medial to lateral, were (8, 8, 8, 8, 8, 7.8, 7.6, 7.4)mm.The long
axis of the VPL array was oriented along the rat’s mediolateral
axis.

The cortical electrode array (Blackrock Microsystems)
was a 32-channel Utah array.The electrodes are arranged in a
6×6 grid excluding the 4 corners, and each electrode is 1.5mm
long. A single craniotomy that exposed the cortical insertions
sites for both arrays was made, and, after several probing
insertions with a single microelectrode (FHC) in an area
1mm surrounding the stereotaxic coordinates for the dig-
it region of S1 (4.0mm lateral and 0.5mmanterior to bregma)
[53, 54], the Utah array was inserted using a pneumatic pis-
ton.The electrodes cover somatosensory areas of the S1 cortex
and the VPL nucleus of the thalamus [52]. Neural recordings
were made using a multichannel acquisition system (Tucker
Davis).

Spike and field potential data were collected while the
rat was maintained under anesthesia. The electrode voltages
were preamplified with a gain of 1000, filtered with cutoffs at
0.7Hz and 8.8 kHz, and digitized at 25 kHz. LFPs are further
filtered from 1 to 300Hz using a 3rd-order Butterworth filter.
Spike sorting is achieved using 𝑘-means clustering of the first
2 principal components of the detected waveforms.

The experiment involves delivering microstimulation to
VPL and tactile stimulation to the rat’s fingers in separate
sections. Microstimulation is administered on adjacent pairs

Local field potential

Spike train

Time (s)

Time (s)

Ch
an

ne
ls

Ch
an

ne
ls

Ch
an

ne
ls

0.1 0.2 0.3 0.4 0.5

0.5

0.6 0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.70

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

1

0

0

5
10

10

15
20

20

25
30

30

Vo
lta

ge
 (m

V
)

−0.5
−1

3
2
1
0

−1
−2

Figure 5: Rat neural response elicited by tactile stimulation. The
upper plot shows the normalized derivative of tactile force. The
remaining two plots show the corresponding LFPs and spike trains
stimulated by tactile stimulation.

(bipolar configurations) of the thalamic array. The stimula-
tion waveforms are single symmetric biphasic rectangular
current pulses; each rectangular pulse is 200 𝜇s long and has
an amplitude of either 10𝜇A, 20𝜇A, or 30 𝜇A. Interstimulus
intervals are exponentially distributed with mean interval
of 100ms. Stimulus isolation used a custom built switching
headstage. The bipolar microstimulation pulses are delivered
in the thalamus. There are 24 patterns of microstimulation: 8
different sites and 3 different amplitude levels for each site, as
shown in Figure 4. Each pattern is delivered 125 times.

The experimental procedure also involves delivering 30–
40 short 100ms tactile touches to the rat’s fingers (repeated
for digit pads 1–4) using a hand-held probe.The rat remained
anesthetized for the recording duration. The applied force is
measured using a lever attached to the probe that pressed
against a thin-film resistive force sensor (Trossen Robotics)
when the probe tip contacted the rat’s body. The resistive
changes were converted to voltage using a bridge circuit and
were filtered and digitized in the same way as described
above.The digitized waveforms were filtered with a passband
between 1 and 60Hz using a 3rd-order Butterworth filter.The
first derivative of this signal is used as the desired stimulation
signal, which is shown in Figure 5.

5.3. Decoding Results. We now present the decoding results
for the tactile stimulus waveform andmicrostimulation using
Q-KLMS operating on the tensor-product kernel.The perfor-
mance using the multiscale neural activity, both spike trains
and LFPs, is compared with the decoder using single-type
neural activity. This illustrates the effectiveness of the tensor-
product-kernel-based framework to exploit the complemen-
tarity information from multiscale neural activities.



10 Computational Intelligence and Neuroscience

0 5 10 15 20 25

0
0.2
0.4
0.6
0.8

1

Sa
m

pl
e a

ut
oc

or
re

lat
io

n

Spike train

0 5 10 15 20 25

0
0.2
0.4
0.6
0.8

1

Lag (ms)

Sa
m

pl
e a

ut
oc

or
re

lat
io

n LFP

−0.2

−0.2

Figure 6: Autocorrelation of LFPs and spike trains for window size estimation.

5.3.1. Time Scale Estimation. The tensor-product kernel
allows the time scales of the analysis for LFPs and spike trains
to be specified individually, based on their own properties.
In order to find reasonable time scales, we estimate the au-
tocorrelation coefficients of LFPs and spike trains, which
indicates the response duration induced by the stimulation.
For this purpose, spike trains are binned with bin size of
1ms.TheLFPs are also resampledwith sampling rate 1000Hz.
The autocorrelation coefficients of each signal average over
channels are calculated by

𝜌
ℎ
=

∑
𝑇

𝑡=ℎ+1
(𝑦
𝑡
− 𝑦) (𝑦

𝑡−ℎ
− 𝑦)

∑
𝑇

𝑡=1
(𝑦
𝑡
− 𝑦)
2

. (10)

The 95% confidence bounds of the hypothesis that the auto-
correlation coefficient is effectively zero are approximately
estimated by ±2SE𝜌, where

SE𝜌 = √
(1 + 2∑

ℎ−1

𝑖=1
𝜌
2

𝑖
)

𝑁

.
(11)

The average confidence bounds for LFPs and spike trains are
[−0.032 0.032] and [−0.031 0.031], respectively.The autocor-
relation coefficients of LFPs fall into the confidence interval
after 20ms, while the autocorrelation coefficients of spike
trains die out after 9ms, as shown in Figure 6. Therefore, the
decoder inputs are obtained by sliding the windowwith a size
of 𝑇
𝑠
= 9ms for spike trains and 𝑇

𝑥
= 20ms for LFPs. In

addition, the time discretization for the stimuli is 5ms.
The learning rates for each decoder are determined by the

best cross-validation results after scanning the parameters.
The kernel sizes 𝜎

𝑠
and 𝜎
𝑥
are determined by the average dis-

tance in RKHS of each pair of training samples. The normal-
ized mean square error (NMSE) between the estimated stim-
ulus (y) and the desired stimulus (d) is utilized as an accuracy
criterion.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0
1
2
3
4
5

Time (s)

N
or

m
al

iz
ed

 d
er

iv
at

iv
e 

of
 ta

ct
ile

 fo
rc

e

Target
Spike decoder

LFP decoder
Spike and LFP decoder

−1
−2
−3
−4

Figure 7: Qualitative comparison of decoding performance of the
first tactile stimulation trial among LFP decoder, spike decoder, and
spike and LFP decoder.

Table 1: Comparison among neural decoders.

Property Input
LFP and spike LFP Spike

NMSE (mean/STD) 0.48/0.05 0.55/0.03 0.63/0.11

5.3.2. Results for Decoding Tactile Stimulation. NMSEs of
tac-tile stimulation are obtained across 8 trial data sets. For
each trial, we use 20 s data to train the decoders and compute
an independent test error on the remaining 2.5 s data. The
results are shown in Table 1, where we can observe that the
LFP and spike decoder significantly outperformed both the
LFP decoder and the spike decoder with 𝑃 value <0.05.

In order to illustrate the details of the decoding perfor-
mance, a portion of the test results of the first trial are shown
in Figure 7. It is observed that the output of the spike decoder
fluctuates and misses some pulses (e.g., around 0.65 s) due
to the sparsity and variability of spike trains. In contrast, the



Computational Intelligence and Neuroscience 11

1 2 3 4 5 6 7 8
0.2
0.4
0.6
0.8

1
1.2

Stimulation channels

N
or

m
al

iz
ed

 M
SE

 

Spike decoder
Spike and LFP decoder
LFP decoder

(m
ea

n 
sq

ua
re

 er
ro

r)

Figure 8: Performance comparison of the microstimulation recon-
struction performance among spike decoder, LFPdecoder, and spike
and LFP decoder in terms of NMSE for each microstimulation
channel.

output estimated by LFP decoder is smooth and more robust
than the spike decoder, but the decoded signal undershoots
the maximum force deflections. The LFP and spike decoder
performed better than the LFP decoder by reincorporating
the precise pulse timing information from spike trains.

5.3.3. Results for Decoding Electrical Microstimulation. We
also implemented a decoder to reconstruct the microstimu-
lation pattern. First, we mapped the 8 different stimulation
configurations to 8 channels. We dismissed the shape of
each stimulus, since the time scale of the stimulus width is
only 200𝜇s. The desired stimulation pattern of each channel
is represented by a sparse time series of the stimulation
amplitude.

NMSEs are obtained with ten subsequence decoding
results. We used 120 s data to train the decoders and compute
an independent test error on the remaining 20 s data. The
spike and LFP decoder also outperformed both the LFP
decoder and the spike decoder. The comparison of results
is shown in Figure 8, which indicates that spike and LFP
decoder is able to obtain the best performance amongst the
stimulation channels, especially for channels 2, 4, 6, and 7.
It is observed that stimulations on channels 4, 5, 6, 7, and 8
cannot be decoded from the LFP decoder at all, since the fine
time information is averaged out in LFPs. For the spike trains
decoder, the stimulation channels are not well discriminated.
However, the combination of spike trains and LFPs enriched
the stimulation information, which contributes to better
discrimination of stimulation patterns among channels and
also enables the model to capture the precise stimulation
timing.

5.4. Open Loop Adaptive Inverse Control Results. The chal-
lenge of implementing a somatosensory prosthesis is to
precisely control the neural response in order to mimic
the neural response induced by natural stimulation. As
discussed, the kernel-based adaptive inverse control diagram
with tensor-product kernel is applied to address this problem.
The adaptive inverse control model is based on a decoder
which maps the neural activity in S1 to the microstimulation

delivered in VPL. We proceed to show how the adaptive
inverse control model can emulate the neural response to
“natural touch” using optimized microstimulation.

In the same recording, open loop adaptive inverse control
via optimized thalamic (VPL) microstimulations is imple-
mented. First, the inverse controller𝐶(𝑧) is trained with 300 s
of the data generated by recording the response to randomly
patterned thalamic microstimulation. Then, the first 60 s of
the neural response recorded during tactile stimulation at
each touch site is used as the target pattern and control input.
When this entire neural response sequence is fed offline
to the controller, it generates a corresponding sequence of
multichannel microstimulation amplitudes.

However, the generatedmicrostimulation sequence needs
further processing to meet the restrictions of bipolar micros-
timulation, before it applied to VPL. The restrictions and
processing are the following.

(1) The minimal interval between two stimuli 10ms is
suggested by the experimental setting.Themean shift
algorithm [55] is used to locate the local maxima
of a subsequence of stimuli (10ms) for each single
channel. The maximum amplitude and correspond-
ing timing are used to set the amplitude and time of
stimuli.

(2) At any given time point, only a single pulse across all
channels can be stimulated. Therefore, at each time
point, only the maximum value across channels is
selected for stimulation. The values at other channels
are set to zero.

(3) The maximum/minimum stimulation amplitude is
set in the range [8 𝜇A–30 𝜇A], which has been sug-
gested as the effective and safe amplitude range in
previous experiments.

After this processing, the generatedmultichannelmicros-
timulation sequence (60 s in duration) is ready to be applied
to the microstimulator immediately following computation.

The neural response to the microstimulation is recorded
and compared with the target natural response. Ideally, these
two neural response sequences should be time-locked and
be very similar. In particular, the portions of the controlled
response inwindows corresponding to a natural touch should
match. As this corresponds to a virtual touch delivered by the
optimizedmicrostimulation, we define the term virtual touch
to refer to the sequence of microstimulation patterns—the
output of the controller—corresponding to a particular target
natural touch.

Portions of the neural response for both natural and
virtual touches are shown in Figure 9. The responses are
aligned to the same time scale, even though they were not
recorded concurrently. It is clear that the multiunit neural
responses recorded during the controlled microstimulation
share similar spatiotemporal patterns as those in the tar-
get set. Each virtual touch is achieved by a sequence of
microstimulation pulses that evokes synchronized bursting
across the neurons. In addition, microstimulation pulses
are delivered in between touch times to mimic population
spiking that is not associated with the touch timing.



12 Computational Intelligence and Neuroscience

17.5 18.5 19.518 19
Time (s)

17.5 18.5 19.518 19
Time (s)

Time (s)

17.5 18.5 19.518 19
Time (s)

10
20
30

25 25.2 25.4 25.6 25.8 26 26.2 26.4 26.6 26.8 27

Time (s)
25 25.2 25.4 25.6 25.8 26 26.2 26.4 26.6 26.8 27

Time (s)
25 25.2 25.4 25.6 25.8 26 26.2 26.4 26.6 26.8 27

Output

Target

0
5

LF
Ps

 (V
)

00

0
5

10
20
30

Output

Target

×10−4 ×10−4

−5

−10 LF
Ps

 (V
)

−5

−10

 cu
rr

en
t (
𝜇

A
)

St
im

ul
at

io
n

 cu
rr

en
t (
𝜇

A
)

St
im

ul
at

io
n

Touch time
Target (natural touch response)
Output (microstimulation response)

Touch time
Target (natural touch response)
Output (microstimulation response)

(a)

37 37.2 37.4 37.6 37.8 38 38.2 38.4 38.6 38.8 39
Time (s)

Time (s)

Time (s) Time (s)

Time (s)

Time (s)

Output

Target

Output

Target

37 37.2 37.4 37.6 37.8 38 38.2 38.4 38.6 38.8 39

37 37.2 37.4 37.6 37.8 38 38.2 38.4 38.6 38.8 39 52

0

0

5

10
20
30

0
10
20
30

LF
Ps

 (V
)

×10−4 ×10−4

−5
0

5

−5−10

 cu
rr

en
t (
𝜇

A
)

St
im

ul
at

io
n

LF
Ps

 (V
)

 cu
rr

en
t (
𝜇

A
)

St
im

ul
at

io
n

Touch time
Target (natural touch response)
Output (microstimulation response)

Touch time
Target (natural touch response)
Output (microstimulation response)

52.2 52.4 52.6 52.8 53 53.2 53.653.4 53.8 54

52 52.2 52.4 52.6 52.8 53 53.2 53.653.4 53.8 54

52 52.2 52.4 52.6 52.8 53 53.2 53.653.4 53.8 54

(b)

Figure 9: Neural responses to natural and virtual touches for touch on digit 1 (d1), along with the microstimulation corresponding to the
virtual touches. Each of the four subfigures corresponds to a different segment of the continuous recording. In each subfigure, the timing of the
touches, spatiotemporal pattern of spike trains and LFPs are shown in the top two panels; the bottom panel shows the spatiotemporal pattern
of microstimulation, where different colors represent different microstimulation channels. The neural responses are time-locked, but not
concurrently recorded, as the entire natural touch response is given as input to the controller which generates the optimizedmicrostimulation
patterns. When the optimized microstimulation is applied in the VPL, it generates S1 neural responses that qualitatively match the natural,
that is, the target, response.



Computational Intelligence and Neuroscience 13

0.03 0.06 0.09 0.12 0.15
0.06

0.12

0.18

0.24

0.3

0.36

0.42

Time (s) Time (s)

C
or

re
lat

io
n 

co
effi

ci
en

t

C
or

re
lat

io
n 

co
effi

ci
en

t

Spike train

−0.15 −0.12 −0.09 −0.06 −0.03 0 0.03 0.06 0.09 0.12 0.15

−0.3

0

0

0.15

0.3

0.45
Local field potential

−0.15 −0.12 −0.09
−0.45

−0.15

−0.06−0.03

Figure 10: Correlation coefficients between the controlled neural system output and the corresponding target neural response stimulated
by actual touch. Boxplot of correlation coefficients represents the results of 6 test trials. Each trial is corresponding to a particular touch site
(digits: d1, d2, d4, p3, p1, and mp).

To evaluate performance, we concentrate on the following
two aspects of virtual touches.

(i) Touch Timing. Whether the neural response to virtual
touch is capable of capturing the timing information of the
actual target touch is studied.

(ii) Touch Site. Whether the actual target touch site infor-
mation can be discriminately represented by neural activity
controlled by the microcirculation is studied.

For touch timing, we estimate the correlation coefficients
(CC) over time between virtual touch responses and the
corresponding target natural touch responses. To simplify
the spike train correlation estimation, we bin the data using
5ms bins.The correlation coefficients of both spike trains and
LFPs are calculated. Figure 10 shows the boxplot plot of the
correlation coefficients (CC) over 6 test trials, each of which
corresponds to a particular natural touch site, a forepaw digit
or pad (d1, d2, d4, p3, p1, or mp). It is observed that the
maximum correlation coefficient is at lag zero for each trial,
meaning that the virtual touch response is correctly time-
locked. For each touch site, we estimate the similarity between
the natural touch response and virtual touch response in the
following two cases.

(i) Matched Virtual. Pairs consist of a virtual touch trial and a
natural touch trial corresponding to the same touch site.

(ii) Unmatched Virtual. Pairs consist of a virtual touch trial
and a natural touch trial corresponding to different touch
sites.

We extract all the neural responses in the 300ms window
after touch onset and calculate the correlation coefficients
between natural touch responses and virtual touch response
across each pair of trials. The one-tailed Kolmogorov-
Smirnov test (KS) is implemented to test the alternative

Table 2: Average and standard deviation of the correlation coeffi-
cient (CC) between natural touch spike train responses and virtual
touch spike train responses (matched or unmatched). The P value is
for the one-sided KS test between the matched and unmatched CC
distributions.

Touch site CC
Matched virtual Unmatched virtual P value

d1 0.42 ± 0.06 0.35 ± 0.06 0.00
d2 0.40 ± 0.05 0.37 ± 0.06 0.01
d4 0.40 ± 0.05 0.37 ± 0.05 0.02
p3 0.38 ± 0.05 0.37 ± 0.06 0.11
p2 0.40 ± 0.07 0.36 ± 0.05 0.00
mp 0.41 ± 0.07 0.37 ± 0.06 0.00

hypothesis that the distribution of the correlation coefficients
for the matched virtual case is higher than the distribution
for the unmatched virtual case (the null hypothesis is that the
distributions are the same).The correlation coefficients and𝑃
value of KS test for spike trains and LFPs are shown in Tables
2 and 3. The similarity between natural touch responses
and virtual touch responses in the unmatched virtual case
is found to be significantly lower than the matched virtual
case for most touch sites (𝑃 value <0.05) except for touch
site p3. Without psychophysical testing, it is unclear how
effective the microstimulations are in producing true sensory
sensations. Nonetheless, these are promising results to show
the effectiveness of a controller utilizing themultiscale neural
decoding methodology.

6. Conclusions

This work proposes a novel tensor-product-kernel-based
machine learning framework, which provides a way to



14 Computational Intelligence and Neuroscience

Table 3: Average and standard deviation of the correlation coeffi-
cient (CC) between natural touch LFP responses and virtual touch
LFP responses (matched or unmatched). The P value is for the one-
sidedKS test between thematched andunmatchedCCdistributions.

Touch site CC
Matched virtual Unmatched virtual P value

d1 0.42 ± 0.20 0.28 ± 0.23 0.00
d2 0.46 ± 0.13 0.28 ± 0.22 0.00
d4 0.41 ± 0.19 0.26 ± 0.21 0.00
p3 0.38 ± 0.18 0.29 ± 0.22 0.07
p2 0.33 ± 0.19 0.26 ± 0.23 0.20
mp 0.34 ± 0.17 0.25 ± 0.21 0.00

decode stimulation information from the spatiotemporal
patterns of multiscale neural activity (e.g., spike trains and
LFPs). It has been hypothesized that spike trains and LFPs
contain complementary information that can enhance neural
data decoding. However, a systematic approach to combine,
in a single signal processing framework, these two distinct
neural responses has remained elusive. The combination
of positive definite kernels, which can be defined in both
the spike train space and the LFP space, seems to be a
very productive approach to achieve our goals. We have
basically used two types of combination kernels to achieve
the multiscale combination: sum kernels to “average” across
different spike channels, as well as across LFP channels, which
combine evidence for the neural event in each modality,
and product kernels across the spike and LFP modalities
to emphasize events that are represented in both multiscale
modalities. The results show that this approach enhances
the accuracy and robustness of neural decoding and control.
However, this paper should be interpreted as a first step of
a long process to optimize the joint information contained
in spike trains and LFPs. The first question is to understand
why this combination of sum and product kernels works.
Our analyses show that the sum kernel (particularly for the
spike trains) brings stability to the neural events because it
decreases the variability of the spike responses to stimuli.
On the other hand, the product kernel requires that the
neural event presents at both scales to be useful for decoding,
which improves specificity. If we look carefully at Figure 6,
we can understand the effect of decoding with the product
kernel. Notice that the correlation times of spikes and LFPs
are very different (LFPs have a much longer correlation
time).Moreover, composite kernel definition can be naturally
configured to different brain areas and even neuronal types
with distinctive firing patterns. Each pattern will lead to
different correlation profiles, which will immediately tune
the properties of the kernels across brain areas and neural
populations. If only LFPs are used, we can expect that the
response time of the decoder will be very long andmiss some
events. The product kernel in fact limits the duration of the
LFP kernel to that of the spike kernel and brings stability to
the spike kernel. This explains exactly the decoding results.
Therefore, results show that the proposed tensor-product-
kernel framework can effectively integrate the information

from spikes and LFPs into the same model and enhance the
neural decoding robustness and accuracy.

Furthermore, we applied the tensor-product-kernel
framework in a more complex BMI scenario: how to emulate
“natural touch” with microstimulation. Our preliminary
results show that the kernel-based adaptive inverse control
scheme employing tensor-product-kernel framework also
achieves better optimization of the microstimulation than
spikes and LFPs alone (results not shown). This result can
be expected because the inverse controller is basically a
decoder. However, we have to realize that not all the tasks
of interest reduce to neural decoding, and we do not even
know if neural control can be further improved by a different
kernel design. This is where further research is necessary to
optimize the joint kernels. For instance, we can weight both
the channel information and the multiscale information to
maximize the task performance using metric learning [40].

Overall, this tensor-product-kernel-based framework
proposed in this work provides a general and practical
framework to leverage heterogeneous neural activities in
decoding and control scenario, which is not limited to spike
trains and LFPs applications.

Conflict of Interests

The authors declare that there is no conflict of interests re-
garding the publication of this paper.

Acknowledgments

The authors would like to thank Ryan Burt for proofreading
the paper. This work was supported in part by the US NSF
Partnerships for Innovation Program 0650161 and DARPA
Project N66001-10-C-2008.

References

[1] J. K. Chapin, K. A. Moxon, R. S. Markowitz, and M. A. L.
Nicolelis, “Real-time control of a robot arm using simultane-
ously recorded neurons in the motor cortex,” Nature Neuro-
science, vol. 2, no. 7, pp. 664–670, 1999.

[2] M. Velliste, S. Perel, M. C. Spalding, A. S. Whitford, and A. B.
Schwartz, “Cortical control of a prosthetic arm for self-feeding,”
Nature, vol. 453, no. 7198, pp. 1098–1101, 2008.

[3] D.M. Taylor, S. I. H. Tillery, and A. B. Schwartz, “Direct cortical
control of 3D neuroprosthetic devices,” Science, vol. 296, no.
5574, pp. 1829–1832, 2002.

[4] M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows,
and J. P. Donoghue, “Instant neural control of a movement
signal,” Nature, vol. 416, no. 6877, pp. 141–142, 2002.

[5] J. M. Carmena, M. A. Lebedev, R. E. Crist et al., “Learning to
control a brain-machine interface for reaching and grasping by
primates,” PLoS Biology, vol. 1, no. 2, pp. 193–208, 2003.

[6] J. DiGiovanna, B. Mahmoudi, J. Fortes, J. C. Principe, and J.
C. Sanchez, “Coadaptive brain-machine interface via reinforce-
ment learning,” IEEE Transactions on Biomedical Engineering,
vol. 56, no. 1, pp. 54–64, 2009.



Computational Intelligence and Neuroscience 15

[7] A. Belitski, S. Panzeri, C.Magri, N. K. Logothetis, andC. Kayser,
“Sensory information in local field potentials and spikes from
visual and auditory cortices: time scales and frequency bands,”
Journal of Computational Neuroscience, vol. 29, no. 3, pp. 533–
545, 2010.

[8] J. R. Huxter, T. J. Senior, K. Allen, and J. Csicsvari, “Theta
phase-specific codes for two-dimensional position, trajectory
and heading in the hippocampus,” Nature Neuroscience, vol. 11,
no. 5, pp. 587–594, 2008.

[9] M. J. Rasch, A. Gretton, Y. Murayama, W. Maass, and N. K.
Logothetis, “Inferring spike trains from local field potentials,”
Journal of Neurophysiology, vol. 99, no. 3, pp. 1461–1476, 2008.

[10] G. Buzsáki and A. Draguhn, “Neuronal oscillation in cortical
networks,” Science, vol. 304, no. 5679, pp. 1926–1929, 2004.

[11] D. L. Snyder and M. I. Miller, Random Point Processes in Time
and Space, Springer, 1991.

[12] R. E. Kass, V. Ventura, and E. N. Brown, “Statistical issues in the
analysis of neuronal data,” Journal of Neurophysiology, vol. 94,
no. 1, pp. 8–25, 2005.

[13] R. D. Flint, E. W. Lindberg, L. R. Jordan, L. E. Miller, and M.
W. Slutzky, “Accurate decoding of reaching movements from
field potentials in the absence of spikes,” Journal of Neural
Engineering, vol. 9, no. 4, Article ID 046006, 2012.

[14] R. C. Kelly, M. A. Smith, R. E. Kass, and T. S. Lee, “Local
field potentials indicate network state and account for neuronal
response variability,” Journal of Computational Neuroscience,
vol. 29, no. 3, pp. 567–579, 2010.

[15] J. Liu andW. T. Newsome, “Local field potential in cortical area
MT: stimulus tuning and behavioral correlations,” Journal of
Neuroscience, vol. 26, no. 30, pp. 7779–7790, 2006.

[16] P. Berens, G. Keliris, A. Ecker,N. Logothetis, andA. Tolias, “Fea-
ture selectivity of the gamma-band of the local field potential in
primate primary visual cortex,” Frontiers in Neuroscience, vol. 2,
Article ID 199207, 2008.

[17] D. Xing, C.-I. Yeh, andR.M. Shapley, “Spatial spread of the local
field potential and its laminar variation in visual cortex,” Journal
of Neuroscience, vol. 29, no. 37, pp. 11540–11549, 2009.

[18] B. Schölkopf and A. J. Smola, Learning With Kernels: Support
VectorMachines, Regularization, Optimization, and Beyond, Ser.
Adaptive Computation andMachine Learning, MIT Press, 2002.

[19] L. Li, I. M. Park, A. Brockmeier et al., “Adaptive inverse control
of neural spatiotemporal spike patterns with a reproducing
kernel Hilbert space (RKHS) framework,” IEEE Transactions on
Neural Systems and Rehabilitation Engineering, vol. 21, no. 4, pp.
532–543, 2013.

[20] S. Monaco, G. Króliczak, D. J. Quinlan et al., “Contribution
of visual and proprioceptive information to the precision of
reaching movements,” Experimental Brain Research, vol. 202,
no. 1, pp. 15–32, 2010.

[21] R. S. Johansson and G. Westling, “Roles of glabrous skin
receptors and sensorimotor memory in automatic control of
precision grip when lifting rougher or more slippery objects,”
Experimental Brain Research, vol. 56, no. 3, pp. 550–564, 1984.

[22] J. E. O’Doherty, M. A. Lebedev, P. J. Ifft et al., “Active tactile
exploration using a brain-machine-brain interface,”Nature, vol.
479, no. 7372, pp. 228–231, 2011.

[23] J. E. O’Doherty, M. A. Lebedev, T. L. Hanson, N. A.
Fitzsimmons, and M. A. Nicolelis, “A brain-machine interface
instructed by direct intracorticalmicrostimulation,” Frontiers in
Integrative Neuroscience, vol. 3, 2009.

[24] N. A. Fitzsimmons, W. Drake, T. L. Hanson, M. A. Lebedev,
andM. A. L. Nicolelis, “Primate reaching cued by multichannel
spatiotemporal cortical microstimulation,” The Journal of Neu-
roscience, vol. 27, no. 21, pp. 5593–5602, 2007.

[25] X.-J. Feng, B. Greenwald, H. Rabitz, E. Shea-Brown, and
R. Kosut, “Toward closed-loop optimization of deep brain
stimulation for Parkinson’s disease: concepts and lessons from a
computational model,” Journal of Neural Engineering, vol. 4, no.
2, pp. L14–L21, 2007.

[26] J. Liu, H. K. Khalil, and K. G. Oweiss, “Model-based analysis
and control of a network of basal ganglia spiking neurons in the
normal and Parkinsonian states,” Journal of Neural Engineering,
vol. 8, no. 4, Article ID 045002, 2011.

[27] A. J. Brockmeier, J. S. Choi,M.M.Distasio, J. T. Francis, and J. C.
Pŕıncipe, “Optimizing microstimulation using a reinforcement
learning framework,” in Proceedings of the 33rd Annual Inter-
national Conference of the IEEE Engineering in Medicine and
Biology Society (EMBS ’11), pp. 1069–1072, September 2011.

[28] A. Brockmeier, J. Choi, M. Emigh, L. Li, J. Francis, and
J. Principe, “Subspace matching thalamic microstimulation
to tactile evoked potentials in rat somatosensory cortex,” in
Proceedings of the Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC ’12), pp.
2957–2960, 2012.

[29] Y. Ahmadian, A. M. Packer, R. Yuste, and L. Paninski, “Design-
ing optimal stimuli to control neuronal spike timing,” Journal of
Neurophysiology, vol. 106, no. 2, pp. 1038–1053, 2011.

[30] J. Moehlis, E. Shea-Brown, and H. Rabitz, “Optimal inputs for
phasemodels of spiking neurons,” Journal of Computational and
Nonlinear Dynamics, vol. 1, no. 4, pp. 358–367, 2006.

[31] D. Brugger, S. Butovas, M. Bogdan, and C. Schwarz, “Real-time
adaptive microstimulation increases reliability of electrically
evoked cortical potentials,” IEEE Transactions on Biomedical
Engineering, vol. 58, no. 5, pp. 1483–1491, 2011.

[32] N. Cristianini and J. Shawe-Taylor, An Introduction to Support
Vector Machines and Other Kernel-Based Learning Methods,
Cambridge University Press, 2000.

[33] A. J. Smola and B. Schölkopf, “A tutorial on support vector
regression,” Statistics and Computing, vol. 14, no. 3, pp. 199–222,
2004.

[34] W. Liu, J. C. Pŕıncipe, and S. Haykin, Kernel Adaptive Filtering,
Edited by S. Haykin, John Wiley & Sons, 2010.

[35] B. Schlkopf and A. J. Smola, Learning With Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond,
MIT Press, 2001.

[36] G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui,
andM. I. Jordan, “Learning the kernel matrix with semidefinite
programming,” The Journal of Machine Learning Research, vol.
5, pp. 27–72, 2004.

[37] C. Cortes, M. Mohri, and A. Rostamizadeh, “Algorithms for
learning kernels based on centered alignment,” Journal of
Machine Learning Research, vol. 13, pp. 795–828, 2012.

[38] M. Yamada,W. Jitkrittum, L. Sigal, E. P. Xing, andM. Sugiyama,
“High-dimensional feature selection by feature-wise kernelized
lasso,” Neural Computation, vol. 26, no. 1, pp. 185–207, 2013.

[39] R. A. Horn, “On infinitely divisible matrices, kernels, and func-
tions,” Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte
Gebiete, vol. 8, no. 3, pp. 219–230, 1967.

[40] A. J. Brockmeier, J. S. Choi, E. G. Kriminger, J. T. Francis,
and J. C. Principe, “Neural decoding with kernel-based metric
learning,” Neural Computation, vol. 26, no. 6, 2014.



16 Computational Intelligence and Neuroscience

[41] L. Shpigelman, Y. Singer, R. Paz, and E. Vaadia, Spikernels:
Embedding Spiking Neurons in Inner Product Spaces, vol. 15 of
Advances in Neural Information Processing Systems, MIT Press,
2003.

[42] A. R. C. Paiva, I. Park, and J. C. Pŕıncipe, “A reproducing kernel
Hilbert space framework for spike train signal processing,”
Neural Computation, vol. 21, no. 2, pp. 424–449, 2009.

[43] I. M. Park, S. Seth, M. Rao, and J. C. Principe, “Strictly positive
definite spike train kernels for point process divergences,”
Neural Computation, vol. 24, no. 8, pp. 2223–2250, 2012.

[44] L. Li, kernel based machine learning framework for neural
decoding [Ph.D. dissertation], University of Florida, 2012.

[45] H. RamlauHansen, “Smoothing counting process intensities by
means of kernel functions,” The Annals of Statistics, vol. 11, no.
2, pp. 453–466, 1983.

[46] P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computa-
tional andMathematicalModeling of Neural Systems,MIT Press,
2001.

[47] J. Platt, “A resource-allocating network for function interpola-
tion,” Neural Computation, vol. 3, no. 2, pp. 213–225, 1991.

[48] L. Csató and M. Opper, “Sparse on-line gaussian processes,”
Neural Computation, vol. 14, no. 3, pp. 641–668, 2002.

[49] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-
squares algorithm,” IEEE Transactions on Signal Processing, vol.
52, no. 8, pp. 2275–2285, 2004.

[50] W. Liu, I. Park, and J. C. Pŕıncipe, “An information theoretic
approach of designing sparse kernel adaptive filters,” IEEE
Transactions on Neural Networks, vol. 20, no. 12, pp. 1950–1961,
2009.

[51] B. Widrow and E. Walach, Adaptive Inverse Control, Edited by
E. Cliff, Prentice-Hall, 1995.

[52] J. T. Francis, S. Xu, and J. K. Chapin, “Proprioceptive and
cutaneous representations in the rat ventral posterolateral
thalamus,” Journal of Neurophysiology, vol. 99, no. 5, pp. 2291–
2304, 2008.

[53] G. Paxinos and C. Watson,The Rat Brain in Stereotaxic Coordi-
nates, Academic Press, 6th edition, 2006.

[54] G. Foffani, J. K. Chapin, and K. A. Moxon, “Computational role
of large receptive fields in the primary somatosensory cortex,”
Journal of Neurophysiology, vol. 100, no. 1, pp. 268–280, 2008.

[55] K. Fukunaga andL.D.Hostetler, “The estimation of the gradient
of a density function, with application in pattern recognition,”
IEEE Transactions on Information Theory, vol. 21, no. 1, pp. 32–
40, 1975.


